Properties

Label 820.2.k.c.247.11
Level $820$
Weight $2$
Character 820.247
Analytic conductor $6.548$
Analytic rank $0$
Dimension $108$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [820,2,Mod(83,820)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(820, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 3, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("820.83"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 820 = 2^{2} \cdot 5 \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 820.k (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [108] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.54773296574\)
Analytic rank: \(0\)
Dimension: \(108\)
Relative dimension: \(54\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 247.11
Character \(\chi\) \(=\) 820.247
Dual form 820.2.k.c.83.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.12977 + 0.850658i) q^{2} +(1.73461 + 1.73461i) q^{3} +(0.552763 - 1.92210i) q^{4} +(2.10007 - 0.767920i) q^{5} +(-3.43527 - 0.484152i) q^{6} +(-1.19221 + 1.19221i) q^{7} +(1.01055 + 2.64174i) q^{8} +3.01775i q^{9} +(-1.71936 + 2.65401i) q^{10} +4.02815i q^{11} +(4.29292 - 2.37526i) q^{12} +(-0.809077 + 0.809077i) q^{13} +(0.332763 - 2.36109i) q^{14} +(4.97485 + 2.31076i) q^{15} +(-3.38891 - 2.12493i) q^{16} +(-0.339384 - 0.339384i) q^{17} +(-2.56707 - 3.40936i) q^{18} -4.20643 q^{19} +(-0.315172 - 4.46102i) q^{20} -4.13605 q^{21} +(-3.42657 - 4.55088i) q^{22} +(1.29540 + 1.29540i) q^{23} +(-2.82948 + 6.33530i) q^{24} +(3.82060 - 3.22537i) q^{25} +(0.225824 - 1.60232i) q^{26} +(-0.0307830 + 0.0307830i) q^{27} +(1.63254 + 2.95056i) q^{28} +4.18189i q^{29} +(-7.58610 + 1.62126i) q^{30} +5.69498i q^{31} +(5.63627 - 0.482116i) q^{32} +(-6.98726 + 6.98726i) q^{33} +(0.672126 + 0.0947266i) q^{34} +(-1.58821 + 3.41926i) q^{35} +(5.80040 + 1.66810i) q^{36} +(4.60427 + 4.60427i) q^{37} +(4.75231 - 3.57824i) q^{38} -2.80687 q^{39} +(4.15087 + 4.77182i) q^{40} +1.00000 q^{41} +(4.67279 - 3.51836i) q^{42} +(-0.412275 - 0.412275i) q^{43} +(7.74248 + 2.22661i) q^{44} +(2.31739 + 6.33748i) q^{45} +(-2.56545 - 0.361563i) q^{46} +(8.15524 - 8.15524i) q^{47} +(-2.19251 - 9.56435i) q^{48} +4.15725i q^{49} +(-1.57271 + 6.89395i) q^{50} -1.17740i q^{51} +(1.10790 + 2.00235i) q^{52} +(0.269408 - 0.269408i) q^{53} +(0.00859193 - 0.0609635i) q^{54} +(3.09329 + 8.45939i) q^{55} +(-4.35431 - 1.94473i) q^{56} +(-7.29652 - 7.29652i) q^{57} +(-3.55736 - 4.72458i) q^{58} -5.44652 q^{59} +(7.19142 - 8.28483i) q^{60} +0.729813 q^{61} +(-4.84448 - 6.43402i) q^{62} +(-3.59780 - 3.59780i) q^{63} +(-5.95758 + 5.33922i) q^{64} +(-1.07781 + 2.32042i) q^{65} +(1.95024 - 13.8378i) q^{66} +(9.31927 - 9.31927i) q^{67} +(-0.839928 + 0.464730i) q^{68} +4.49403i q^{69} +(-1.11431 - 5.21400i) q^{70} +1.57249i q^{71} +(-7.97210 + 3.04958i) q^{72} +(5.88887 - 5.88887i) q^{73} +(-9.11843 - 1.28511i) q^{74} +(12.2220 + 1.03249i) q^{75} +(-2.32516 + 8.08517i) q^{76} +(-4.80241 - 4.80241i) q^{77} +(3.17112 - 2.38768i) q^{78} -13.9425 q^{79} +(-8.74872 - 1.86010i) q^{80} +8.94645 q^{81} +(-1.12977 + 0.850658i) q^{82} +(-3.59692 - 3.59692i) q^{83} +(-2.28626 + 7.94989i) q^{84} +(-0.973351 - 0.452111i) q^{85} +(0.816481 + 0.115071i) q^{86} +(-7.25395 + 7.25395i) q^{87} +(-10.6413 + 4.07064i) q^{88} -6.99649i q^{89} +(-8.00914 - 5.18860i) q^{90} -1.92919i q^{91} +(3.20593 - 1.77383i) q^{92} +(-9.87857 + 9.87857i) q^{93} +(-2.27623 + 16.1509i) q^{94} +(-8.83381 + 3.23020i) q^{95} +(10.6130 + 8.94045i) q^{96} +(-9.75595 - 9.75595i) q^{97} +(-3.53640 - 4.69674i) q^{98} -12.1559 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 108 q + 12 q^{2} - 4 q^{6} - 24 q^{8} + 4 q^{10} - 16 q^{13} + 52 q^{16} - 8 q^{17} + 18 q^{18} + 38 q^{20} + 72 q^{21} + 10 q^{22} - 12 q^{25} + 24 q^{26} - 58 q^{28} - 70 q^{30} - 38 q^{32} + 8 q^{33}+ \cdots + 122 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/820\mathbb{Z}\right)^\times\).

