Properties

Label 820.2.k.c.83.11
Level $820$
Weight $2$
Character 820.83
Analytic conductor $6.548$
Analytic rank $0$
Dimension $108$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [820,2,Mod(83,820)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(820, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 3, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("820.83"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 820 = 2^{2} \cdot 5 \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 820.k (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [108] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.54773296574\)
Analytic rank: \(0\)
Dimension: \(108\)
Relative dimension: \(54\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 83.11
Character \(\chi\) \(=\) 820.83
Dual form 820.2.k.c.247.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.12977 - 0.850658i) q^{2} +(1.73461 - 1.73461i) q^{3} +(0.552763 + 1.92210i) q^{4} +(2.10007 + 0.767920i) q^{5} +(-3.43527 + 0.484152i) q^{6} +(-1.19221 - 1.19221i) q^{7} +(1.01055 - 2.64174i) q^{8} -3.01775i q^{9} +(-1.71936 - 2.65401i) q^{10} -4.02815i q^{11} +(4.29292 + 2.37526i) q^{12} +(-0.809077 - 0.809077i) q^{13} +(0.332763 + 2.36109i) q^{14} +(4.97485 - 2.31076i) q^{15} +(-3.38891 + 2.12493i) q^{16} +(-0.339384 + 0.339384i) q^{17} +(-2.56707 + 3.40936i) q^{18} -4.20643 q^{19} +(-0.315172 + 4.46102i) q^{20} -4.13605 q^{21} +(-3.42657 + 4.55088i) q^{22} +(1.29540 - 1.29540i) q^{23} +(-2.82948 - 6.33530i) q^{24} +(3.82060 + 3.22537i) q^{25} +(0.225824 + 1.60232i) q^{26} +(-0.0307830 - 0.0307830i) q^{27} +(1.63254 - 2.95056i) q^{28} -4.18189i q^{29} +(-7.58610 - 1.62126i) q^{30} -5.69498i q^{31} +(5.63627 + 0.482116i) q^{32} +(-6.98726 - 6.98726i) q^{33} +(0.672126 - 0.0947266i) q^{34} +(-1.58821 - 3.41926i) q^{35} +(5.80040 - 1.66810i) q^{36} +(4.60427 - 4.60427i) q^{37} +(4.75231 + 3.57824i) q^{38} -2.80687 q^{39} +(4.15087 - 4.77182i) q^{40} +1.00000 q^{41} +(4.67279 + 3.51836i) q^{42} +(-0.412275 + 0.412275i) q^{43} +(7.74248 - 2.22661i) q^{44} +(2.31739 - 6.33748i) q^{45} +(-2.56545 + 0.361563i) q^{46} +(8.15524 + 8.15524i) q^{47} +(-2.19251 + 9.56435i) q^{48} -4.15725i q^{49} +(-1.57271 - 6.89395i) q^{50} +1.17740i q^{51} +(1.10790 - 2.00235i) q^{52} +(0.269408 + 0.269408i) q^{53} +(0.00859193 + 0.0609635i) q^{54} +(3.09329 - 8.45939i) q^{55} +(-4.35431 + 1.94473i) q^{56} +(-7.29652 + 7.29652i) q^{57} +(-3.55736 + 4.72458i) q^{58} -5.44652 q^{59} +(7.19142 + 8.28483i) q^{60} +0.729813 q^{61} +(-4.84448 + 6.43402i) q^{62} +(-3.59780 + 3.59780i) q^{63} +(-5.95758 - 5.33922i) q^{64} +(-1.07781 - 2.32042i) q^{65} +(1.95024 + 13.8378i) q^{66} +(9.31927 + 9.31927i) q^{67} +(-0.839928 - 0.464730i) q^{68} -4.49403i q^{69} +(-1.11431 + 5.21400i) q^{70} -1.57249i q^{71} +(-7.97210 - 3.04958i) q^{72} +(5.88887 + 5.88887i) q^{73} +(-9.11843 + 1.28511i) q^{74} +(12.2220 - 1.03249i) q^{75} +(-2.32516 - 8.08517i) q^{76} +(-4.80241 + 4.80241i) q^{77} +(3.17112 + 2.38768i) q^{78} -13.9425 q^{79} +(-8.74872 + 1.86010i) q^{80} +8.94645 q^{81} +(-1.12977 - 0.850658i) q^{82} +(-3.59692 + 3.59692i) q^{83} +(-2.28626 - 7.94989i) q^{84} +(-0.973351 + 0.452111i) q^{85} +(0.816481 - 0.115071i) q^{86} +(-7.25395 - 7.25395i) q^{87} +(-10.6413 - 4.07064i) q^{88} +6.99649i q^{89} +(-8.00914 + 5.18860i) q^{90} +1.92919i q^{91} +(3.20593 + 1.77383i) q^{92} +(-9.87857 - 9.87857i) q^{93} +(-2.27623 - 16.1509i) q^{94} +(-8.83381 - 3.23020i) q^{95} +(10.6130 - 8.94045i) q^{96} +(-9.75595 + 9.75595i) q^{97} +(-3.53640 + 4.69674i) q^{98} -12.1559 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 108 q + 12 q^{2} - 4 q^{6} - 24 q^{8} + 4 q^{10} - 16 q^{13} + 52 q^{16} - 8 q^{17} + 18 q^{18} + 38 q^{20} + 72 q^{21} + 10 q^{22} - 12 q^{25} + 24 q^{26} - 58 q^{28} - 70 q^{30} - 38 q^{32} + 8 q^{33}+ \cdots + 122 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/820\mathbb{Z}\right)^\times\).

\(n\) \(411\) \(621\) \(657\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.12977 0.850658i −0.798868 0.601506i
\(3\) 1.73461 1.73461i 1.00148 1.00148i 0.00147886 0.999999i \(-0.499529\pi\)
0.999999 0.00147886i \(-0.000470737\pi\)
\(4\) 0.552763 + 1.92210i 0.276382 + 0.961048i
\(5\) 2.10007 + 0.767920i 0.939180 + 0.343424i
\(6\) −3.43527 + 0.484152i −1.40244 + 0.197654i
\(7\) −1.19221 1.19221i −0.450614 0.450614i 0.444944 0.895558i \(-0.353224\pi\)
−0.895558 + 0.444944i \(0.853224\pi\)
\(8\) 1.01055 2.64174i 0.357283 0.933996i
\(9\) 3.01775i 1.00592i
\(10\) −1.71936 2.65401i −0.543710 0.839273i
\(11\) 4.02815i 1.21453i −0.794499 0.607266i \(-0.792266\pi\)
0.794499 0.607266i \(-0.207734\pi\)
\(12\) 4.29292 + 2.37526i 1.23926 + 0.685678i
\(13\) −0.809077 0.809077i −0.224398 0.224398i 0.585950 0.810347i \(-0.300722\pi\)
−0.810347 + 0.585950i \(0.800722\pi\)
\(14\) 0.332763 + 2.36109i 0.0889345 + 0.631029i
\(15\) 4.97485 2.31076i 1.28450 0.596637i
\(16\) −3.38891 + 2.12493i −0.847226 + 0.531232i
\(17\) −0.339384 + 0.339384i −0.0823127 + 0.0823127i −0.747064 0.664752i \(-0.768537\pi\)
0.664752 + 0.747064i \(0.268537\pi\)
\(18\) −2.56707 + 3.40936i −0.605064 + 0.803594i
\(19\) −4.20643 −0.965022 −0.482511 0.875890i \(-0.660275\pi\)
−0.482511 + 0.875890i \(0.660275\pi\)
\(20\) −0.315172 + 4.46102i −0.0704747 + 0.997514i
\(21\) −4.13605 −0.902561
\(22\) −3.42657 + 4.55088i −0.730548 + 0.970251i
\(23\) 1.29540 1.29540i 0.270109 0.270109i −0.559035 0.829144i \(-0.688828\pi\)
0.829144 + 0.559035i \(0.188828\pi\)
\(24\) −2.82948 6.33530i −0.577565 1.29319i
\(25\) 3.82060 + 3.22537i 0.764120 + 0.645074i
\(26\) 0.225824 + 1.60232i 0.0442877 + 0.314241i
\(27\) −0.0307830 0.0307830i −0.00592418 0.00592418i
\(28\) 1.63254 2.95056i 0.308521 0.557604i
\(29\) 4.18189i 0.776558i −0.921542 0.388279i \(-0.873070\pi\)
0.921542 0.388279i \(-0.126930\pi\)
\(30\) −7.58610 1.62126i −1.38503 0.296000i
\(31\) 5.69498i 1.02285i −0.859328 0.511424i \(-0.829118\pi\)
0.859328 0.511424i \(-0.170882\pi\)
\(32\) 5.63627 + 0.482116i 0.996362 + 0.0852268i
\(33\) −6.98726 6.98726i −1.21633 1.21633i
\(34\) 0.672126 0.0947266i 0.115269 0.0162455i
\(35\) −1.58821 3.41926i −0.268456 0.577960i
\(36\) 5.80040 1.66810i 0.966733 0.278017i
\(37\) 4.60427 4.60427i 0.756937 0.756937i −0.218826 0.975764i \(-0.570223\pi\)
0.975764 + 0.218826i \(0.0702229\pi\)
\(38\) 4.75231 + 3.57824i 0.770926 + 0.580466i
\(39\) −2.80687 −0.449458
\(40\) 4.15087 4.77182i 0.656310 0.754491i
\(41\) 1.00000 0.156174
\(42\) 4.67279 + 3.51836i 0.721027 + 0.542895i
\(43\) −0.412275 + 0.412275i −0.0628714 + 0.0628714i −0.737843 0.674972i \(-0.764156\pi\)
0.674972 + 0.737843i \(0.264156\pi\)
\(44\) 7.74248 2.22661i 1.16722 0.335674i
\(45\) 2.31739 6.33748i 0.345456 0.944736i
\(46\) −2.56545 + 0.361563i −0.378254 + 0.0533095i
\(47\) 8.15524 + 8.15524i 1.18956 + 1.18956i 0.977188 + 0.212376i \(0.0681202\pi\)
0.212376 + 0.977188i \(0.431880\pi\)
\(48\) −2.19251 + 9.56435i −0.316461 + 1.38050i
\(49\) 4.15725i 0.593893i
\(50\) −1.57271 6.89395i −0.222415 0.974952i
\(51\) 1.17740i 0.164869i
\(52\) 1.10790 2.00235i 0.153637 0.277676i
\(53\) 0.269408 + 0.269408i 0.0370060 + 0.0370060i 0.725368 0.688362i \(-0.241670\pi\)
−0.688362 + 0.725368i \(0.741670\pi\)
\(54\) 0.00859193 + 0.0609635i 0.00116921 + 0.00829608i
\(55\) 3.09329 8.45939i 0.417099 1.14066i
\(56\) −4.35431 + 1.94473i −0.581869 + 0.259875i
\(57\) −7.29652 + 7.29652i −0.966448 + 0.966448i
\(58\) −3.55736 + 4.72458i −0.467104 + 0.620367i
\(59\) −5.44652 −0.709076 −0.354538 0.935042i \(-0.615362\pi\)
−0.354538 + 0.935042i \(0.615362\pi\)
