Newspace parameters
Level: | \( N \) | \(=\) | \( 820 = 2^{2} \cdot 5 \cdot 41 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 820.k (of order \(4\), degree \(2\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(6.54773296574\) |
Analytic rank: | \(0\) |
Dimension: | \(108\) |
Relative dimension: | \(54\) over \(\Q(i)\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{4}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
83.1 | −1.41421 | + | 0.00282635i | 1.90181 | − | 1.90181i | 1.99998 | − | 0.00799412i | −1.72661 | + | 1.42085i | −2.68419 | + | 2.69494i | −0.433364 | − | 0.433364i | −2.82838 | + | 0.0169580i | − | 4.23379i | 2.43777 | − | 2.01427i | |
83.2 | −1.40937 | + | 0.116919i | −0.715888 | + | 0.715888i | 1.97266 | − | 0.329564i | −1.84456 | + | 1.26397i | 0.925252 | − | 1.09265i | 0.636079 | + | 0.636079i | −2.74168 | + | 0.695119i | 1.97501i | 2.45189 | − | 1.99706i | ||
83.3 | −1.40383 | + | 0.171082i | −0.252309 | + | 0.252309i | 1.94146 | − | 0.480339i | 2.11789 | + | 0.717329i | 0.311033 | − | 0.397364i | −2.38627 | − | 2.38627i | −2.64330 | + | 1.00646i | 2.87268i | −3.09587 | − | 0.644674i | ||
83.4 | −1.39987 | − | 0.200915i | 0.926056 | − | 0.926056i | 1.91927 | + | 0.562509i | 1.95896 | − | 1.07818i | −1.48242 | + | 1.11030i | 0.815570 | + | 0.815570i | −2.57371 | − | 1.17305i | 1.28484i | −2.95891 | + | 1.11572i | ||
83.5 | −1.36592 | − | 0.366410i | −1.28172 | + | 1.28172i | 1.73149 | + | 1.00097i | −0.124111 | − | 2.23262i | 2.22036 | − | 1.28109i | 1.75500 | + | 1.75500i | −1.99831 | − | 2.00169i | − | 0.285599i | −0.648529 | + | 3.09506i | |
83.6 | −1.35506 | − | 0.404723i | −2.33700 | + | 2.33700i | 1.67240 | + | 1.09685i | −1.95358 | − | 1.08790i | 4.11263 | − | 2.22095i | −3.18120 | − | 3.18120i | −1.82229 | − | 2.16316i | − | 7.92318i | 2.20693 | + | 2.26483i | |
83.7 | −1.35278 | + | 0.412299i | 0.638078 | − | 0.638078i | 1.66002 | − | 1.11550i | −0.848351 | − | 2.06889i | −0.600099 | + | 1.12626i | −1.94968 | − | 1.94968i | −1.78572 | + | 2.19345i | 2.18571i | 2.00063 | + | 2.44897i | ||
83.8 | −1.35150 | + | 0.416481i | 2.20659 | − | 2.20659i | 1.65309 | − | 1.12575i | 2.01642 | + | 0.966467i | −2.06319 | + | 3.90120i | 2.48515 | + | 2.48515i | −1.76529 | + | 2.20992i | − | 6.73806i | −3.12770 | − | 0.466377i | |
83.9 | −1.35102 | − | 0.418033i | −1.41800 | + | 1.41800i | 1.65050 | + | 1.12954i | 0.647982 | + | 2.14012i | 2.50851 | − | 1.32297i | −1.07473 | − | 1.07473i | −1.75767 | − | 2.21599i | − | 1.02144i | 0.0192065 | − | 3.16222i | |
83.10 | −1.20951 | − | 0.732860i | 0.993723 | − | 0.993723i | 0.925834 | + | 1.77280i | −1.63476 | − | 1.52564i | −1.93018 | + | 0.473660i | 2.18364 | + | 2.18364i | 0.179410 | − | 2.82273i | 1.02503i | 0.859183 | + | 3.04332i | ||
83.11 | −1.12977 | − | 0.850658i | 1.73461 | − | 1.73461i | 0.552763 | + | 1.92210i | 2.10007 | + | 0.767920i | −3.43527 | + | 0.484152i | −1.19221 | − | 1.19221i | 1.01055 | − | 2.64174i | − | 3.01775i | −1.71936 | − | 2.65401i | |