\(n\) \(411\) \(621\) \(657\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.12977 + 0.850658i −0.798868 + 0.601506i
\(3\) 1.73461 + 1.73461i 1.00148 + 1.00148i 0.999999 + 0.00147886i \(0.000470737\pi\)
0.00147886 + 0.999999i \(0.499529\pi\)
\(4\) 0.552763 1.92210i 0.276382 0.961048i
\(5\) 2.10007 0.767920i 0.939180 0.343424i
\(6\) −3.43527 0.484152i −1.40244 0.197654i
\(7\) −1.19221 + 1.19221i −0.450614 + 0.450614i −0.895558 0.444944i \(-0.853224\pi\)
0.444944 + 0.895558i \(0.353224\pi\)
\(8\) 1.01055 + 2.64174i 0.357283 + 0.933996i
\(9\) 3.01775i 1.00592i
\(10\) −1.71936 + 2.65401i −0.543710 + 0.839273i
\(11\) 4.02815i 1.21453i 0.794499 + 0.607266i \(0.207734\pi\)
−0.794499 + 0.607266i \(0.792266\pi\)
\(12\) 4.29292 2.37526i 1.23926 0.685678i
\(13\) −0.809077 + 0.809077i −0.224398 + 0.224398i −0.810347 0.585950i \(-0.800722\pi\)
0.585950 + 0.810347i \(0.300722\pi\)
\(14\) 0.332763 2.36109i 0.0889345 0.631029i
\(15\) 4.97485 + 2.31076i 1.28450 + 0.596637i
\(16\) −3.38891 2.12493i −0.847226 0.531232i
\(17\) −0.339384 0.339384i −0.0823127 0.0823127i 0.664752 0.747064i \(-0.268537\pi\)
−0.747064 + 0.664752i \(0.768537\pi\)
\(18\) −2.56707 3.40936i −0.605064 0.803594i
\(19\) −4.20643 −0.965022 −0.482511 0.875890i \(-0.660275\pi\)
−0.482511 + 0.875890i \(0.660275\pi\)
\(20\) −0.315172 4.46102i −0.0704747 0.997514i
\(21\) −4.13605 −0.902561
\(22\) −3.42657 4.55088i −0.730548 0.970251i
\(23\) 1.29540 + 1.29540i 0.270109 + 0.270109i 0.829144 0.559035i \(-0.188828\pi\)
−0.559035 + 0.829144i \(0.688828\pi\)
\(24\) −2.82948 + 6.33530i −0.577565 + 1.29319i
\(25\) 3.82060 3.22537i 0.764120 0.645074i
\(26\) 0.225824 1.60232i 0.0442877 0.314241i
\(27\) −0.0307830 + 0.0307830i −0.00592418 + 0.00592418i
\(28\) 1.63254 + 2.95056i 0.308521 + 0.557604i
\(29\) 4.18189i 0.776558i 0.921542 + 0.388279i \(0.126930\pi\)
−0.921542 + 0.388279i \(0.873070\pi\)
\(30\) −7.58610 + 1.62126i −1.38503 + 0.296000i
\(31\) 5.69498i 1.02285i 0.859328 + 0.511424i \(0.170882\pi\)
−0.859328 + 0.511424i \(0.829118\pi\)
\(32\) 5.63627 0.482116i 0.996362 0.0852268i
\(33\) −6.98726 + 6.98726i −1.21633 + 1.21633i
\(34\) 0.672126 + 0.0947266i 0.115269 + 0.0162455i
\(35\) −1.58821 + 3.41926i −0.268456 + 0.577960i
\(36\) 5.80040 + 1.66810i 0.966733 + 0.278017i
\(37\) 4.60427 + 4.60427i 0.756937 + 0.756937i 0.975764 0.218826i \(-0.0702229\pi\)
−0.218826 + 0.975764i \(0.570223\pi\)
\(38\) 4.75231 3.57824i 0.770926 0.580466i
\(39\) −2.80687 −0.449458
\(40\) 4.15087 + 4.77182i 0.656310 + 0.754491i
\(41\) 1.00000 0.156174
\(42\) 4.67279 3.51836i 0.721027 0.542895i
\(43\) −0.412275 0.412275i −0.0628714 0.0628714i 0.674972 0.737843i \(-0.264156\pi\)
−0.737843 + 0.674972i \(0.764156\pi\)
\(44\) 7.74248 + 2.22661i 1.16722 + 0.335674i
\(45\) 2.31739 + 6.33748i 0.345456 + 0.944736i
\(46\) −2.56545 0.361563i −0.378254 0.0533095i
\(47\) 8.15524 8.15524i 1.18956 1.18956i 0.212376 0.977188i \(-0.431880\pi\)
0.977188 0.212376i \(-0.0681202\pi\)
\(48\) −2.19251 9.56435i −0.316461 1.38050i
\(49\) 4.15725i 0.593893i
\(50\) −1.57271 + 6.89395i −0.222415 + 0.974952i
\(51\) 1.17740i 0.164869i
\(52\) 1.10790 + 2.00235i 0.153637 + 0.277676i
\(53\) 0.269408 0.269408i 0.0370060 0.0370060i −0.688362 0.725368i \(-0.741670\pi\)
0.725368 + 0.688362i \(0.241670\pi\)
\(54\) 0.00859193 0.0609635i 0.00116921 0.00829608i
\(55\) 3.09329 + 8.45939i 0.417099 + 1.14066i
\(56\) −4.35431 1.94473i −0.581869 0.259875i
\(57\) −7.29652 7.29652i −0.966448 0.966448i
\(58\) −3.55736 4.72458i −0.467104 0.620367i
\(59\) −5.44652 −0.709076 −0.354538 0.935042i \(-0.615362\pi\)
−0.354538 + 0.935042i \(0.615362\pi\)
\(60\) 7.19142 8.28483i 0.928409 1.06957i
\(61\) 0.729813 0.0934429 0.0467215 0.998908i \(-0.485123\pi\)
0.0467215 + 0.998908i \(0.485123\pi\)
\(62\) −4.84448 6.43402i −0.615249 0.817121i
\(63\) −3.59780 3.59780i −0.453280 0.453280i
\(64\) −5.95758 + 5.33922i −0.744697 + 0.667402i
\(65\) −1.07781 + 2.32042i −0.133686 + 0.287813i
\(66\) 1.95024 13.8378i 0.240058 1.70331i