\(60\) 7.19142 + 8.28483i 0.928409 + 1.06957i
\(61\) 0.729813 0.0934429 0.0467215 0.998908i \(-0.485123\pi\)
0.0467215 + 0.998908i \(0.485123\pi\)
\(62\) −4.84448 + 6.43402i −0.615249 + 0.817121i
\(63\) −3.59780 + 3.59780i −0.453280 + 0.453280i
\(64\) −5.95758 5.33922i −0.744697 0.667402i
\(65\) −1.07781 2.32042i −0.133686 0.287813i
\(66\) 1.95024 + 13.8378i 0.240058 + 1.70331i
\(67\) 9.31927 + 9.31927i 1.13853 + 1.13853i 0.988714 + 0.149816i \(0.0478683\pi\)
0.149816 + 0.988714i \(0.452132\pi\)
\(68\) −0.839928 0.464730i −0.101856 0.0563568i
\(69\) 4.49403i 0.541017i
\(70\) −1.11431 + 5.21400i −0.133185 + 0.623192i
\(71\) 1.57249i 0.186620i −0.995637 0.0933101i \(-0.970255\pi\)
0.995637 0.0933101i \(-0.0297448\pi\)
\(72\) −7.97210 3.04958i −0.939521 0.359397i
\(73\) 5.88887 + 5.88887i 0.689240 + 0.689240i 0.962064 0.272824i \(-0.0879577\pi\)
−0.272824 + 0.962064i \(0.587958\pi\)
\(74\) −9.11843 + 1.28511i −1.06000 + 0.149391i
\(75\) 12.2220 1.03249i 1.41128 0.119221i
\(76\) −2.32516 8.08517i −0.266715 0.927433i
\(77\) −4.80241 + 4.80241i −0.547286 + 0.547286i
\(78\) 3.17112 + 2.38768i 0.359058 + 0.270352i
\(79\) −13.9425 −1.56866 −0.784329 0.620345i \(-0.786992\pi\)
−0.784329 + 0.620345i \(0.786992\pi\)
\(80\) −8.74872 + 1.86010i −0.978136 + 0.207965i
\(81\) 8.94645 0.994050
\(82\) −1.12977 0.850658i −0.124762 0.0939394i
\(83\) −3.59692 + 3.59692i −0.394813 + 0.394813i −0.876399 0.481586i \(-0.840061\pi\)
0.481586 + 0.876399i \(0.340061\pi\)
\(84\) −2.28626 7.94989i −0.249451 0.867404i
\(85\) −0.973351 + 0.452111i −0.105575 + 0.0490383i
\(86\) 0.816481 0.115071i 0.0880434 0.0124085i
\(87\) −7.25395 7.25395i −0.777705 0.777705i
\(88\) −10.6413 4.07064i −1.13437 0.433932i
\(89\) 6.99649i 0.741627i 0.928707 + 0.370813i \(0.120921\pi\)
−0.928707 + 0.370813i \(0.879079\pi\)
\(90\) −8.00914 + 5.18860i −0.844238 + 0.546926i
\(91\) 1.92919i 0.202234i
\(92\) 3.20593 + 1.77383i 0.334241 + 0.184935i
\(93\) −9.87857 9.87857i −1.02436 1.02436i
\(94\) −2.27623 16.1509i −0.234776 1.66584i
\(95\) −8.83381 3.23020i −0.906330 0.331412i
\(96\) 10.6130 8.94045i 1.08319 0.912481i
\(97\) −9.75595 + 9.75595i −0.990566 + 0.990566i −0.999956 0.00938975i \(-0.997011\pi\)
0.00938975 + 0.999956i \(0.497011\pi\)
\(98\) −3.53640 + 4.69674i −0.357230 + 0.474443i
\(99\) −12.1559 −1.22172
\(100\) −4.08759 + 9.12643i −0.408759 + 0.912643i
\(101\) −0.471180 −0.0468842 −0.0234421 0.999725i \(-0.507463\pi\)
−0.0234421 + 0.999725i \(0.507463\pi\)
\(102\) 1.00156 1.33019i 0.0991695 0.131708i
\(103\) 13.6131 13.6131i 1.34134 1.34134i 0.446618 0.894725i \(-0.352628\pi\)
0.894725 0.446618i \(-0.147372\pi\)
\(104\) −2.95498 + 1.31976i −0.289760 + 0.129413i
\(105\) −8.68601 3.17616i −0.847667 0.309961i
\(106\) −0.0751952 0.533542i −0.00730360 0.0518222i
\(107\) −3.09088 3.09088i −0.298806 0.298806i 0.541740 0.840546i \(-0.317766\pi\)
−0.840546 + 0.541740i \(0.817766\pi\)
\(108\) 0.0421521 0.0761835i 0.00405609 0.00733076i
\(109\) 14.2850i 1.36826i 0.729362 + 0.684128i \(0.239817\pi\)
−0.729362 + 0.684128i \(0.760183\pi\)
\(110\) −10.6908 + 6.92584i −1.01932 + 0.660353i
\(111\) 15.9732i 1.51611i
\(112\) 6.57367 + 1.50693i 0.621153 + 0.142392i
\(113\) 2.75749 + 2.75749i 0.259403 + 0.259403i 0.824811 0.565408i \(-0.191281\pi\)
−0.565408 + 0.824811i \(0.691281\pi\)
\(114\) 14.4502 2.03656i 1.35339 0.190741i
\(115\) 3.71519 1.72567i 0.346444 0.160919i
\(116\) 8.03799 2.31160i 0.746309 0.214626i
\(117\) −2.44159 + 2.44159i −0.225725 + 0.225725i
\(118\) 6.15331 + 4.63312i 0.566458 + 0.426513i
\(119\) 0.809237 0.0741826
\(120\) −1.07711 15.4774i −0.0983262 1.41289i
\(121\) −5.22596 −0.475087
\(122\) −0.824521 0.620821i −0.0746486 0.0562065i
\(123\) 1.73461 1.73461i 0.156405 0.156405i
\(124\) 10.9463 3.14798i 0.983006 0.282697i
\(125\) 5.54670 + 9.70742i 0.496112 + 0.868258i
\(126\) 7.12518 1.00419i 0.634762 0.0894606i
\(127\) −9.54013 9.54013i −0.846550 0.846550i 0.143151 0.989701i \(-0.454276\pi\)
−0.989701 + 0.143151i \(0.954276\pi\)
\(128\) 2.18885 + 11.1000i 0.193469 + 0.981106i
\(129\) 1.43027i 0.125929i
\(130\) −0.756205 + 3.53840i −0.0663236 + 0.310338i
\(131\) 19.9501i 1.74305i 0.490353 + 0.871524i \(0.336868\pi\)
−0.490353 + 0.871524i \(0.663132\pi\)
\(132\) 9.56789 17.2925i 0.832778 1.50512i
\(133\) 5.01497 + 5.01497i 0.434853 + 0.434853i
\(134\) −2.60113 18.4561i −0.224703 1.59437i
\(135\) −0.0410076 0.0882853i −0.00352937 0.00759839i
\(136\) 0.553600 + 1.23953i 0.0474708 + 0.106289i
\(137\) −9.99072 + 9.99072i −0.853565 + 0.853565i −0.990570 0.137005i \(-0.956252\pi\)
0.137005 + 0.990570i \(0.456252\pi\)
\(138\) −3.82288 + 5.07722i −0.325425 + 0.432202i
\(139\) 4.82361 0.409133 0.204567 0.978853i \(-0.434421\pi\)
0.204567 + 0.978853i \(0.434421\pi\)
\(140\) 5.69424 4.94273i 0.481251 0.417737i
\(141\) 28.2923 2.38264
\(142\) −1.33765 + 1.77655i −0.112253 + 0.149085i
\(143\) −3.25908 + 3.25908i −0.272538 + 0.272538i
\(144\) 6.41250 + 10.2269i 0.534375 + 0.852238i
\(145\) 3.21136 8.78227i 0.266689 0.729328i
\(146\) −1.64366 11.6625i −0.136030 0.965194i
\(147\) −7.21121 7.21121i −0.594771 0.594771i
\(148\) 11.3949 + 6.30478i 0.936657 + 0.518249i
\(149\) 16.3870i 1.34248i 0.741241 + 0.671239i \(0.234238\pi\)
−0.741241 + 0.671239i \(0.765762\pi\)
\(150\) −14.6864 9.23027i −1.19914 0.753649i
\(151\) 13.0755i 1.06407i −0.846723 0.532034i \(-0.821428\pi\)
0.846723 0.532034i \(-0.178572\pi\)
\(152\) −4.25081 + 11.1123i −0.344786 + 0.901327i
\(153\) 1.02418 + 1.02418i 0.0827997 + 0.0827997i
\(154\) 9.51083 1.34042i 0.766405 0.108014i
\(155\) 4.37329 11.9599i 0.351271 0.960639i
\(156\) −1.55153 5.39507i −0.124222 0.431951i
\(157\) 11.6419 11.6419i 0.929126 0.929126i −0.0685237 0.997649i \(-0.521829\pi\)
0.997649 + 0.0685237i \(0.0218289\pi\)
\(158\) 15.7519 + 11.8603i 1.25315 + 0.943557i
\(159\) 0.934635 0.0741213
\(160\) 11.4663 + 5.34068i 0.906494 + 0.422218i
\(161\) −3.08879 −0.243430
\(162\) −10.1074 7.61036i −0.794115 0.597927i
\(163\) 3.14829 3.14829i 0.246593 0.246593i −0.572978 0.819571i \(-0.694212\pi\)
0.819571 + 0.572978i \(0.194212\pi\)
\(164\) 0.552763 + 1.92210i 0.0431636 + 0.150090i
\(165\) −9.30810 20.0394i −0.724634 1.56007i
\(166\) 7.12343 1.00395i 0.552886 0.0779214i
\(167\) −1.04606 1.04606i −0.0809462 0.0809462i 0.665474 0.746421i \(-0.268229\pi\)
−0.746421 + 0.665474i \(0.768229\pi\)
\(168\) −4.17969 + 10.9264i −0.322470 + 0.842988i
\(169\) 11.6908i 0.899291i
\(170\) 1.48425 + 0.317206i 0.113837 + 0.0243286i
\(171\) 12.6940i 0.970731i
\(172\) −1.02032 0.564542i −0.0777989 0.0430459i
\(173\) 8.62879 + 8.62879i 0.656034 + 0.656034i 0.954439 0.298405i \(-0.0964546\pi\)
−0.298405 + 0.954439i \(0.596455\pi\)
\(174\) 2.02467 + 14.3659i 0.153490 + 1.08908i
\(175\) −0.709638 8.40030i −0.0536436 0.635003i
\(176\) 8.55952 + 13.6510i 0.645198 + 1.02898i
\(177\) −9.44758 + 9.44758i −0.710124 + 0.710124i
\(178\) 5.95162 7.90443i 0.446093 0.592462i
\(179\) −7.62133 −0.569645 −0.284822 0.958580i \(-0.591935\pi\)
−0.284822 + 0.958580i \(0.591935\pi\)
\(180\) 13.4622 + 0.951110i 1.00341 + 0.0708916i
\(181\) 0.848933 0.0631007 0.0315503 0.999502i \(-0.489956\pi\)
0.0315503 + 0.999502i \(0.489956\pi\)
\(182\) 1.64108 2.17954i 0.121645 0.161558i
\(183\) 1.26594 1.26594i 0.0935810 0.0935810i
\(184\) −2.11304 4.73117i −0.155776 0.348787i
\(185\) 13.2050 6.13359i 0.970851 0.450950i
\(186\) 2.75724 + 19.5638i 0.202170 + 1.43449i
\(187\) 1.36709 + 1.36709i 0.0999715 + 0.0999715i
\(188\) −11.1672 + 20.1831i −0.814454 + 1.47200i
\(189\) 0.0733998i 0.00533905i