83.12 | −0.958818 | − | 1.03955i | −1.58218 | + | 1.58218i | −0.161335 | + | 1.99348i | −2.15223 | + | 0.606551i | 3.16177 | + | 0.127734i | −0.113172 | − | 0.113172i | 2.22702 | − | 1.74367i | − | 2.00656i | 2.69414 | + | 1.65578i | |
83.13 | −0.896192 | − | 1.09400i | 1.47545 | − | 1.47545i | −0.393681 | + | 1.96087i | 1.51870 | − | 1.64120i | −2.93643 | − | 0.291859i | 2.76703 | + | 2.76703i | 2.49801 | − | 1.32663i | − | 1.35390i | −3.15653 | − | 0.190630i | |
83.14 | −0.866971 | − | 1.11730i | −0.278914 | + | 0.278914i | −0.496724 | + | 1.93733i | −0.644595 | + | 2.14114i | 0.553441 | + | 0.0698207i | 1.69878 | + | 1.69878i | 2.59523 | − | 1.12462i | 2.84441i | 2.95115 | − | 1.13610i | ||
83.15 | −0.788955 | − | 1.17369i | −2.13185 | + | 2.13185i | −0.755100 | + | 1.85198i | 0.905998 | − | 2.04430i | 4.18407 | + | 0.820199i | 0.682120 | + | 0.682120i | 2.76939 | − | 0.574874i | − | 6.08957i | −3.11417 | + | 0.549501i | |
83.16 | −0.607244 | − | 1.27721i | 1.25708 | − | 1.25708i | −1.26251 | + | 1.55115i | −0.966894 | + | 2.01621i | −2.36890 | − | 0.842196i | −2.94147 | − | 2.94147i | 2.74779 | + | 0.670560i | − | 0.160500i | 3.16226 | + | 0.0105901i | |
83.17 | −0.530735 | − | 1.31085i | −0.00659099 | + | 0.00659099i | −1.43664 | + | 1.39143i | −1.13558 | − | 1.92625i | 0.0121378 | + | 0.00514171i | −1.72131 | − | 1.72131i | 2.58642 | + | 1.14474i | 2.99991i | −1.92233 | + | 2.51091i | ||
83.18 | −0.416481 | + | 1.35150i | −2.20659 | + | 2.20659i | −1.65309 | − | 1.12575i | 2.01642 | + | 0.966467i | −2.06319 | − | 3.90120i | −2.48515 | − | 2.48515i | 2.20992 | − | 1.76529i | − | 6.73806i | −2.14598 | + | 2.32267i | |
83.19 | −0.412299 | + | 1.35278i | −0.638078 | + | 0.638078i | −1.66002 | − | 1.11550i | −0.848351 | − | 2.06889i | −0.600099 | − | 1.12626i | 1.94968 | + | 1.94968i | 2.19345 | − | 1.78572i | 2.18571i | 3.14852 | − | 0.294630i | ||
83.20 | −0.238964 | − | 1.39388i | −0.444020 | + | 0.444020i | −1.88579 | + | 0.666174i | 1.32043 | − | 1.80457i | 0.725014 | + | 0.512805i | −0.174110 | − | 0.174110i | 1.37920 | + | 2.46937i | 2.60569i | −2.83089 | − | 1.40929i | ||
See next 80 embeddings (of 108 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
4.b | odd | 2 | 1 | inner |
5.c | odd | 4 | 1 | inner |
20.e | even | 4 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 820.2.k.c | ✓ | 108 |
4.b | odd | 2 | 1 | inner | 820.2.k.c | ✓ | 108 |
5.c | odd | 4 | 1 | inner | 820.2.k.c | ✓ | 108 |
20.e | even | 4 | 1 | inner | 820.2.k.c | ✓ | 108 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
820.2.k.c | ✓ | 108 | 1.a | even | 1 | 1 | trivial |
820.2.k.c | ✓ | 108 | 4.b | odd | 2 | 1 | inner |
820.2.k.c | ✓ | 108 | 5.c | odd | 4 | 1 | inner |
820.2.k.c | ✓ | 108 | 20.e | even | 4 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3}^{108} + 688 T_{3}^{104} + 212112 T_{3}^{100} + 38811208 T_{3}^{96} + 4706920982 T_{3}^{92} + \cdots + 25600000000 \)
acting on \(S_{2}^{\mathrm{new}}(820, [\chi])\).