\(67\) 9.31927 9.31927i 1.13853 1.13853i 0.149816 0.988714i \(-0.452132\pi\)
0.988714 0.149816i \(-0.0478683\pi\)
\(68\) −0.839928 + 0.464730i −0.101856 + 0.0563568i
\(69\) 4.49403i 0.541017i
\(70\) −1.11431 5.21400i −0.133185 0.623192i
\(71\) 1.57249i 0.186620i 0.995637 + 0.0933101i \(0.0297448\pi\)
−0.995637 + 0.0933101i \(0.970255\pi\)
\(72\) −7.97210 + 3.04958i −0.939521 + 0.359397i
\(73\) 5.88887 5.88887i 0.689240 0.689240i −0.272824 0.962064i \(-0.587958\pi\)
0.962064 + 0.272824i \(0.0879577\pi\)
\(74\) −9.11843 1.28511i −1.06000 0.149391i
\(75\) 12.2220 + 1.03249i 1.41128 + 0.119221i
\(76\) −2.32516 + 8.08517i −0.266715 + 0.927433i
\(77\) −4.80241 4.80241i −0.547286 0.547286i
\(78\) 3.17112 2.38768i 0.359058 0.270352i
\(79\) −13.9425 −1.56866 −0.784329 0.620345i \(-0.786992\pi\)
−0.784329 + 0.620345i \(0.786992\pi\)
\(80\) −8.74872 1.86010i −0.978136 0.207965i
\(81\) 8.94645 0.994050
\(82\) −1.12977 + 0.850658i −0.124762 + 0.0939394i
\(83\) −3.59692 3.59692i −0.394813 0.394813i 0.481586 0.876399i \(-0.340061\pi\)
−0.876399 + 0.481586i \(0.840061\pi\)
\(84\) −2.28626 + 7.94989i −0.249451 + 0.867404i
\(85\) −0.973351 0.452111i −0.105575 0.0490383i
\(86\) 0.816481 + 0.115071i 0.0880434 + 0.0124085i
\(87\) −7.25395 + 7.25395i −0.777705 + 0.777705i
\(88\) −10.6413 + 4.07064i −1.13437 + 0.433932i
\(89\) 6.99649i 0.741627i −0.928707 0.370813i \(-0.879079\pi\)
0.928707 0.370813i \(-0.120921\pi\)
\(90\) −8.00914 5.18860i −0.844238 0.546926i
\(91\) 1.92919i 0.202234i
\(92\) 3.20593 1.77383i 0.334241 0.184935i
\(93\) −9.87857 + 9.87857i −1.02436 + 1.02436i
\(94\) −2.27623 + 16.1509i −0.234776 + 1.66584i
\(95\) −8.83381 + 3.23020i −0.906330 + 0.331412i
\(96\) 10.6130 + 8.94045i 1.08319 + 0.912481i
\(97\) −9.75595 9.75595i −0.990566 0.990566i 0.00938975 0.999956i \(-0.497011\pi\)
−0.999956 + 0.00938975i \(0.997011\pi\)
\(98\) −3.53640 4.69674i −0.357230 0.474443i
\(99\) −12.1559 −1.22172
\(100\) −4.08759 9.12643i −0.408759 0.912643i
\(101\) −0.471180 −0.0468842 −0.0234421 0.999725i \(-0.507463\pi\)
−0.0234421 + 0.999725i \(0.507463\pi\)
\(102\) 1.00156 + 1.33019i 0.0991695 + 0.131708i
\(103\) 13.6131 + 13.6131i 1.34134 + 1.34134i 0.894725 + 0.446618i \(0.147372\pi\)
0.446618 + 0.894725i \(0.352628\pi\)
\(104\) −2.95498 1.31976i −0.289760 0.129413i
\(105\) −8.68601 + 3.17616i −0.847667 + 0.309961i
\(106\) −0.0751952 + 0.533542i −0.00730360 + 0.0518222i
\(107\) −3.09088 + 3.09088i −0.298806 + 0.298806i −0.840546 0.541740i \(-0.817766\pi\)
0.541740 + 0.840546i \(0.317766\pi\)
\(108\) 0.0421521 + 0.0761835i 0.00405609 + 0.00733076i
\(109\) 14.2850i 1.36826i −0.729362 0.684128i \(-0.760183\pi\)
0.729362 0.684128i \(-0.239817\pi\)
\(110\) −10.6908 6.92584i −1.01932 0.660353i
\(111\) 15.9732i 1.51611i
\(112\) 6.57367 1.50693i 0.621153 0.142392i
\(113\) 2.75749 2.75749i 0.259403 0.259403i −0.565408 0.824811i \(-0.691281\pi\)
0.824811 + 0.565408i \(0.191281\pi\)
\(114\) 14.4502 + 2.03656i 1.35339 + 0.190741i
\(115\) 3.71519 + 1.72567i 0.346444 + 0.160919i
\(116\) 8.03799 + 2.31160i 0.746309 + 0.214626i
\(117\) −2.44159 2.44159i −0.225725 0.225725i
\(118\) 6.15331 4.63312i 0.566458 0.426513i
\(119\) 0.809237 0.0741826
\(120\) −1.07711 + 15.4774i −0.0983262 + 1.41289i
\(121\) −5.22596 −0.475087
\(122\) −0.824521 + 0.620821i −0.0746486 + 0.0562065i
\(123\) 1.73461 + 1.73461i 0.156405 + 0.156405i
\(124\) 10.9463 + 3.14798i 0.983006 + 0.282697i
\(125\) 5.54670 9.70742i 0.496112 0.868258i
\(126\) 7.12518 + 1.00419i 0.634762 + 0.0894606i
\(127\) −9.54013 + 9.54013i −0.846550 + 0.846550i −0.989701 0.143151i \(-0.954276\pi\)
0.143151 + 0.989701i \(0.454276\pi\)
\(128\) 2.18885 11.1000i 0.193469 0.981106i
\(129\) 1.43027i 0.125929i
\(130\) −0.756205 3.53840i −0.0663236 0.310338i
\(131\) 19.9501i 1.74305i −0.490353 0.871524i \(-0.663132\pi\)
0.490353 0.871524i \(-0.336868\pi\)
\(132\) 9.56789 + 17.2925i 0.832778 + 1.50512i
\(133\) 5.01497 5.01497i 0.434853 0.434853i
\(134\) −2.60113 + 18.4561i −0.224703 + 1.59437i