\(190\) 7.23239 + 11.1639i 0.524692 + 0.809917i
\(191\) 4.93773i 0.357281i 0.983914 + 0.178641i \(0.0571699\pi\)
−0.983914 + 0.178641i \(0.942830\pi\)
\(192\) −19.5955 + 1.07262i −1.41419 + 0.0774095i
\(193\) 6.49046 + 6.49046i 0.467194 + 0.467194i 0.901004 0.433810i \(-0.142831\pi\)
−0.433810 + 0.901004i \(0.642831\pi\)
\(194\) 19.3209 2.72301i 1.38716 0.195501i
\(195\) −5.89462 2.15545i −0.422122 0.154355i
\(196\) 7.99064 2.29798i 0.570760 0.164141i
\(197\) −8.24214 + 8.24214i −0.587228 + 0.587228i −0.936880 0.349652i \(-0.886300\pi\)
0.349652 + 0.936880i \(0.386300\pi\)
\(198\) 13.7334 + 10.3405i 0.975991 + 0.734869i
\(199\) −3.15529 −0.223673 −0.111836 0.993727i \(-0.535673\pi\)
−0.111836 + 0.993727i \(0.535673\pi\)
\(200\) 12.3815 6.83363i 0.875504 0.483211i
\(201\) 32.3306 2.28043
\(202\) 0.532325 + 0.400813i 0.0374543 + 0.0282011i
\(203\) −4.98571 + 4.98571i −0.349928 + 0.349928i
\(204\) −2.26307 + 0.650823i −0.158447 + 0.0455667i
\(205\) 2.10007 + 0.767920i 0.146675 + 0.0536338i
\(206\) −26.9599 + 3.79961i −1.87838 + 0.264731i
\(207\) −3.90919 3.90919i −0.271707 0.271707i
\(208\) 4.46112 + 1.02265i 0.309323 + 0.0709083i
\(209\) 16.9441i 1.17205i
\(210\) 7.11137 + 10.9771i 0.490731 + 0.757495i
\(211\) 12.2107i 0.840618i 0.907381 + 0.420309i \(0.138078\pi\)
−0.907381 + 0.420309i \(0.861922\pi\)
\(212\) −0.368909 + 0.666746i −0.0253367 + 0.0457923i
\(213\) −2.72766 2.72766i −0.186896 0.186896i
\(214\) 0.862705 + 6.12126i 0.0589733 + 0.418441i
\(215\) −1.18240 + 0.549213i −0.0806391 + 0.0374560i
\(216\) −0.112428 + 0.0502129i −0.00764978 + 0.00341655i
\(217\) −6.78963 + 6.78963i −0.460910 + 0.460910i
\(218\) 12.1516 16.1388i 0.823013 1.09306i
\(219\) 20.4298 1.38052
\(220\) 17.9696 + 1.26956i 1.21151 + 0.0855937i
\(221\) 0.549176 0.0369416
\(222\) −13.5877 + 18.0461i −0.911950 + 1.21117i
\(223\) −10.1856 + 10.1856i −0.682080 + 0.682080i −0.960468 0.278389i \(-0.910200\pi\)
0.278389 + 0.960468i \(0.410200\pi\)
\(224\) −6.14486 7.29443i −0.410571 0.487379i
\(225\) 9.73335 11.5296i 0.648890 0.768640i
\(226\) −0.769652 5.46101i −0.0511965 0.363261i
\(227\) 18.8653 + 18.8653i 1.25213 + 1.25213i 0.954762 + 0.297372i \(0.0961102\pi\)
0.297372 + 0.954762i \(0.403890\pi\)
\(228\) −18.0579 9.99137i −1.19591 0.661695i
\(229\) 14.5362i 0.960580i −0.877110 0.480290i \(-0.840531\pi\)
0.877110 0.480290i \(-0.159469\pi\)
\(230\) −5.66527 1.21075i −0.373557 0.0798343i
\(231\) 16.6606i 1.09619i
\(232\) −11.0475 4.22601i −0.725302 0.277451i
\(233\) −21.0073 21.0073i −1.37624 1.37624i −0.850887 0.525349i \(-0.823935\pi\)
−0.525349 0.850887i \(-0.676065\pi\)
\(234\) 4.83539 0.681479i 0.316099 0.0445497i
\(235\) 10.8640 + 23.3892i 0.708690 + 1.52574i
\(236\) −3.01063 10.4687i −0.195976 0.681456i
\(237\) −24.1849 + 24.1849i −1.57098 + 1.57098i
\(238\) −0.914252 0.688384i −0.0592622 0.0446213i
\(239\) 17.3400 1.12163 0.560816 0.827941i \(-0.310488\pi\)
0.560816 + 0.827941i \(0.310488\pi\)
\(240\) −11.9491 + 18.4022i −0.771309 + 1.18785i
\(241\) 26.8759 1.73123 0.865615 0.500711i \(-0.166928\pi\)
0.865615 + 0.500711i \(0.166928\pi\)
\(242\) 5.90414 + 4.44550i 0.379532 + 0.285768i
\(243\) 15.6109 15.6109i 1.00144 1.00144i
\(244\) 0.403414 + 1.40277i 0.0258259 + 0.0898032i
\(245\) 3.19244 8.73053i 0.203957 0.557773i
\(246\) −3.43527 + 0.484152i −0.219025 + 0.0308684i
\(247\) 3.40333 + 3.40333i 0.216549 + 0.216549i
\(248\) −15.0447 5.75506i −0.955336 0.365446i
\(249\) 12.4785i 0.790793i
\(250\) 1.99119 15.6855i 0.125934 0.992039i
\(251\) 18.2984i 1.15499i 0.816396 + 0.577493i \(0.195969\pi\)
−0.816396 + 0.577493i \(0.804031\pi\)
\(252\) −8.90405 4.92658i −0.560902 0.310346i
\(253\) −5.21806 5.21806i −0.328056 0.328056i
\(254\) 2.66278 + 18.8935i 0.167077 + 1.18549i
\(255\) −0.904147 + 2.47262i −0.0566199 + 0.154842i
\(256\) 6.96936 14.4024i 0.435585 0.900148i
\(257\) 6.60489 6.60489i 0.412002 0.412002i −0.470434 0.882435i \(-0.655903\pi\)
0.882435 + 0.470434i \(0.155903\pi\)
\(258\) 1.21667 1.61588i 0.0757467 0.100600i
\(259\) −10.9785 −0.682174
\(260\) 3.86430 3.35431i 0.239654 0.208025i
\(261\) −12.6199 −0.781151
\(262\) 16.9707 22.5390i 1.04845 1.39247i
\(263\) 8.98275 8.98275i 0.553900 0.553900i −0.373664 0.927564i \(-0.621899\pi\)
0.927564 + 0.373664i \(0.121899\pi\)
\(264\) −25.5195 + 11.3976i −1.57062 + 0.701471i
\(265\) 0.358892 + 0.772659i 0.0220466 + 0.0474640i
\(266\) −1.39974 9.93179i −0.0858238 0.608957i
\(267\) 12.1362 + 12.1362i 0.742723 + 0.742723i
\(268\) −12.7612 + 23.0639i −0.779513 + 1.40885i
\(269\) 0.807155i 0.0492131i 0.999697 + 0.0246066i \(0.00783330\pi\)
−0.999697 + 0.0246066i \(0.992167\pi\)
\(270\) −0.0287714 + 0.134626i −0.00175097 + 0.00819305i
\(271\) 3.29795i 0.200336i 0.994971 + 0.100168i \(0.0319380\pi\)
−0.994971 + 0.100168i \(0.968062\pi\)
\(272\) 0.428974 1.87131i 0.0260103 0.113465i
\(273\) 3.34638 + 3.34638i 0.202532 + 0.202532i
\(274\) 19.7859 2.78854i 1.19531 0.168462i
\(275\) 12.9923 15.3899i 0.783463 0.928048i
\(276\) 8.63795 2.48413i 0.519943 0.149527i
\(277\) 20.4138 20.4138i 1.22655 1.22655i 0.261283 0.965262i \(-0.415854\pi\)
0.965262 0.261283i \(-0.0841455\pi\)
\(278\) −5.44957 4.10324i −0.326844 0.246096i
\(279\) −17.1860 −1.02890
\(280\) −10.6378 + 0.740308i −0.635728 + 0.0442418i
\(281\) 4.55009 0.271436 0.135718 0.990748i \(-0.456666\pi\)
0.135718 + 0.990748i \(0.456666\pi\)
\(282\) −31.9638 24.0671i −1.90342 1.43317i
\(283\) −1.82990 + 1.82990i −0.108776 + 0.108776i −0.759400 0.650624i \(-0.774507\pi\)
0.650624 + 0.759400i \(0.274507\pi\)
\(284\) 3.02247 0.869215i 0.179351 0.0515784i
\(285\) −20.9264 + 9.72008i −1.23957 + 0.575768i
\(286\) 6.45437 0.909652i 0.381655 0.0537888i
\(287\) −1.19221 1.19221i −0.0703742 0.0703742i
\(288\) 1.45490 17.0088i 0.0857310 1.00226i
\(289\) 16.7696i 0.986449i
\(290\) −11.0988 + 7.19019i −0.651744 + 0.422222i
\(291\) 33.8455i 1.98406i
\(292\) −8.06382 + 14.5741i −0.471899 + 0.852886i
\(293\) −2.47914 2.47914i −0.144833 0.144833i 0.630972 0.775805i \(-0.282656\pi\)
−0.775805 + 0.630972i \(0.782656\pi\)
\(294\) 2.01274 + 14.2813i 0.117386 + 0.832902i
\(295\) −11.4381 4.18249i −0.665950 0.243514i
\(296\) −7.51044 16.8161i −0.436536 0.977417i
\(297\) −0.123998 + 0.123998i −0.00719511 + 0.00719511i
\(298\) 13.9398 18.5136i 0.807508 1.07246i
\(299\) −2.09616 −0.121224
\(300\) 8.74042 + 22.9212i 0.504629 + 1.32335i
\(301\) 0.983040 0.0566615
\(302\) −11.1228 + 14.7723i −0.640044 + 0.850051i
\(303\) −0.817314 + 0.817314i −0.0469534 + 0.0469534i
\(304\) 14.2552 8.93837i 0.817592 0.512651i
\(305\) 1.53266 + 0.560437i 0.0877598 + 0.0320906i
\(306\) −0.285861 2.02831i −0.0163416 0.115951i
\(307\) −4.45472 4.45472i −0.254244 0.254244i 0.568464 0.822708i \(-0.307538\pi\)
−0.822708 + 0.568464i \(0.807538\pi\)
\(308\) −11.8853 6.57610i −0.677227 0.374708i
\(309\) 47.2270i 2.68665i
\(310\) −15.1146 + 9.79173i −0.858449 + 0.556133i
\(311\) 4.78019i 0.271060i −0.990773 0.135530i \(-0.956726\pi\)
0.990773 0.135530i \(-0.0432737\pi\)
\(312\) −2.83648 + 7.41501i −0.160584 + 0.419792i
\(313\) −3.52240 3.52240i −0.199098 0.199098i 0.600515 0.799613i \(-0.294962\pi\)
−0.799613 + 0.600515i \(0.794962\pi\)
\(314\) −23.0560 + 3.24941i −1.30112 + 0.183375i
\(315\) −10.3185 + 4.79281i −0.581379 + 0.270044i
\(316\) −7.70692 26.7989i −0.433548 1.50756i
\(317\) −20.1919 + 20.1919i −1.13409 + 1.13409i −0.144597 + 0.989491i \(0.546189\pi\)
−0.989491 + 0.144597i \(0.953811\pi\)
\(318\) −1.05592 0.795054i −0.0592132 0.0445844i
\(319\) −16.8453 −0.943154
\(320\) −8.41125 15.7877i −0.470203 0.882558i
\(321\) −10.7229 −0.598496