\(135\) −0.0410076 + 0.0882853i −0.00352937 + 0.00759839i
\(136\) 0.553600 1.23953i 0.0474708 0.106289i
\(137\) −9.99072 9.99072i −0.853565 0.853565i 0.137005 0.990570i \(-0.456252\pi\)
−0.990570 + 0.137005i \(0.956252\pi\)
\(138\) −3.82288 5.07722i −0.325425 0.432202i
\(139\) 4.82361 0.409133 0.204567 0.978853i \(-0.434421\pi\)
0.204567 + 0.978853i \(0.434421\pi\)
\(140\) 5.69424 + 4.94273i 0.481251 + 0.417737i
\(141\) 28.2923 2.38264
\(142\) −1.33765 1.77655i −0.112253 0.149085i
\(143\) −3.25908 3.25908i −0.272538 0.272538i
\(144\) 6.41250 10.2269i 0.534375 0.852238i
\(145\) 3.21136 + 8.78227i 0.266689 + 0.729328i
\(146\) −1.64366 + 11.6625i −0.136030 + 0.965194i
\(147\) −7.21121 + 7.21121i −0.594771 + 0.594771i
\(148\) 11.3949 6.30478i 0.936657 0.518249i
\(149\) 16.3870i 1.34248i −0.741241 0.671239i \(-0.765762\pi\)
0.741241 0.671239i \(-0.234238\pi\)
\(150\) −14.6864 + 9.23027i −1.19914 + 0.753649i
\(151\) 13.0755i 1.06407i 0.846723 + 0.532034i \(0.178572\pi\)
−0.846723 + 0.532034i \(0.821428\pi\)
\(152\) −4.25081 11.1123i −0.344786 0.901327i
\(153\) 1.02418 1.02418i 0.0827997 0.0827997i
\(154\) 9.51083 + 1.34042i 0.766405 + 0.108014i
\(155\) 4.37329 + 11.9599i 0.351271 + 0.960639i
\(156\) −1.55153 + 5.39507i −0.124222 + 0.431951i
\(157\) 11.6419 + 11.6419i 0.929126 + 0.929126i 0.997649 0.0685237i \(-0.0218289\pi\)
−0.0685237 + 0.997649i \(0.521829\pi\)
\(158\) 15.7519 11.8603i 1.25315 0.943557i
\(159\) 0.934635 0.0741213
\(160\) 11.4663 5.34068i 0.906494 0.422218i
\(161\) −3.08879 −0.243430
\(162\) −10.1074 + 7.61036i −0.794115 + 0.597927i
\(163\) 3.14829 + 3.14829i 0.246593 + 0.246593i 0.819571 0.572978i \(-0.194212\pi\)
−0.572978 + 0.819571i \(0.694212\pi\)
\(164\) 0.552763 1.92210i 0.0431636 0.150090i
\(165\) −9.30810 + 20.0394i −0.724634 + 1.56007i
\(166\) 7.12343 + 1.00395i 0.552886 + 0.0779214i
\(167\) −1.04606 + 1.04606i −0.0809462 + 0.0809462i −0.746421 0.665474i \(-0.768229\pi\)
0.665474 + 0.746421i \(0.268229\pi\)
\(168\) −4.17969 10.9264i −0.322470 0.842988i
\(169\) 11.6908i 0.899291i
\(170\) 1.48425 0.317206i 0.113837 0.0243286i
\(171\) 12.6940i 0.970731i
\(172\) −1.02032 + 0.564542i −0.0777989 + 0.0430459i
\(173\) 8.62879 8.62879i 0.656034 0.656034i −0.298405 0.954439i \(-0.596455\pi\)
0.954439 + 0.298405i \(0.0964546\pi\)
\(174\) 2.02467 14.3659i 0.153490 1.08908i
\(175\) −0.709638 + 8.40030i −0.0536436 + 0.635003i
\(176\) 8.55952 13.6510i 0.645198 1.02898i
\(177\) −9.44758 9.44758i −0.710124 0.710124i
\(178\) 5.95162 + 7.90443i 0.446093 + 0.592462i
\(179\) −7.62133 −0.569645 −0.284822 0.958580i \(-0.591935\pi\)
−0.284822 + 0.958580i \(0.591935\pi\)
\(180\) 13.4622 0.951110i 1.00341 0.0708916i
\(181\) 0.848933 0.0631007 0.0315503 0.999502i \(-0.489956\pi\)
0.0315503 + 0.999502i \(0.489956\pi\)
\(182\) 1.64108 + 2.17954i 0.121645 + 0.161558i
\(183\) 1.26594 + 1.26594i 0.0935810 + 0.0935810i
\(184\) −2.11304 + 4.73117i −0.155776 + 0.348787i
\(185\) 13.2050 + 6.13359i 0.970851 + 0.450950i
\(186\) 2.75724 19.5638i 0.202170 1.43449i
\(187\) 1.36709 1.36709i 0.0999715 0.0999715i
\(188\) −11.1672 20.1831i −0.814454 1.47200i
\(189\) 0.0733998i 0.00533905i
\(190\) 7.23239 11.1639i 0.524692 0.809917i
\(191\) 4.93773i 0.357281i −0.983914 0.178641i \(-0.942830\pi\)
0.983914 0.178641i \(-0.0571699\pi\)
\(192\) −19.5955 1.07262i −1.41419 0.0774095i
\(193\) 6.49046 6.49046i 0.467194 0.467194i −0.433810 0.901004i \(-0.642831\pi\)
0.901004 + 0.433810i \(0.142831\pi\)
\(194\) 19.3209 + 2.72301i 1.38716 + 0.195501i
\(195\) −5.89462 + 2.15545i −0.422122 + 0.154355i
\(196\) 7.99064 + 2.29798i 0.570760 + 0.164141i
\(197\) −8.24214 8.24214i −0.587228 0.587228i 0.349652 0.936880i \(-0.386300\pi\)
−0.936880 + 0.349652i \(0.886300\pi\)
\(198\) 13.7334 10.3405i 0.975991 0.734869i
\(199\) −3.15529 −0.223673 −0.111836 0.993727i \(-0.535673\pi\)
−0.111836 + 0.993727i \(0.535673\pi\)
\(200\) 12.3815 + 6.83363i 0.875504 + 0.483211i
\(201\) 32.3306 2.28043
\(202\) 0.532325 0.400813i 0.0374543 0.0282011i