\(322\) 3.48962 + 2.62750i 0.194469 + 0.146425i
\(323\) 1.42760 1.42760i 0.0794336 0.0794336i
\(324\) 4.94527 + 17.1959i 0.274737 + 0.955329i
\(325\) −0.481585 5.70073i −0.0267135 0.316220i
\(326\) −6.23496 + 0.878728i −0.345322 + 0.0486682i
\(327\) 24.7789 + 24.7789i 1.37028 + 1.37028i
\(328\) 1.01055 2.64174i 0.0557983 0.145866i
\(329\) 19.4456i 1.07207i
\(330\) −6.53066 + 30.5579i −0.359501 + 1.68216i
\(331\) 17.6160i 0.968260i −0.874996 0.484130i \(-0.839136\pi\)
0.874996 0.484130i \(-0.160864\pi\)
\(332\) −8.90186 4.92537i −0.488553 0.270315i
\(333\) −13.8945 13.8945i −0.761415 0.761415i
\(334\) 0.291968 + 2.07164i 0.0159758 + 0.113355i
\(335\) 12.4147 + 26.7276i 0.678287 + 1.46028i
\(336\) 14.0167 8.78882i 0.764673 0.479469i
\(337\) 22.2233 22.2233i 1.21058 1.21058i 0.239742 0.970837i \(-0.422937\pi\)
0.970837 0.239742i \(-0.0770627\pi\)
\(338\) −9.94486 + 13.2079i −0.540929 + 0.718416i
\(339\) 9.56635 0.519573
\(340\) −1.40703 1.62096i −0.0763071 0.0879090i
\(341\) −22.9402 −1.24228
\(342\) 10.7982 14.3413i 0.583900 0.775486i
\(343\) −13.3018 + 13.3018i −0.718231 + 0.718231i
\(344\) 0.672499 + 1.50575i 0.0362587 + 0.0811845i
\(345\) 3.45105 9.43778i 0.185798 0.508113i
\(346\) −2.40841 17.0887i −0.129477 0.918694i
\(347\) −23.3249 23.3249i −1.25215 1.25215i −0.954755 0.297392i \(-0.903883\pi\)
−0.297392 0.954755i \(-0.596117\pi\)
\(348\) 9.93307 17.9525i 0.532468 0.962355i
\(349\) 7.83755i 0.419535i −0.977751 0.209767i \(-0.932729\pi\)
0.977751 0.209767i \(-0.0672706\pi\)
\(350\) −6.34405 + 10.0941i −0.339104 + 0.539551i
\(351\) 0.0498116i 0.00265874i
\(352\) 1.94203 22.7037i 0.103511 1.21011i
\(353\) 21.1022 + 21.1022i 1.12316 + 1.12316i 0.991264 + 0.131892i \(0.0421052\pi\)
0.131892 + 0.991264i \(0.457895\pi\)
\(354\) 18.7103 2.63694i 0.994439 0.140152i
\(355\) 1.20755 3.30234i 0.0640898 0.175270i
\(356\) −13.4479 + 3.86740i −0.712739 + 0.204972i
\(357\) 1.40371 1.40371i 0.0742923 0.0742923i
\(358\) 8.61035 + 6.48314i 0.455071 + 0.342645i
\(359\) 10.1203 0.534130 0.267065 0.963679i \(-0.413946\pi\)
0.267065 + 0.963679i \(0.413946\pi\)
\(360\) −14.4001 12.5263i −0.758954 0.660192i
\(361\) −1.30591 −0.0687321
\(362\) −0.959099 0.722151i −0.0504091 0.0379554i
\(363\) −9.06501 + 9.06501i −0.475790 + 0.475790i
\(364\) −3.70808 + 1.06638i −0.194356 + 0.0558937i
\(365\) 7.84487 + 16.8892i 0.410619 + 0.884022i
\(366\) −2.50710 + 0.353341i −0.131048 + 0.0184694i
\(367\) 22.8049 + 22.8049i 1.19040 + 1.19040i 0.976954 + 0.213451i \(0.0684704\pi\)
0.213451 + 0.976954i \(0.431530\pi\)
\(368\) −1.63735 + 7.14262i −0.0853530 + 0.372335i
\(369\) 3.01775i 0.157098i
\(370\) −20.1362 4.30339i −1.04683 0.223723i
\(371\) 0.642383i 0.0333509i
\(372\) 13.5270 24.4481i 0.701345 1.26757i
\(373\) 6.89178 + 6.89178i 0.356843 + 0.356843i 0.862648 0.505805i \(-0.168804\pi\)
−0.505805 + 0.862648i \(0.668804\pi\)
\(374\) −0.381572 2.70742i −0.0197306 0.139997i
\(375\) 26.4600 + 7.21723i 1.36639 + 0.372696i
\(376\) 29.7853 13.3028i 1.53606 0.686037i
\(377\) −3.38347 + 3.38347i −0.174258 + 0.174258i
\(378\) 0.0624381 0.0829249i 0.00321147 0.00426520i
\(379\) −28.6069 −1.46944 −0.734718 0.678373i \(-0.762686\pi\)
−0.734718 + 0.678373i \(0.762686\pi\)
\(380\) 1.32575 18.7650i 0.0680096 0.962623i
\(381\) −33.0968 −1.69560
\(382\) 4.20031 5.57850i 0.214907 0.285421i
\(383\) −5.18753 + 5.18753i −0.265070 + 0.265070i −0.827110 0.562040i \(-0.810017\pi\)
0.562040 + 0.827110i \(0.310017\pi\)
\(384\) 23.0509 + 15.4573i 1.17631 + 0.788801i
\(385\) −13.7733 + 6.39754i −0.701951 + 0.326049i
\(386\) −1.81157 12.8539i −0.0922067 0.654246i
\(387\) 1.24414 + 1.24414i 0.0632433 + 0.0632433i
\(388\) −24.1446 13.3591i −1.22576 0.678207i
\(389\) 11.9556i 0.606171i −0.952963 0.303086i \(-0.901983\pi\)
0.952963 0.303086i \(-0.0980168\pi\)
\(390\) 4.82602 + 7.44946i 0.244375 + 0.377218i
\(391\) 0.879276i 0.0444669i
\(392\) −10.9824 4.20111i −0.554694 0.212188i
\(393\) 34.6056 + 34.6056i 1.74562 + 1.74562i
\(394\) 16.3230 2.30049i 0.822339 0.115897i
\(395\) −29.2803 10.7067i −1.47325 0.538715i
\(396\) −6.71935 23.3649i −0.337660 1.17413i
\(397\) 13.9851 13.9851i 0.701891 0.701891i −0.262925 0.964816i \(-0.584687\pi\)
0.964816 + 0.262925i \(0.0846873\pi\)
\(398\) 3.56475 + 2.68407i 0.178685 + 0.134540i
\(399\) 17.3980 0.870991
\(400\) −19.8013 2.81198i −0.990067 0.140599i
\(401\) 12.9974 0.649060 0.324530 0.945875i \(-0.394794\pi\)
0.324530 + 0.945875i \(0.394794\pi\)
\(402\) −36.5262 27.5023i −1.82176 1.37169i
\(403\) −4.60768 + 4.60768i −0.229525 + 0.229525i
\(404\) −0.260451 0.905653i −0.0129579 0.0450579i
\(405\) 18.7882 + 6.87015i 0.933592 + 0.341381i
\(406\) 9.87384 1.39158i 0.490030 0.0690628i
\(407\) −18.5467 18.5467i −0.919324 0.919324i
\(408\) 3.11038 + 1.18982i 0.153987 + 0.0589048i
\(409\) 4.96260i 0.245385i −0.992445 0.122692i \(-0.960847\pi\)
0.992445 0.122692i \(-0.0391529\pi\)
\(410\) −1.71936 2.65401i −0.0849133 0.131072i
\(411\) 34.6600i 1.70965i
\(412\) 33.6906 + 18.6409i 1.65982 + 0.918372i
\(413\) 6.49341 + 6.49341i 0.319520 + 0.319520i
\(414\) 1.09111 + 7.74186i 0.0536249 + 0.380492i
\(415\) −10.3159 + 4.79164i −0.506389 + 0.235212i
\(416\) −4.17011 4.95025i −0.204456 0.242706i
\(417\) 8.36708 8.36708i 0.409738 0.409738i
\(418\) 14.4137 19.1430i 0.704995 0.936314i
\(419\) −19.4749 −0.951409 −0.475705 0.879605i \(-0.657807\pi\)
−0.475705 + 0.879605i \(0.657807\pi\)
\(420\) 1.30357 18.4510i 0.0636077 0.900317i
\(421\) −35.8743 −1.74841 −0.874204 0.485558i \(-0.838616\pi\)
−0.874204 + 0.485558i \(0.838616\pi\)
\(422\) 10.3871 13.7953i 0.505637 0.671543i
\(423\) 24.6104 24.6104i 1.19660 1.19660i
\(424\) 0.983955 0.439455i 0.0477851 0.0213418i
\(425\) −2.39129 + 0.202011i −0.115995 + 0.00979896i
\(426\) 0.761325 + 5.40193i 0.0368863 + 0.261724i
\(427\) −0.870093 0.870093i −0.0421067 0.0421067i
\(428\) 4.23244 7.64949i 0.204583 0.369752i
\(429\) 11.3065i 0.545881i
\(430\) 1.80303 + 0.385334i 0.0869500 + 0.0185824i
\(431\) 20.1367i 0.969951i −0.874528 0.484975i \(-0.838829\pi\)
0.874528 0.484975i \(-0.161171\pi\)
\(432\) 0.169732 + 0.0389089i 0.00816624 + 0.00187201i
\(433\) 2.73734 + 2.73734i 0.131548 + 0.131548i 0.769815 0.638267i \(-0.220348\pi\)
−0.638267 + 0.769815i \(0.720348\pi\)
\(434\) 13.4464 1.89508i 0.645447 0.0909665i
\(435\) −9.66336 20.8043i −0.463323 0.997488i
\(436\) −27.4572 + 7.89623i −1.31496 + 0.378161i
\(437\) −5.44901 + 5.44901i −0.260662 + 0.260662i
\(438\) −23.0810 17.3788i −1.10285 0.830389i
\(439\) −22.0544 −1.05260 −0.526300 0.850299i \(-0.676421\pi\)
−0.526300 + 0.850299i \(0.676421\pi\)
\(440\) −19.2216 16.7203i −0.916354 0.797110i
\(441\) −12.5455 −0.597406
\(442\) −0.620443 0.467160i −0.0295114 0.0222206i
\(443\) 19.2001 19.2001i 0.912225 0.912225i −0.0842223 0.996447i \(-0.526841\pi\)
0.996447 + 0.0842223i \(0.0268406\pi\)
\(444\) 30.7021 8.82942i 1.45706 0.419026i
\(445\) −5.37274 + 14.6931i −0.254692 + 0.696521i
\(446\) 20.1719 2.84294i 0.955167 0.134617i
\(447\) 28.4251 + 28.4251i 1.34446 + 1.34446i
\(448\) 0.737220 + 13.4682i 0.0348304 + 0.636313i
\(449\) 21.6592i 1.02216i 0.859533 + 0.511080i \(0.170754\pi\)
−0.859533 + 0.511080i \(0.829246\pi\)
\(450\) −20.8042 + 4.74605i −0.980719 + 0.223731i
\(451\) 4.02815i 0.189678i
\(452\) −3.77592 + 6.82440i −0.177604 + 0.320993i
\(453\) −22.6809 22.6809i −1.06564 1.06564i
\(454\) −5.26555 37.3614i −0.247125 1.75346i
\(455\) −1.48146 + 4.05143i −0.0694519 + 0.189934i
\(456\) 11.9020 + 26.6490i 0.557363 + 1.24795i
\(457\) 9.64959 9.64959i 0.451389 0.451389i −0.444427 0.895815i \(-0.646593\pi\)