\(203\) −4.98571 4.98571i −0.349928 0.349928i
\(204\) −2.26307 0.650823i −0.158447 0.0455667i
\(205\) 2.10007 0.767920i 0.146675 0.0536338i
\(206\) −26.9599 3.79961i −1.87838 0.264731i
\(207\) −3.90919 + 3.90919i −0.271707 + 0.271707i
\(208\) 4.46112 1.02265i 0.309323 0.0709083i
\(209\) 16.9441i 1.17205i
\(210\) 7.11137 10.9771i 0.490731 0.757495i
\(211\) 12.2107i 0.840618i −0.907381 0.420309i \(-0.861922\pi\)
0.907381 0.420309i \(-0.138078\pi\)
\(212\) −0.368909 0.666746i −0.0253367 0.0457923i
\(213\) −2.72766 + 2.72766i −0.186896 + 0.186896i
\(214\) 0.862705 6.12126i 0.0589733 0.418441i
\(215\) −1.18240 0.549213i −0.0806391 0.0374560i
\(216\) −0.112428 0.0502129i −0.00764978 0.00341655i
\(217\) −6.78963 6.78963i −0.460910 0.460910i
\(218\) 12.1516 + 16.1388i 0.823013 + 1.09306i
\(219\) 20.4298 1.38052
\(220\) 17.9696 1.26956i 1.21151 0.0855937i
\(221\) 0.549176 0.0369416
\(222\) −13.5877 18.0461i −0.911950 1.21117i
\(223\) −10.1856 10.1856i −0.682080 0.682080i 0.278389 0.960468i \(-0.410200\pi\)
−0.960468 + 0.278389i \(0.910200\pi\)
\(224\) −6.14486 + 7.29443i −0.410571 + 0.487379i
\(225\) 9.73335 + 11.5296i 0.648890 + 0.768640i
\(226\) −0.769652 + 5.46101i −0.0511965 + 0.363261i
\(227\) 18.8653 18.8653i 1.25213 1.25213i 0.297372 0.954762i \(-0.403890\pi\)
0.954762 0.297372i \(-0.0961102\pi\)
\(228\) −18.0579 + 9.99137i −1.19591 + 0.661695i
\(229\) 14.5362i 0.960580i 0.877110 + 0.480290i \(0.159469\pi\)
−0.877110 + 0.480290i \(0.840531\pi\)
\(230\) −5.66527 + 1.21075i −0.373557 + 0.0798343i
\(231\) 16.6606i 1.09619i
\(232\) −11.0475 + 4.22601i −0.725302 + 0.277451i
\(233\) −21.0073 + 21.0073i −1.37624 + 1.37624i −0.525349 + 0.850887i \(0.676065\pi\)
−0.850887 + 0.525349i \(0.823935\pi\)
\(234\) 4.83539 + 0.681479i 0.316099 + 0.0445497i
\(235\) 10.8640 23.3892i 0.708690 1.52574i
\(236\) −3.01063 + 10.4687i −0.195976 + 0.681456i
\(237\) −24.1849 24.1849i −1.57098 1.57098i
\(238\) −0.914252 + 0.688384i −0.0592622 + 0.0446213i
\(239\) 17.3400 1.12163 0.560816 0.827941i \(-0.310488\pi\)
0.560816 + 0.827941i \(0.310488\pi\)
\(240\) −11.9491 18.4022i −0.771309 1.18785i
\(241\) 26.8759 1.73123 0.865615 0.500711i \(-0.166928\pi\)
0.865615 + 0.500711i \(0.166928\pi\)
\(242\) 5.90414 4.44550i 0.379532 0.285768i
\(243\) 15.6109 + 15.6109i 1.00144 + 1.00144i
\(244\) 0.403414 1.40277i 0.0258259 0.0898032i
\(245\) 3.19244 + 8.73053i 0.203957 + 0.557773i
\(246\) −3.43527 0.484152i −0.219025 0.0308684i
\(247\) 3.40333 3.40333i 0.216549 0.216549i
\(248\) −15.0447 + 5.75506i −0.955336 + 0.365446i
\(249\) 12.4785i 0.790793i
\(250\) 1.99119 + 15.6855i 0.125934 + 0.992039i
\(251\) 18.2984i 1.15499i −0.816396 0.577493i \(-0.804031\pi\)
0.816396 0.577493i \(-0.195969\pi\)
\(252\) −8.90405 + 4.92658i −0.560902 + 0.310346i
\(253\) −5.21806 + 5.21806i −0.328056 + 0.328056i
\(254\) 2.66278 18.8935i 0.167077 1.18549i
\(255\) −0.904147 2.47262i −0.0566199 0.154842i
\(256\) 6.96936 + 14.4024i 0.435585 + 0.900148i
\(257\) 6.60489 + 6.60489i 0.412002 + 0.412002i 0.882435 0.470434i \(-0.155903\pi\)
−0.470434 + 0.882435i \(0.655903\pi\)
\(258\) 1.21667 + 1.61588i 0.0757467 + 0.100600i
\(259\) −10.9785 −0.682174
\(260\) 3.86430 + 3.35431i 0.239654 + 0.208025i
\(261\) −12.6199 −0.781151
\(262\) 16.9707 + 22.5390i 1.04845 + 1.39247i
\(263\) 8.98275 + 8.98275i 0.553900 + 0.553900i 0.927564 0.373664i \(-0.121899\pi\)
−0.373664 + 0.927564i \(0.621899\pi\)
\(264\) −25.5195 11.3976i −1.57062 0.701471i
\(265\) 0.358892 0.772659i 0.0220466 0.0474640i
\(266\) −1.39974 + 9.93179i −0.0858238 + 0.608957i
\(267\) 12.1362 12.1362i 0.742723 0.742723i
\(268\) −12.7612 23.0639i −0.779513 1.40885i
\(269\) 0.807155i 0.0492131i −0.999697 0.0246066i \(-0.992167\pi\)
0.999697 0.0246066i \(-0.00783330\pi\)
\(270\) −0.0287714 0.134626i −0.00175097 0.00819305i
\(271\) 3.29795i 0.200336i −0.994971 0.100168i \(-0.968062\pi\)
0.994971 0.100168i \(-0.0319380\pi\)
\(272\) 0.428974 + 1.87131i 0.0260103 + 0.113465i