0.895815 + 0.444427i \(0.146593\pi\)
\(458\) −12.3653 + 16.4226i −0.577794 + 0.767377i
\(459\) 0.0208945 0.000975272
\(460\) 5.37052 + 6.18707i 0.250402 + 0.288474i
\(461\) −20.5463 −0.956935 −0.478468 0.878105i \(-0.658808\pi\)
−0.478468 + 0.878105i \(0.658808\pi\)
\(462\) 14.1725 18.8227i 0.659364 0.875711i
\(463\) −24.8325 + 24.8325i −1.15406 + 1.15406i −0.168334 + 0.985730i \(0.553839\pi\)
−0.985730 + 0.168334i \(0.946161\pi\)
\(464\) 8.88622 + 14.1720i 0.412532 + 0.657920i
\(465\) −13.1598 28.3316i −0.610269 1.31385i
\(466\) 5.86342 + 41.6035i 0.271618 + 1.92725i
\(467\) 15.2663 + 15.2663i 0.706440 + 0.706440i 0.965785 0.259345i \(-0.0835067\pi\)
−0.259345 + 0.965785i \(0.583507\pi\)
\(468\) −6.04259 3.34335i −0.279319 0.154546i
\(469\) 22.2211i 1.02608i
\(470\) 7.62231 35.6659i 0.351591 1.64515i
\(471\) 40.3884i 1.86100i
\(472\) −5.50397 + 14.3883i −0.253341 + 0.662274i
\(473\) 1.66070 + 1.66070i 0.0763593 + 0.0763593i
\(474\) 47.8964 6.75031i 2.19995 0.310052i
\(475\) −16.0711 13.5673i −0.737393 0.622511i
\(476\) 0.447317 + 1.55543i 0.0205027 + 0.0712931i
\(477\) 0.813004 0.813004i 0.0372249 0.0372249i
\(478\) −19.5902 14.7504i −0.896036 0.674668i
\(479\) −4.80890 −0.219724 −0.109862 0.993947i \(-0.535041\pi\)
−0.109862 + 0.993947i \(0.535041\pi\)
\(480\) 29.1536 10.6256i 1.33068 0.484992i
\(481\) −7.45042 −0.339710
\(482\) −30.3636 22.8622i −1.38302 1.04134i
\(483\) −5.35784 + 5.35784i −0.243790 + 0.243790i
\(484\) −2.88872 10.0448i −0.131306 0.456582i
\(485\) −27.9800 + 12.9964i −1.27050 + 0.590136i
\(486\) −30.9164 + 4.35722i −1.40239 + 0.197648i
\(487\) −4.14169 4.14169i −0.187678 0.187678i 0.607014 0.794691i \(-0.292367\pi\)
−0.794691 + 0.607014i \(0.792367\pi\)
\(488\) 0.737512 1.92798i 0.0333856 0.0872753i
\(489\) 10.9221i 0.493914i
\(490\) −11.0334 + 7.14782i −0.498439 + 0.322906i
\(491\) 36.1178i 1.62997i 0.579480 + 0.814987i \(0.303256\pi\)
−0.579480 + 0.814987i \(0.696744\pi\)
\(492\) 4.29292 + 2.37526i 0.193540 + 0.107085i
\(493\) 1.41927 + 1.41927i 0.0639206 + 0.0639206i
\(494\) −0.949914 6.74005i −0.0427386 0.303249i
\(495\) −25.5283 9.33477i −1.14741 0.419567i
\(496\) 12.1014 + 19.2997i 0.543370 + 0.866584i
\(497\) −1.87474 + 1.87474i −0.0840937 + 0.0840937i
\(498\) 10.6149 14.0978i 0.475666 0.631739i
\(499\) 19.6148 0.878078 0.439039 0.898468i \(-0.355319\pi\)
0.439039 + 0.898468i \(0.355319\pi\)
\(500\) −15.5926 + 16.0272i −0.697322 + 0.716758i
\(501\) −3.62900 −0.162132
\(502\) 15.5657 20.6730i 0.694731 0.922682i
\(503\) 17.4984 17.4984i 0.780214 0.780214i −0.199653 0.979867i \(-0.563982\pi\)
0.979867 + 0.199653i \(0.0639815\pi\)
\(504\) 5.86870 + 13.1402i 0.261412 + 0.585311i
\(505\) −0.989511 0.361828i −0.0440327 0.0161011i
\(506\) 1.45643 + 10.3340i 0.0647461 + 0.459402i
\(507\) −20.2790 20.2790i −0.900620 0.900620i
\(508\) 13.0636 23.6105i 0.579604 1.04755i
\(509\) 35.9686i 1.59428i −0.603795 0.797140i \(-0.706345\pi\)
0.603795 0.797140i \(-0.293655\pi\)
\(510\) 3.12483 2.02437i 0.138370 0.0896408i
\(511\) 14.0416i 0.621163i
\(512\) −20.1253 + 10.3428i −0.889419 + 0.457093i
\(513\) 0.129487 + 0.129487i 0.00571697 + 0.00571697i
\(514\) −13.0805 + 1.84351i −0.576957 + 0.0813138i
\(515\) 39.0424 18.1348i 1.72041 0.799114i
\(516\) −2.74912 + 0.790603i −0.121023 + 0.0348043i
\(517\) 32.8505 32.8505i 1.44476 1.44476i
\(518\) 12.4032 + 9.33899i 0.544967 + 0.410331i
\(519\) 29.9352 1.31401
\(520\) −7.21914 + 0.502398i −0.316580 + 0.0220316i
\(521\) 7.17372 0.314286 0.157143 0.987576i \(-0.449772\pi\)
0.157143 + 0.987576i \(0.449772\pi\)
\(522\) 14.2576 + 10.7352i 0.624037 + 0.469867i
\(523\) −24.2846 + 24.2846i −1.06189 + 1.06189i −0.0639394 + 0.997954i \(0.520366\pi\)
−0.997954 + 0.0639394i \(0.979634\pi\)
\(524\) −38.3460 + 11.0277i −1.67515 + 0.481746i
\(525\) −15.8022 13.3403i −0.689665 0.582219i
\(526\) −17.7897 + 2.50720i −0.775667 + 0.109319i
\(527\) 1.93279 + 1.93279i 0.0841935 + 0.0841935i
\(528\) 38.5266 + 8.83174i 1.67666 + 0.384352i
\(529\) 19.6439i 0.854082i
\(530\) 0.251802 1.17822i 0.0109376 0.0511787i
\(531\) 16.4362i 0.713270i
\(532\) −6.86716 + 12.4113i −0.297729 + 0.538100i
\(533\) −0.809077 0.809077i −0.0350450 0.0350450i
\(534\) −3.38737 24.0348i −0.146586 1.04009i
\(535\) −4.11752 8.86461i −0.178016 0.383251i
\(536\) 34.0367 15.2015i 1.47016 0.656605i
\(537\) −13.2200 + 13.2200i −0.570487 + 0.570487i
\(538\) 0.686613 0.911900i 0.0296020 0.0393148i
\(539\) −16.7460 −0.721302
\(540\) 0.147025 0.127621i 0.00632696 0.00549195i
\(541\) −43.7163 −1.87951 −0.939754 0.341850i \(-0.888946\pi\)
−0.939754 + 0.341850i \(0.888946\pi\)
\(542\) 2.80542 3.72592i 0.120503 0.160042i
\(543\) 1.47257 1.47257i 0.0631939 0.0631939i
\(544\) −2.07648 + 1.74924i −0.0890285 + 0.0749980i
\(545\) −10.9697 + 29.9995i −0.469892 + 1.28504i
\(546\) −0.934020 6.62727i −0.0399724 0.283621i
\(547\) 4.05775 + 4.05775i 0.173497 + 0.173497i 0.788514 0.615017i \(-0.210851\pi\)
−0.615017 + 0.788514i \(0.710851\pi\)
\(548\) −24.7256 13.6806i −1.05623 0.584407i
\(549\) 2.20239i 0.0939957i
\(550\) −27.7698 + 6.33512i −1.18411 + 0.270131i
\(551\) 17.5908i 0.749395i
\(552\) −11.8720 4.54144i −0.505308 0.193296i
\(553\) 16.6225 + 16.6225i 0.706860 + 0.706860i
\(554\) −40.4280 + 5.69775i −1.71762 + 0.242074i
\(555\) 12.2662 33.5449i 0.520669 1.42390i
\(556\) 2.66632 + 9.27144i 0.113077 + 0.393197i
\(557\) −20.3398 + 20.3398i −0.861826 + 0.861826i −0.991550 0.129724i \(-0.958591\pi\)
0.129724 + 0.991550i \(0.458591\pi\)
\(558\) 19.4162 + 14.6194i 0.821955 + 0.618889i
\(559\) 0.667124 0.0282164
\(560\) 12.6480 + 8.21271i 0.534474 + 0.347050i
\(561\) 4.74273 0.200238
\(562\) −5.14056 3.87057i −0.216841 0.163270i
\(563\) 8.97565 8.97565i 0.378279 0.378279i −0.492202 0.870481i \(-0.663808\pi\)
0.870481 + 0.492202i \(0.163808\pi\)
\(564\) 15.6390 + 54.3806i 0.658519 + 2.28984i
\(565\) 3.67340 + 7.90846i 0.154541 + 0.332711i
\(566\) 3.62399 0.510750i 0.152328 0.0214684i
\(567\) −10.6661 10.6661i −0.447933 0.447933i
\(568\) −4.15411 1.58908i −0.174302 0.0666762i
\(569\) 0.150643i 0.00631527i 0.999995 + 0.00315763i \(0.00100511\pi\)
−0.999995 + 0.00315763i \(0.998995\pi\)
\(570\) 31.9105 + 6.81971i 1.33658 + 0.285646i
\(571\) 4.12312i 0.172547i 0.996271 + 0.0862736i \(0.0274959\pi\)
−0.996271 + 0.0862736i \(0.972504\pi\)
\(572\) −8.06576 4.46276i −0.337247 0.186598i
\(573\) 8.56503 + 8.56503i 0.357809 + 0.357809i
\(574\) 0.332763 + 2.36109i 0.0138892 + 0.0985502i
\(575\) 9.12735 0.771057i 0.380637 0.0321553i
\(576\) −16.1124 + 17.9785i −0.671350 + 0.749103i
\(577\) −25.1465 + 25.1465i −1.04686 + 1.04686i −0.0480152 + 0.998847i \(0.515290\pi\)
−0.998847 + 0.0480152i \(0.984710\pi\)
\(578\) 14.2652 18.9458i 0.593355 0.788043i
\(579\) 22.5169 0.935768
\(580\) 18.6555 + 1.31802i 0.774627 + 0.0547276i
\(581\) 8.57659 0.355817
\(582\) 28.7910 38.2377i 1.19342 1.58500i
\(583\) 1.08521 1.08521i 0.0449449 0.0449449i
\(584\) 21.5079 9.60587i 0.890001 0.397494i
\(585\) −7.00245 + 3.25257i −0.289516 + 0.134477i
\(586\) 0.691960 + 4.90975i 0.0285846 + 0.202820i
\(587\) 22.4571 + 22.4571i 0.926902 + 0.926902i 0.997505 0.0706023i \(-0.0224921\pi\)
−0.0706023 + 0.997505i \(0.522492\pi\)
\(588\) 9.87455 17.8467i 0.407219 0.735987i
\(589\) 23.9556i 0.987071i
\(590\) 9.36453 + 14.4551i 0.385532 + 0.595108i
\(591\) 28.5938i 1.17619i
\(592\) −5.81969 + 25.3872i −0.239188 + 1.04341i
\(593\) −31.1826 31.1826i −1.28051 1.28051i −0.940375 0.340140i \(-0.889525\pi\)
−0.340140 0.940375i \(-0.610475\pi\)
\(594\) 0.245570 0.0346095i 0.0100758 0.00142005i
\(595\) 1.69946 + 0.621429i 0.0696709 + 0.0254761i
\(596\) −31.4974 + 9.05815i −1.29019 + 0.371036i
\(597\) −5.47320 + 5.47320i −0.224003 + 0.224003i
\(598\) 2.36817 + 1.78311i 0.0968419 + 0.0729168i
\(599\) 36.9215 1.50857 0.754286 0.656546i \(-0.227983\pi\)
0.754286 + 0.656546i \(0.227983\pi\)
\(600\) 9.62339 33.3308i 0.392873 1.36072i
\(601\) −19.1488 −0.781098 −0.390549 0.920582i \(-0.627715\pi\)
−0.390549 + 0.920582i \(0.627715\pi\)
\(602\) −1.11061 0.836231i −0.0452651 0.0340822i
\(603\) 28.1232 28.1232i 1.14527 1.14527i
\(604\) 25.1324 7.22766i 1.02262 0.294089i
\(605\) −10.9749 4.01312i −0.446193 0.163156i
\(606\) 1.61863 0.228123i 0.0657524 0.00926686i
\(607\) −7.79352 7.79352i −0.316329 0.316329i 0.531026 0.847355i \(-0.321807\pi\)
−0.847355 + 0.531026i \(0.821807\pi\)
\(608\) −23.7086 2.02799i −0.961511 0.0822458i
\(609\) 17.2965i 0.700890i
\(610\) −1.25481 1.93693i −0.0508059 0.0784241i
\(611\) 13.1964i 0.533871i
\(612\) −1.40244 + 2.53469i −0.0566901 + 0.102459i
\(613\) 14.3260 + 14.3260i 0.578621 + 0.578621i 0.934523 0.355902i \(-0.115826\pi\)
−0.355902 + 0.934523i \(0.615826\pi\)
\(614\) 1.24337 + 8.82224i 0.0501783 + 0.356037i
\(615\) 4.97485 2.31076i 0.200605 0.0931790i
\(616\) 7.83365 + 17.5398i 0.315627 + 0.706699i
\(617\) 16.0568 16.0568i 0.646423 0.646423i −0.305703 0.952127i \(-0.598892\pi\)
0.952127 + 0.305703i \(0.0988916\pi\)
\(618\) −40.1740 + 53.3557i −1.61604 + 2.14628i
\(619\) −13.0984 −0.526468 −0.263234 0.964732i \(-0.584789\pi\)
−0.263234 + 0.964732i \(0.584789\pi\)
\(620\) 25.4054 + 1.79490i 1.02031 + 0.0720849i
\(621\) −0.0797525 −0.00320036
\(622\) −4.06630 + 5.40052i −0.163044 + 0.216541i
\(623\) 8.34131 8.34131i 0.334188 0.334188i
\(624\) 9.51220 5.96439i 0.380793 0.238767i
\(625\) 4.19395 + 24.6457i 0.167758 + 0.985828i
\(626\) 0.983148 + 6.97586i 0.0392945 + 0.278811i
\(627\) 29.3915 + 29.3915i 1.17378 + 1.17378i
\(628\) 28.8121 + 15.9416i 1.14973 + 0.636141i
\(629\) 3.12523i 0.124611i
\(630\) 15.7345 + 3.36269i 0.626879 + 0.133973i
\(631\) 28.9292i 1.15165i 0.817572 + 0.575826i \(0.195320\pi\)
−0.817572 + 0.575826i \(0.804680\pi\)
\(632\) −14.0896 + 36.8326i −0.560455 + 1.46512i
\(633\) 21.1808 + 21.1808i 0.841861 + 0.841861i
\(634\) 39.9885 5.63581i 1.58815 0.223827i
\(635\) −12.7089 27.3610i −0.504337 1.08579i
\(636\) 0.516632 + 1.79646i 0.0204858 + 0.0712342i
\(637\) −3.36354 + 3.36354i −0.133268 + 0.133268i
\(638\) 19.0313 + 14.3296i 0.753456 + 0.567312i
\(639\) −4.74537 −0.187724
\(640\) −3.92712 + 24.9916i −0.155233 + 0.987878i
\(641\) −6.06791 −0.239668 −0.119834 0.992794i \(-0.538236\pi\)
−0.119834 + 0.992794i \(0.538236\pi\)
\(642\) 12.1145 + 9.12155i 0.478120 + 0.359999i
\(643\) −27.8619 + 27.8619i −1.09877 + 1.09877i −0.104210 + 0.994555i \(0.533232\pi\)
−0.994555 + 0.104210i \(0.966768\pi\)
\(644\) −1.70737 5.93694i −0.0672797 0.233948i
\(645\) −1.09833 + 3.00368i −0.0432469 + 0.118270i
\(646\) −2.82725 + 0.398461i −0.111237 + 0.0156772i
\(647\) −2.65043 2.65043i −0.104199 0.104199i 0.653085 0.757284i \(-0.273474\pi\)
−0.757284 + 0.653085i \(0.773474\pi\)
\(648\) 9.04083 23.6342i 0.355157 0.928438i
\(649\) 21.9394i 0.861195i
\(650\) −4.30529 + 6.85018i −0.168867 + 0.268686i
\(651\) 23.5547i 0.923183i
\(652\) 7.79157 + 4.31105i 0.305141 + 0.168834i
\(653\) 20.0573 + 20.0573i 0.784903 + 0.784903i 0.980654 0.195751i \(-0.0627144\pi\)
−0.195751 + 0.980654i \(0.562714\pi\)
\(654\) −6.91612 49.0729i −0.270442 1.91890i
\(655\) −15.3201 + 41.8966i −0.598604 + 1.63704i
\(656\) −3.38891 + 2.12493i −0.132315 + 0.0829645i
\(657\) 17.7711 17.7711i 0.693317 0.693317i
\(658\) −16.5415 + 21.9690i −0.644856 + 0.856443i
\(659\) −12.2990 −0.479101 −0.239550 0.970884i \(-0.577000\pi\)
−0.239550 + 0.970884i \(0.577000\pi\)
\(660\) 33.3725 28.9681i 1.29902 1.12758i
\(661\) 4.67919 0.181999 0.0909997 0.995851i \(-0.470994\pi\)
0.0909997 + 0.995851i \(0.470994\pi\)
\(662\) −14.9851 + 19.9020i −0.582414 + 0.773513i
\(663\) 0.952606 0.952606i 0.0369961 0.0369961i
\(664\) 5.86726 + 13.1370i 0.227694 + 0.509814i
\(665\) 6.68070 + 14.3829i 0.259066 + 0.557744i
\(666\) 3.87814 + 27.5171i 0.150275 + 1.06627i
\(667\) −5.41722 5.41722i −0.209756 0.209756i
\(668\) 1.43240 2.58884i 0.0554211 0.100165i
\(669\) 35.3362i 1.36617i
\(670\) 8.71028 40.7567i 0.336507 1.57457i
\(671\) 2.93979i 0.113489i
\(672\) −23.3119 1.99406i −0.899277 0.0769224i
\(673\) 0.936252 + 0.936252i 0.0360899 + 0.0360899i 0.724921 0.688832i \(-0.241876\pi\)
−0.688832 + 0.724921i \(0.741876\pi\)
\(674\) −44.0116 + 6.20280i −1.69526 + 0.238923i
\(675\) −0.0183229 0.216896i −0.000705247 0.00834833i
\(676\) 22.4708 6.46224i 0.864262 0.248548i
\(677\) 23.9486 23.9486i 0.920421 0.920421i −0.0766377 0.997059i \(-0.524418\pi\)
0.997059 + 0.0766377i \(0.0244185\pi\)
\(678\) −10.8078 8.13768i −0.415070 0.312526i
\(679\) 23.2623 0.892727
\(680\) 0.210741 + 3.02822i 0.00808156 + 0.116127i
\(681\) 65.4479 2.50797
\(682\) 25.9172 + 19.5143i 0.992420 + 0.747240i
\(683\) −7.26579 + 7.26579i −0.278018 + 0.278018i −0.832317 0.554300i \(-0.812986\pi\)
0.554300 + 0.832317i \(0.312986\pi\)
\(684\) −24.3990 + 7.01675i −0.932919 + 0.268292i
\(685\) −28.6533 + 13.3092i −1.09479 + 0.508517i
\(686\) 26.3433 3.71272i 1.00579 0.141752i
\(687\) −25.2147 25.2147i −0.961999 0.961999i
\(688\) 0.521106 2.27322i 0.0198670 0.0866656i
\(689\) 0.435943i 0.0166081i
\(690\) −11.9272 + 7.72686i −0.454061 + 0.294157i
\(691\) 26.3604i 1.00280i −0.865217 0.501398i \(-0.832819\pi\)
0.865217 0.501398i \(-0.167181\pi\)
\(692\) −11.8157 + 21.3550i −0.449165 + 0.811796i
\(693\) 14.4925 + 14.4925i 0.550523 + 0.550523i
\(694\) 6.51029 + 46.1933i 0.247127 + 1.75347i
\(695\) 10.1299 + 3.70414i 0.384250 + 0.140506i
\(696\) −26.4935 + 11.8326i −1.00423 + 0.448513i
\(697\) −0.339384 + 0.339384i −0.0128551 + 0.0128551i
\(698\) −6.66707 + 8.85464i −0.252352 + 0.335153i
\(699\) −72.8791 −2.75654
\(700\) 15.7539 6.00737i 0.595443 0.227057i
\(701\) 15.9649 0.602986 0.301493 0.953468i \(-0.402515\pi\)
0.301493 + 0.953468i \(0.402515\pi\)
\(702\) 0.0423726 0.0562757i 0.00159925 0.00212399i
\(703\) −19.3676 + 19.3676i −0.730461 + 0.730461i
\(704\) −21.5071 + 23.9980i −0.810581 + 0.904459i
\(705\) 59.4159 + 21.7262i 2.23773 + 0.818257i
\(706\) −5.88990 41.7914i −0.221669 1.57284i
\(707\) 0.561747 + 0.561747i 0.0211267 + 0.0211267i
\(708\) −23.3814 12.9369i −0.878728 0.486198i
\(709\) 35.8367i 1.34587i −0.739700 0.672937i \(-0.765033\pi\)
0.739700 0.672937i \(-0.234967\pi\)
\(710\) −4.17341 + 2.70368i −0.156625 + 0.101467i
\(711\) 42.0750i 1.57794i
\(712\) 18.4829 + 7.07030i 0.692676 + 0.264971i
\(713\) −7.37727 7.37727i −0.276281 0.276281i
\(714\) −2.77995 + 0.391794i −0.104037 + 0.0146625i
\(715\) −9.34701 + 4.34159i −0.349558 + 0.162366i
\(716\) −4.21279 14.6489i −0.157439 0.547456i
\(717\) 30.0781 30.0781i 1.12329 1.12329i
\(718\) −11.4336 8.60892i −0.426699 0.321282i
\(719\) −38.4310 −1.43324 −0.716618 0.697466i \(-0.754311\pi\)
−0.716618 + 0.697466i \(0.754311\pi\)
\(720\) 5.61330 + 26.4014i 0.209195 + 0.983922i
\(721\) −32.4596 −1.20886
\(722\) 1.47538 + 1.11088i 0.0549079 + 0.0413427i
\(723\) 46.6192 46.6192i 1.73379 1.73379i
\(724\) 0.469259 + 1.63173i 0.0174399 + 0.0606428i
\(725\) 13.4882 15.9773i 0.500937 0.593383i
\(726\) 17.9526 2.53016i 0.666283 0.0939031i
\(727\) 6.57510 + 6.57510i 0.243857 + 0.243857i 0.818444 0.574587i \(-0.194837\pi\)
−0.574587 + 0.818444i \(0.694837\pi\)
\(728\) 5.09641 + 1.94954i 0.188885 + 0.0722547i
\(729\) 27.3185i 1.01180i
\(730\) 5.50404 25.7542i 0.203714 0.953207i