\(273\) 3.34638 3.34638i 0.202532 0.202532i
\(274\) 19.7859 + 2.78854i 1.19531 + 0.168462i
\(275\) 12.9923 + 15.3899i 0.783463 + 0.928048i
\(276\) 8.63795 + 2.48413i 0.519943 + 0.149527i
\(277\) 20.4138 + 20.4138i 1.22655 + 1.22655i 0.965262 + 0.261283i \(0.0841455\pi\)
0.261283 + 0.965262i \(0.415854\pi\)
\(278\) −5.44957 + 4.10324i −0.326844 + 0.246096i
\(279\) −17.1860 −1.02890
\(280\) −10.6378 0.740308i −0.635728 0.0442418i
\(281\) 4.55009 0.271436 0.135718 0.990748i \(-0.456666\pi\)
0.135718 + 0.990748i \(0.456666\pi\)
\(282\) −31.9638 + 24.0671i −1.90342 + 1.43317i
\(283\) −1.82990 1.82990i −0.108776 0.108776i 0.650624 0.759400i \(-0.274507\pi\)
−0.759400 + 0.650624i \(0.774507\pi\)
\(284\) 3.02247 + 0.869215i 0.179351 + 0.0515784i
\(285\) −20.9264 9.72008i −1.23957 0.575768i
\(286\) 6.45437 + 0.909652i 0.381655 + 0.0537888i
\(287\) −1.19221 + 1.19221i −0.0703742 + 0.0703742i
\(288\) 1.45490 + 17.0088i 0.0857310 + 1.00226i
\(289\) 16.7696i 0.986449i
\(290\) −11.0988 7.19019i −0.651744 0.422222i
\(291\) 33.8455i 1.98406i
\(292\) −8.06382 14.5741i −0.471899 0.852886i
\(293\) −2.47914 + 2.47914i −0.144833 + 0.144833i −0.775805 0.630972i \(-0.782656\pi\)
0.630972 + 0.775805i \(0.282656\pi\)
\(294\) 2.01274 14.2813i 0.117386 0.832902i
\(295\) −11.4381 + 4.18249i −0.665950 + 0.243514i
\(296\) −7.51044 + 16.8161i −0.436536 + 0.977417i
\(297\) −0.123998 0.123998i −0.00719511 0.00719511i
\(298\) 13.9398 + 18.5136i 0.807508 + 1.07246i
\(299\) −2.09616 −0.121224
\(300\) 8.74042 22.9212i 0.504629 1.32335i
\(301\) 0.983040 0.0566615
\(302\) −11.1228 14.7723i −0.640044 0.850051i
\(303\) −0.817314 0.817314i −0.0469534 0.0469534i
\(304\) 14.2552 + 8.93837i 0.817592 + 0.512651i
\(305\) 1.53266 0.560437i 0.0877598 0.0320906i
\(306\) −0.285861 + 2.02831i −0.0163416 + 0.115951i
\(307\) −4.45472 + 4.45472i −0.254244 + 0.254244i −0.822708 0.568464i \(-0.807538\pi\)
0.568464 + 0.822708i \(0.307538\pi\)
\(308\) −11.8853 + 6.57610i −0.677227 + 0.374708i
\(309\) 47.2270i 2.68665i
\(310\) −15.1146 9.79173i −0.858449 0.556133i
\(311\) 4.78019i 0.271060i 0.990773 + 0.135530i \(0.0432737\pi\)
−0.990773 + 0.135530i \(0.956726\pi\)
\(312\) −2.83648 7.41501i −0.160584 0.419792i
\(313\) −3.52240 + 3.52240i −0.199098 + 0.199098i −0.799613 0.600515i \(-0.794962\pi\)
0.600515 + 0.799613i \(0.294962\pi\)
\(314\) −23.0560 3.24941i −1.30112 0.183375i
\(315\) −10.3185 4.79281i −0.581379 0.270044i
\(316\) −7.70692 + 26.7989i −0.433548 + 1.50756i
\(317\) −20.1919 20.1919i −1.13409 1.13409i −0.989491 0.144597i \(-0.953811\pi\)
−0.144597 0.989491i \(-0.546189\pi\)
\(318\) −1.05592 + 0.795054i −0.0592132 + 0.0445844i
\(319\) −16.8453 −0.943154
\(320\) −8.41125 + 15.7877i −0.470203 + 0.882558i
\(321\) −10.7229 −0.598496
\(322\) 3.48962 2.62750i 0.194469 0.146425i
\(323\) 1.42760 + 1.42760i 0.0794336 + 0.0794336i
\(324\) 4.94527 17.1959i 0.274737 0.955329i
\(325\) −0.481585 + 5.70073i −0.0267135 + 0.316220i
\(326\) −6.23496 0.878728i −0.345322 0.0486682i
\(327\) 24.7789 24.7789i 1.37028 1.37028i
\(328\) 1.01055 + 2.64174i 0.0557983 + 0.145866i
\(329\) 19.4456i 1.07207i
\(330\) −6.53066 30.5579i −0.359501 1.68216i
\(331\) 17.6160i 0.968260i 0.874996 + 0.484130i \(0.160864\pi\)
−0.874996 + 0.484130i \(0.839136\pi\)
\(332\) −8.90186 + 4.92537i −0.488553 + 0.270315i
\(333\) −13.8945 + 13.8945i −0.761415 + 0.761415i
\(334\) 0.291968 2.07164i 0.0159758 0.113355i
\(335\) 12.4147 26.7276i 0.678287 1.46028i
\(336\) 14.0167 + 8.78882i 0.764673 + 0.479469i
\(337\) 22.2233 + 22.2233i 1.21058 + 1.21058i 0.970837 + 0.239742i \(0.0770627\pi\)
0.239742 + 0.970837i \(0.422937\pi\)
\(338\) −9.94486 13.2079i −0.540929 0.718416i
\(339\) 9.56635 0.519573
\(340\) −1.40703 + 1.62096i −0.0763071 + 0.0879090i
\(341\) −22.9402 −1.24228
\(342\) 10.7982 + 14.3413i 0.583900 + 0.775486i
\(343\) −13.3018 13.3018i −0.718231 0.718231i
\(344\) 0.672499 1.50575i 0.0362587 0.0811845i
\(345\) 3.45105 + 9.43778i 0.185798 + 0.508113i
\(346\) −2.40841 + 17.0887i −0.129477 + 0.918694i