\(731\) 0.279839i 0.0103502i
\(732\) 3.13303 + 1.73349i 0.115800 + 0.0640718i
\(733\) −22.4799 22.4799i −0.830315 0.830315i 0.157245 0.987560i \(-0.449739\pi\)
−0.987560 + 0.157245i \(0.949739\pi\)
\(734\) −6.36514 45.1634i −0.234942 1.66701i
\(735\) −9.60643 20.6817i −0.354338 0.762856i
\(736\) 7.92575 6.67669i 0.292147 0.246106i
\(737\) 37.5394 37.5394i 1.38278 1.38278i
\(738\) −2.56707 + 3.40936i −0.0944951 + 0.125500i
\(739\) −27.7449 −1.02061 −0.510307 0.859992i \(-0.670468\pi\)
−0.510307 + 0.859992i \(0.670468\pi\)
\(740\) 19.0886 + 21.9909i 0.701710 + 0.808400i
\(741\) 11.8069 0.433737
\(742\) −0.546448 + 0.725745i −0.0200607 + 0.0266430i
\(743\) 9.61246 9.61246i 0.352647 0.352647i −0.508447 0.861094i \(-0.669780\pi\)
0.861094 + 0.508447i \(0.169780\pi\)
\(744\) −36.0794 + 16.1138i −1.32273 + 0.590762i
\(745\) −12.5839 + 34.4139i −0.461039 + 1.26083i
\(746\) −1.92359 13.6487i −0.0704275 0.499714i
\(747\) 10.8546 + 10.8546i 0.397148 + 0.397148i
\(748\) −1.87200 + 3.38335i −0.0684471 + 0.123708i
\(749\) 7.36998i 0.269293i
\(750\) −23.7543 30.6622i −0.867385 1.11962i
\(751\) 33.9677i 1.23950i −0.784799 0.619750i \(-0.787234\pi\)
0.784799 0.619750i \(-0.212766\pi\)
\(752\) −44.9666 10.3080i −1.63976 0.375895i
\(753\) 31.7406 + 31.7406i 1.15669 + 1.15669i
\(754\) 6.70072 0.944371i 0.244026 0.0343920i
\(755\) 10.0409 27.4595i 0.365427 0.999353i
\(756\) −0.141081 + 0.0405727i −0.00513108 + 0.00147562i
\(757\) 13.2933 13.2933i 0.483154 0.483154i −0.422983 0.906138i \(-0.639017\pi\)
0.906138 + 0.422983i \(0.139017\pi\)
\(758\) 32.3192 + 24.3347i 1.17389 + 0.883874i
\(759\) −18.1026 −0.657083
\(760\) −17.4604 + 20.0724i −0.633354 + 0.728101i
\(761\) 36.5509 1.32497 0.662485 0.749075i \(-0.269502\pi\)
0.662485 + 0.749075i \(0.269502\pi\)
\(762\) 37.3918 + 28.1541i 1.35456 + 1.01991i
\(763\) 17.0308 17.0308i 0.616556 0.616556i
\(764\) −9.49078 + 2.72939i −0.343364 + 0.0987460i
\(765\) 1.36436 + 2.93733i 0.0493284 + 0.106199i
\(766\) 10.2735 1.44791i 0.371198 0.0523150i
\(767\) 4.40665 + 4.40665i 0.159115 + 0.159115i
\(768\) −12.8934 37.0716i −0.465250 1.33771i
\(769\) 30.4508i 1.09808i −0.835794 0.549042i \(-0.814993\pi\)
0.835794 0.549042i \(-0.185007\pi\)
\(770\) 21.0028 + 4.48858i 0.756887 + 0.161757i
\(771\) 22.9138i 0.825221i
\(772\) −8.88760 + 16.0630i −0.319872 + 0.578120i
\(773\) −25.5875 25.5875i −0.920320 0.920320i 0.0767318 0.997052i \(-0.475551\pi\)
−0.997052 + 0.0767318i \(0.975551\pi\)
\(774\) −0.347256 2.46393i −0.0124819 0.0885643i
\(775\) 18.3684 21.7582i 0.659813 0.781579i
\(776\) 15.9138 + 35.6315i 0.571272 + 1.27910i
\(777\) −19.0435 + 19.0435i −0.683182 + 0.683182i
\(778\) −10.1701 + 13.5070i −0.364615 + 0.484251i
\(779\) −4.20643 −0.150711
\(780\) 0.884647 12.5215i 0.0316754 0.448341i
\(781\) −6.33422 −0.226656
\(782\) 0.747963 0.993380i 0.0267471 0.0355232i
\(783\) −0.128731 + 0.128731i −0.00460047 + 0.00460047i
\(784\) 8.83386 + 14.0885i 0.315495 + 0.503162i
\(785\) 33.3889 15.5088i 1.19170 0.553533i
\(786\) −9.65889 68.5340i −0.344521 2.44453i
\(787\) 20.4444 + 20.4444i 0.728764 + 0.728764i 0.970374 0.241609i \(-0.0776753\pi\)
−0.241609 + 0.970374i \(0.577675\pi\)
\(788\) −20.3981 11.2862i −0.726653 0.402055i
\(789\) 31.1631i 1.10944i
\(790\) 23.9723 + 37.0037i 0.852895 + 1.31653i
\(791\) 6.57504i 0.233781i
\(792\) −12.2842 + 32.1128i −0.436499 + 1.14108i
\(793\) −0.590475 0.590475i −0.0209684 0.0209684i
\(794\) −27.6964 + 3.90342i −0.982910 + 0.138527i
\(795\) 1.96280 + 0.717724i 0.0696133 + 0.0254551i
\(796\) −1.74413 6.06477i −0.0618190 0.214960i
\(797\) 7.81866 7.81866i 0.276951 0.276951i −0.554940 0.831891i \(-0.687259\pi\)
0.831891 + 0.554940i \(0.187259\pi\)
\(798\) −19.6558 14.7998i −0.695807 0.523906i
\(799\) −5.53552 −0.195833
\(800\) 19.9789 + 20.0210i 0.706362 + 0.707851i
\(801\) 21.1136 0.746014
\(802\) −14.6841 11.0564i −0.518514 0.390413i
\(803\) 23.7212 23.7212i 0.837104 0.837104i
\(804\) 17.8712 + 62.1425i 0.630268 + 2.19160i
\(805\) −6.48667 2.37194i −0.228625 0.0835999i
\(806\) 9.12517 1.28606i 0.321420 0.0452996i
\(807\) 1.40010 + 1.40010i 0.0492858 + 0.0492858i
\(808\) −0.476151 + 1.24473i −0.0167509 + 0.0437896i
\(809\) 15.2368i 0.535698i 0.963461 + 0.267849i \(0.0863129\pi\)
−0.963461 + 0.267849i \(0.913687\pi\)
\(810\) −15.3822 23.7440i −0.540475 0.834279i
\(811\) 13.6670i 0.479912i −0.970784 0.239956i \(-0.922867\pi\)
0.970784 0.239956i \(-0.0771330\pi\)
\(812\) −12.3389 6.82709i −0.433011 0.239584i
\(813\) 5.72065 + 5.72065i 0.200632 + 0.200632i
\(814\) 5.17662 + 36.7304i 0.181440 + 1.28740i
\(815\) 9.02926 4.19400i 0.316281 0.146909i
\(816\) −2.50189 3.99009i −0.0875836 0.139681i
\(817\) 1.73421 1.73421i 0.0606723 0.0606723i
\(818\) −4.22148 + 5.60660i −0.147600 + 0.196030i
\(819\) 5.82179 0.203430
\(820\) −0.315172 + 4.46102i −0.0110063 + 0.155785i
\(821\) −28.7443 −1.00318 −0.501591 0.865105i \(-0.667252\pi\)
−0.501591 + 0.865105i \(0.667252\pi\)
\(822\) 29.4838 39.1579i 1.02837 1.36579i
\(823\) −7.37471 + 7.37471i −0.257066 + 0.257066i −0.823860 0.566794i \(-0.808184\pi\)
0.566794 + 0.823860i \(0.308184\pi\)
\(824\) −22.2056 49.7191i −0.773570 1.73205i
\(825\) −4.15901 49.2321i −0.144798 1.71404i
\(826\) −1.81240 12.8597i −0.0630613 0.447447i
\(827\) 16.1240 + 16.1240i 0.560686 + 0.560686i 0.929502 0.368817i \(-0.120237\pi\)
−0.368817 + 0.929502i \(0.620237\pi\)
\(828\) 5.35298 9.67469i 0.186029 0.336219i
\(829\) 49.1497i 1.70704i −0.521060 0.853520i \(-0.674463\pi\)
0.521060 0.853520i \(-0.325537\pi\)
\(830\) 15.7307 + 3.36187i 0.546020 + 0.116692i
\(831\) 70.8199i 2.45672i
\(832\) 0.500303 + 9.13998i 0.0173449 + 0.316872i
\(833\) 1.41091 + 1.41091i 0.0488850 + 0.0488850i
\(834\) −16.5704 + 2.33536i −0.573786 + 0.0808670i
\(835\) −1.39350 3.00008i −0.0482242 0.103822i
\(836\) −32.5682 + 9.36610i −1.12640 + 0.323933i
\(837\) −0.175308 + 0.175308i −0.00605954 + 0.00605954i
\(838\) 22.0021 + 16.5664i 0.760051 + 0.572278i
\(839\) −17.6328 −0.608751 −0.304376 0.952552i \(-0.598448\pi\)
−0.304376 + 0.952552i \(0.598448\pi\)
\(840\) −17.1682 + 19.7365i −0.592360 + 0.680974i
\(841\) 11.5118 0.396958
\(842\) 40.5298 + 30.5168i 1.39675 + 1.05168i
\(843\) 7.89263 7.89263i 0.271837 0.271837i
\(844\) −23.4701 + 6.74962i −0.807874 + 0.232332i
\(845\) 8.97759 24.5515i 0.308838 0.844597i
\(846\) −48.7392 + 6.86910i −1.67569 + 0.236164i
\(847\) 6.23046 + 6.23046i 0.214081 + 0.214081i
\(848\) −1.48547 0.340525i −0.0510112 0.0116937i
\(849\) 6.34833i 0.217874i
\(850\) 2.87345 + 1.80594i 0.0985586 + 0.0619434i
\(851\) 11.9287i 0.408912i
\(852\) 3.73507 6.75057i 0.127961 0.231271i
\(853\) −21.5659 21.5659i −0.738403 0.738403i 0.233866 0.972269i \(-0.424862\pi\)
−0.972269 + 0.233866i \(0.924862\pi\)
\(854\) 0.242854 + 1.72316i 0.00831030 + 0.0589652i
\(855\) −9.74793 + 26.6582i −0.333372 + 0.911691i
\(856\) −11.2888 + 5.04181i −0.385843 + 0.172326i
\(857\) −29.2248 + 29.2248i −0.998302 + 0.998302i −0.999999 0.00169682i \(-0.999460\pi\)
0.00169682 + 0.999999i \(0.499460\pi\)
\(858\) 9.61793 12.7737i 0.328351 0.436087i
\(859\) −21.4596 −0.732191 −0.366095 0.930577i \(-0.619306\pi\)
−0.366095 + 0.930577i \(0.619306\pi\)
\(860\) −1.70923 1.96910i −0.0582842 0.0671459i
\(861\) −4.13605 −0.140956
\(862\) −17.1294 + 22.7498i −0.583431 + 0.774863i
\(863\) 15.8786 15.8786i 0.540514 0.540514i −0.383166 0.923680i \(-0.625166\pi\)
0.923680 + 0.383166i \(0.125166\pi\)
\(864\) −0.158660 0.188342i −0.00539773 0.00640753i
\(865\) 11.4949 + 24.7473i 0.390837 + 0.841433i
\(866\) −0.764029 5.42111i −0.0259628 0.184217i