\(347\) −23.3249 + 23.3249i −1.25215 + 1.25215i −0.297392 + 0.954755i \(0.596117\pi\)
−0.954755 + 0.297392i \(0.903883\pi\)
\(348\) 9.93307 + 17.9525i 0.532468 + 0.962355i
\(349\) 7.83755i 0.419535i 0.977751 + 0.209767i \(0.0672706\pi\)
−0.977751 + 0.209767i \(0.932729\pi\)
\(350\) −6.34405 10.0941i −0.339104 0.539551i
\(351\) 0.0498116i 0.00265874i
\(352\) 1.94203 + 22.7037i 0.103511 + 1.21011i
\(353\) 21.1022 21.1022i 1.12316 1.12316i 0.131892 0.991264i \(-0.457895\pi\)
0.991264 0.131892i \(-0.0421052\pi\)
\(354\) 18.7103 + 2.63694i 0.994439 + 0.140152i
\(355\) 1.20755 + 3.30234i 0.0640898 + 0.175270i
\(356\) −13.4479 3.86740i −0.712739 0.204972i
\(357\) 1.40371 + 1.40371i 0.0742923 + 0.0742923i
\(358\) 8.61035 6.48314i 0.455071 0.342645i
\(359\) 10.1203 0.534130 0.267065 0.963679i \(-0.413946\pi\)
0.267065 + 0.963679i \(0.413946\pi\)
\(360\) −14.4001 + 12.5263i −0.758954 + 0.660192i
\(361\) −1.30591 −0.0687321
\(362\) −0.959099 + 0.722151i −0.0504091 + 0.0379554i
\(363\) −9.06501 9.06501i −0.475790 0.475790i
\(364\) −3.70808 1.06638i −0.194356 0.0558937i
\(365\) 7.84487 16.8892i 0.410619 0.884022i
\(366\) −2.50710 0.353341i −0.131048 0.0184694i
\(367\) 22.8049 22.8049i 1.19040 1.19040i 0.213451 0.976954i \(-0.431530\pi\)
0.976954 0.213451i \(-0.0684704\pi\)
\(368\) −1.63735 7.14262i −0.0853530 0.372335i
\(369\) 3.01775i 0.157098i
\(370\) −20.1362 + 4.30339i −1.04683 + 0.223723i
\(371\) 0.642383i 0.0333509i
\(372\) 13.5270 + 24.4481i 0.701345 + 1.26757i
\(373\) 6.89178 6.89178i 0.356843 0.356843i −0.505805 0.862648i \(-0.668804\pi\)
0.862648 + 0.505805i \(0.168804\pi\)
\(374\) −0.381572 + 2.70742i −0.0197306 + 0.139997i
\(375\) 26.4600 7.21723i 1.36639 0.372696i
\(376\) 29.7853 + 13.3028i 1.53606 + 0.686037i
\(377\) −3.38347 3.38347i −0.174258 0.174258i
\(378\) 0.0624381 + 0.0829249i 0.00321147 + 0.00426520i
\(379\) −28.6069 −1.46944 −0.734718 0.678373i \(-0.762686\pi\)
−0.734718 + 0.678373i \(0.762686\pi\)
\(380\) 1.32575 + 18.7650i 0.0680096 + 0.962623i
\(381\) −33.0968 −1.69560
\(382\) 4.20031 + 5.57850i 0.214907 + 0.285421i
\(383\) −5.18753 5.18753i −0.265070 0.265070i 0.562040 0.827110i \(-0.310017\pi\)
−0.827110 + 0.562040i \(0.810017\pi\)
\(384\) 23.0509 15.4573i 1.17631 0.788801i
\(385\) −13.7733 6.39754i −0.701951 0.326049i
\(386\) −1.81157 + 12.8539i −0.0922067 + 0.654246i
\(387\) 1.24414 1.24414i 0.0632433 0.0632433i
\(388\) −24.1446 + 13.3591i −1.22576 + 0.678207i
\(389\) 11.9556i 0.606171i 0.952963 + 0.303086i \(0.0980168\pi\)
−0.952963 + 0.303086i \(0.901983\pi\)
\(390\) 4.82602 7.44946i 0.244375 0.377218i
\(391\) 0.879276i 0.0444669i
\(392\) −10.9824 + 4.20111i −0.554694 + 0.212188i
\(393\) 34.6056 34.6056i 1.74562 1.74562i
\(394\) 16.3230 + 2.30049i 0.822339 + 0.115897i
\(395\) −29.2803 + 10.7067i −1.47325 + 0.538715i
\(396\) −6.71935 + 23.3649i −0.337660 + 1.17413i
\(397\) 13.9851 + 13.9851i 0.701891 + 0.701891i 0.964816 0.262925i \(-0.0846873\pi\)
−0.262925 + 0.964816i \(0.584687\pi\)
\(398\) 3.56475 2.68407i 0.178685 0.134540i
\(399\) 17.3980 0.870991
\(400\) −19.8013 + 2.81198i −0.990067 + 0.140599i
\(401\) 12.9974 0.649060 0.324530 0.945875i \(-0.394794\pi\)
0.324530 + 0.945875i \(0.394794\pi\)
\(402\) −36.5262 + 27.5023i −1.82176 + 1.37169i
\(403\) −4.60768 4.60768i −0.229525 0.229525i
\(404\) −0.260451 + 0.905653i −0.0129579 + 0.0450579i
\(405\) 18.7882 6.87015i 0.933592 0.341381i
\(406\) 9.87384 + 1.39158i 0.490030 + 0.0690628i
\(407\) −18.5467 + 18.5467i −0.919324 + 0.919324i
\(408\) 3.11038 1.18982i 0.153987 0.0589048i
\(409\) 4.96260i 0.245385i 0.992445 + 0.122692i \(0.0391529\pi\)
−0.992445 + 0.122692i \(0.960847\pi\)
\(410\) −1.71936 + 2.65401i −0.0849133 + 0.131072i
\(411\) 34.6600i 1.70965i
\(412\) 33.6906 18.6409i 1.65982 0.918372i
\(413\) 6.49341 6.49341i 0.319520 0.319520i
\(414\) 1.09111 7.74186i 0.0536249 0.380492i
\(415\) −10.3159 4.79164i −0.506389 0.235212i
\(416\) −4.17011 + 4.95025i −0.204456 + 0.242706i
\(417\) 8.36708 + 8.36708i 0.409738 + 0.409738i