\(867\) 29.0888 + 29.0888i 0.987907 + 0.987907i
\(868\) −16.8034 9.29726i −0.570344 0.315570i
\(869\) 56.1626i 1.90518i
\(870\) −6.77992 + 31.7243i −0.229861 + 1.07555i
\(871\) 15.0800i 0.510967i
\(872\) 37.7373 + 14.4357i 1.27795 + 0.488855i
\(873\) 29.4410 + 29.4410i 0.996426 + 0.996426i
\(874\) 10.7914 1.52089i 0.365024 0.0514449i
\(875\) 4.96047 18.1862i 0.167694 0.614805i
\(876\) 11.2928 + 39.2680i 0.381550 + 1.32674i
\(877\) 17.9936 17.9936i 0.607601 0.607601i −0.334717 0.942319i \(-0.608641\pi\)
0.942319 + 0.334717i \(0.108641\pi\)
\(878\) 24.9164 + 18.7607i 0.840888 + 0.633145i
\(879\) −8.60067 −0.290094
\(880\) 7.49274 + 35.2411i 0.252580 + 1.18798i
\(881\) −5.90202 −0.198844 −0.0994221 0.995045i \(-0.531699\pi\)
−0.0994221 + 0.995045i \(0.531699\pi\)
\(882\) 14.1736 + 10.6720i 0.477249 + 0.359343i
\(883\) −17.8376 + 17.8376i −0.600283 + 0.600283i −0.940387 0.340105i \(-0.889537\pi\)
0.340105 + 0.940387i \(0.389537\pi\)
\(884\) 0.303564 + 1.05557i 0.0102100 + 0.0355026i
\(885\) −27.0956 + 12.5856i −0.910808 + 0.423061i
\(886\) −38.0244 + 5.35900i −1.27746 + 0.180039i
\(887\) 3.93049 + 3.93049i 0.131973 + 0.131973i 0.770008 0.638035i \(-0.220252\pi\)
−0.638035 + 0.770008i \(0.720252\pi\)
\(888\) −42.1971 16.1417i −1.41604 0.541681i
\(889\) 22.7477i 0.762935i
\(890\) 18.5688 12.0295i 0.622427 0.403230i
\(891\) 36.0376i 1.20730i
\(892\) −25.2080 13.9475i −0.844025 0.466997i
\(893\) −34.3045 34.3045i −1.14796 1.14796i
\(894\) −7.93382 56.2939i −0.265347 1.88275i
\(895\) −16.0053 5.85257i −0.534999 0.195630i
\(896\) 10.6239 15.8431i 0.354921 0.529281i
\(897\) −3.63601 + 3.63601i −0.121403 + 0.121403i
\(898\) 18.4245 24.4699i 0.614835 0.816571i
\(899\) −23.8158 −0.794301
\(900\) 27.5412 + 12.3353i 0.918041 + 0.411177i
\(901\) −0.182865 −0.00609213
\(902\) −3.42657 + 4.55088i −0.114092 + 0.151528i
\(903\) 1.70519 1.70519i 0.0567452 0.0567452i
\(904\) 10.0712 4.49799i 0.334962 0.149601i
\(905\) 1.78282 + 0.651912i 0.0592629 + 0.0216703i
\(906\) 6.33054 + 44.9179i 0.210318 + 1.49230i
\(907\) −40.0074 40.0074i −1.32842 1.32842i −0.906745 0.421678i \(-0.861441\pi\)
−0.421678 0.906745i \(-0.638559\pi\)
\(908\) −25.8329 + 46.6890i −0.857294 + 1.54943i
\(909\) 1.42190i 0.0471615i
\(910\) 5.12009 3.31697i 0.169729 0.109956i
\(911\) 38.8693i 1.28780i 0.765110 + 0.643899i \(0.222684\pi\)
−0.765110 + 0.643899i \(0.777316\pi\)
\(912\) 9.22263 40.2318i 0.305392 1.33221i
\(913\) 14.4889 + 14.4889i 0.479513 + 0.479513i
\(914\) −19.1103 + 2.69333i −0.632113 + 0.0890873i
\(915\) 3.63071 1.68643i 0.120027 0.0557515i
\(916\) 27.9400 8.03509i 0.923163 0.265487i
\(917\) 23.7848 23.7848i 0.785442 0.785442i
\(918\) −0.0236060 0.0177741i −0.000779114 0.000586632i
\(919\) 39.1154 1.29030 0.645149 0.764057i \(-0.276795\pi\)
0.645149 + 0.764057i \(0.276795\pi\)
\(920\) −0.804381 11.5584i −0.0265196 0.381071i
\(921\) −15.4544 −0.509240
\(922\) 23.2126 + 17.4778i 0.764465 + 0.575602i
\(923\) −1.27226 + 1.27226i −0.0418771 + 0.0418771i
\(924\) −32.0233 + 9.20939i −1.05349 + 0.302967i
\(925\) 32.4416 2.74059i 1.06667 0.0901100i
\(926\) 49.1790 6.93108i 1.61612 0.227769i
\(927\) −41.0810 41.0810i −1.34928 1.34928i
\(928\) 2.01615 23.5703i 0.0661835 0.773732i
\(929\) 47.6946i 1.56481i −0.622771 0.782404i \(-0.713993\pi\)
0.622771 0.782404i \(-0.286007\pi\)
\(930\) −9.23303 + 43.2027i −0.302763 + 1.41667i
\(931\) 17.4872i 0.573120i
\(932\) 28.7660 51.9902i 0.942262 1.70300i
\(933\) −8.29177 8.29177i −0.271460 0.271460i
\(934\) −4.26102 30.2338i −0.139425 0.989280i
\(935\) 1.82117 + 3.92080i 0.0595586 + 0.128224i
\(936\) 3.98270 + 8.91739i 0.130178 + 0.291474i
\(937\) 26.6067 26.6067i 0.869204 0.869204i −0.123180 0.992384i \(-0.539309\pi\)
0.992384 + 0.123180i \(0.0393094\pi\)
\(938\) −18.9026 + 25.1048i −0.617191 + 0.819700i
\(939\) −12.2200 −0.398784
\(940\) −38.9510 + 33.8104i −1.27044 + 1.10277i
\(941\) −41.7503 −1.36102 −0.680511 0.732738i \(-0.738242\pi\)
−0.680511 + 0.732738i \(0.738242\pi\)
\(942\) −34.3567 + 45.6296i −1.11940 + 1.48669i
\(943\) 1.29540 1.29540i 0.0421840 0.0421840i
\(944\) 18.4577 11.5735i 0.600748 0.376684i
\(945\) −0.0563651 + 0.154145i −0.00183356 + 0.00501433i
\(946\) −0.463524 3.28891i −0.0150705 0.106932i
\(947\) −18.8783 18.8783i −0.613463 0.613463i 0.330384 0.943847i \(-0.392822\pi\)
−0.943847 + 0.330384i \(0.892822\pi\)
\(948\) −59.8541 33.1171i −1.94397 1.07559i
\(949\) 9.52910i 0.309328i
\(950\) 6.61552 + 28.9990i 0.214636 + 0.940850i
\(951\) 70.0500i 2.27153i
\(952\) 0.817774 2.13779i 0.0265042 0.0692863i
\(953\) 8.80988 + 8.80988i 0.285380 + 0.285380i 0.835250 0.549870i \(-0.185323\pi\)
−0.549870 + 0.835250i \(0.685323\pi\)
\(954\) −1.61010 + 0.226920i −0.0521288 + 0.00734681i
\(955\) −3.79178 + 10.3696i −0.122699 + 0.335552i
\(956\) 9.58492 + 33.3291i 0.309998 + 1.07794i
\(957\) −29.2200 + 29.2200i −0.944548 + 0.944548i
\(958\) 5.43295 + 4.09072i 0.175531 + 0.132165i
\(959\) 23.8222 0.769258
\(960\) −41.9757 12.7952i −1.35476 0.412964i
\(961\) −1.43278 −0.0462187
\(962\) 8.41726 + 6.33775i 0.271383 + 0.204337i
\(963\) −9.32749 + 9.32749i −0.300574 + 0.300574i
\(964\) 14.8560 + 51.6581i 0.478480 + 1.66379i
\(965\) 8.64628 + 18.6146i 0.278334 + 0.599225i
\(966\) 10.6108 1.49544i 0.341397 0.0481151i
\(967\) −9.32272 9.32272i −0.299799 0.299799i 0.541136 0.840935i \(-0.317994\pi\)
−0.840935 + 0.541136i \(0.817994\pi\)
\(968\) −5.28109 + 13.8056i −0.169741 + 0.443730i
\(969\) 4.95265i 0.159102i
\(970\) 42.6664 + 9.11842i 1.36994 + 0.292775i
\(971\) 41.5696i 1.33403i −0.745043 0.667016i \(-0.767571\pi\)
0.745043 0.667016i \(-0.232429\pi\)
\(972\) 38.6349 + 21.3766i 1.23921 + 0.685654i
\(973\) −5.75077 5.75077i −0.184361 0.184361i
\(974\) 1.15600 + 8.20232i 0.0370406 + 0.262819i
\(975\) −10.7239 9.05319i −0.343440 0.289934i
\(976\) −2.47327 + 1.55080i −0.0791673 + 0.0496399i
\(977\) −16.1348 + 16.1348i −0.516197 + 0.516197i −0.916418 0.400222i \(-0.868933\pi\)
0.400222 + 0.916418i \(0.368933\pi\)
\(978\) −9.29097 + 12.3395i −0.297092 + 0.394573i
\(979\) 28.1829 0.900729
\(980\) 18.5456 + 1.31025i 0.592416 + 0.0418544i
\(981\) 43.1085 1.37635
\(982\) 30.7239 40.8048i 0.980438 1.30213i
\(983\) 1.26930 1.26930i 0.0404842 0.0404842i −0.686575 0.727059i \(-0.740887\pi\)
0.727059 + 0.686575i \(0.240887\pi\)
\(984\) −2.82948 6.33530i −0.0902005 0.201962i
\(985\) −23.6384 + 10.9798i −0.753181 + 0.349845i
\(986\) −0.396136 2.81076i −0.0126155 0.0895127i
\(987\) −33.7305 33.7305i −1.07365 1.07365i
\(988\) −4.66029 + 8.42276i −0.148264 + 0.267964i
\(989\) 1.06812i 0.0339643i
\(990\) 20.9004 + 32.2620i 0.664260 + 1.02535i
\(991\) 42.1399i 1.33862i −0.742985 0.669308i \(-0.766590\pi\)
0.742985 0.669308i \(-0.233410\pi\)
\(992\) 2.74564 32.0984i 0.0871741 1.01913i
\(993\) −30.5568 30.5568i −0.969691 0.969691i
\(994\) 3.71279 0.523265i 0.117763 0.0165970i
\(995\) −6.62633 2.42301i −0.210069 0.0768145i
\(996\) −23.9849 + 6.89766i −0.759990 + 0.218561i
\(997\) 31.3866 31.3866i 0.994023 0.994023i −0.00595958 0.999982i \(-0.501897\pi\)
0.999982 + 0.00595958i \(0.00189701\pi\)
\(998\) −22.1602 16.6855i −0.701469 0.528169i
\(999\) −0.283466 −0.00896847
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 820.2.k.c.83.11 108
4.3 odd 2 inner 820.2.k.c.83.38 yes 108
5.2 odd 4 inner 820.2.k.c.247.38 yes 108
20.7 even 4 inner 820.2.k.c.247.11 yes 108
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
820.2.k.c.83.11 108 1.1 even 1 trivial
820.2.k.c.83.38 yes 108 4.3 odd 2 inner
820.2.k.c.247.11 yes 108 20.7 even 4 inner
820.2.k.c.247.38 yes 108 5.2 odd 4 inner