\(418\) 14.4137 + 19.1430i 0.704995 + 0.936314i
\(419\) −19.4749 −0.951409 −0.475705 0.879605i \(-0.657807\pi\)
−0.475705 + 0.879605i \(0.657807\pi\)
\(420\) 1.30357 + 18.4510i 0.0636077 + 0.900317i
\(421\) −35.8743 −1.74841 −0.874204 0.485558i \(-0.838616\pi\)
−0.874204 + 0.485558i \(0.838616\pi\)
\(422\) 10.3871 + 13.7953i 0.505637 + 0.671543i
\(423\) 24.6104 + 24.6104i 1.19660 + 1.19660i
\(424\) 0.983955 + 0.439455i 0.0477851 + 0.0213418i
\(425\) −2.39129 0.202011i −0.115995 0.00979896i
\(426\) 0.761325 5.40193i 0.0368863 0.261724i
\(427\) −0.870093 + 0.870093i −0.0421067 + 0.0421067i
\(428\) 4.23244 + 7.64949i 0.204583 + 0.369752i
\(429\) 11.3065i 0.545881i
\(430\) 1.80303 0.385334i 0.0869500 0.0185824i
\(431\) 20.1367i 0.969951i 0.874528 + 0.484975i \(0.161171\pi\)
−0.874528 + 0.484975i \(0.838829\pi\)
\(432\) 0.169732 0.0389089i 0.00816624 0.00187201i
\(433\) 2.73734 2.73734i 0.131548 0.131548i −0.638267 0.769815i \(-0.720348\pi\)
0.769815 + 0.638267i \(0.220348\pi\)
\(434\) 13.4464 + 1.89508i 0.645447 + 0.0909665i
\(435\) −9.66336 + 20.8043i −0.463323 + 0.997488i
\(436\) −27.4572 7.89623i −1.31496 0.378161i
\(437\) −5.44901 5.44901i −0.260662 0.260662i
\(438\) −23.0810 + 17.3788i −1.10285 + 0.830389i
\(439\) −22.0544 −1.05260 −0.526300 0.850299i \(-0.676421\pi\)
−0.526300 + 0.850299i \(0.676421\pi\)
\(440\) −19.2216 + 16.7203i −0.916354 + 0.797110i
\(441\) −12.5455 −0.597406
\(442\) −0.620443 + 0.467160i −0.0295114 + 0.0222206i
\(443\) 19.2001 + 19.2001i 0.912225 + 0.912225i 0.996447 0.0842223i \(-0.0268406\pi\)
−0.0842223 + 0.996447i \(0.526841\pi\)
\(444\) 30.7021 + 8.82942i 1.45706 + 0.419026i
\(445\) −5.37274 14.6931i −0.254692 0.696521i
\(446\) 20.1719 + 2.84294i 0.955167 + 0.134617i
\(447\) 28.4251 28.4251i 1.34446 1.34446i
\(448\) 0.737220 13.4682i 0.0348304 0.636313i
\(449\) 21.6592i 1.02216i −0.859533 0.511080i \(-0.829246\pi\)
0.859533 0.511080i \(-0.170754\pi\)
\(450\) −20.8042 4.74605i −0.980719 0.223731i
\(451\) 4.02815i 0.189678i
\(452\) −3.77592 6.82440i −0.177604 0.320993i
\(453\) −22.6809 + 22.6809i −1.06564 + 1.06564i
\(454\) −5.26555 + 37.3614i −0.247125 + 1.75346i
\(455\) −1.48146 4.05143i −0.0694519 0.189934i
\(456\) 11.9020 26.6490i 0.557363 1.24795i
\(457\) 9.64959 + 9.64959i 0.451389 + 0.451389i 0.895815 0.444427i \(-0.146593\pi\)
−0.444427 + 0.895815i \(0.646593\pi\)
\(458\) −12.3653 16.4226i −0.577794 0.767377i
\(459\) 0.0208945 0.000975272
\(460\) 5.37052 6.18707i 0.250402 0.288474i
\(461\) −20.5463 −0.956935 −0.478468 0.878105i \(-0.658808\pi\)
−0.478468 + 0.878105i \(0.658808\pi\)
\(462\) 14.1725 + 18.8227i 0.659364 + 0.875711i
\(463\) −24.8325 24.8325i −1.15406 1.15406i −0.985730 0.168334i \(-0.946161\pi\)
−0.168334 0.985730i \(-0.553839\pi\)
\(464\) 8.88622 14.1720i 0.412532 0.657920i
\(465\) −13.1598 + 28.3316i −0.610269 + 1.31385i
\(466\) 5.86342 41.6035i 0.271618 1.92725i
\(467\) 15.2663 15.2663i 0.706440 0.706440i −0.259345 0.965785i \(-0.583507\pi\)
0.965785 + 0.259345i \(0.0835067\pi\)
\(468\) −6.04259 + 3.34335i −0.279319 + 0.154546i
\(469\) 22.2211i 1.02608i
\(470\) 7.62231 + 35.6659i 0.351591 + 1.64515i
\(471\) 40.3884i 1.86100i
\(472\) −5.50397 14.3883i −0.253341 0.662274i
\(473\) 1.66070 1.66070i 0.0763593 0.0763593i
\(474\) 47.8964 + 6.75031i 2.19995 + 0.310052i
\(475\) −16.0711 + 13.5673i −0.737393 + 0.622511i
\(476\) 0.447317 1.55543i 0.0205027 0.0712931i
\(477\) 0.813004 + 0.813004i 0.0372249 + 0.0372249i
\(478\) −19.5902 + 14.7504i −0.896036 + 0.674668i
\(479\) −4.80890 −0.219724 −0.109862 0.993947i \(-0.535041\pi\)
−0.109862 + 0.993947i \(0.535041\pi\)
\(480\) 29.1536 + 10.6256i 1.33068 + 0.484992i
\(481\) −7.45042 −0.339710
\(482\) −30.3636 + 22.8622i −1.38302 + 1.04134i
\(483\) −5.35784 5.35784i −0.243790 0.243790i
\(484\) −2.88872 + 10.0448i −0.131306 + 0.456582i
\(485\) −27.9800 12.9964i −1.27050 0.590136i
\(486\) −30.9164 4.35722i −1.40239 0.197648i
\(487\) −4.14169 + 4.14169i −0.187678 + 0.187678i −0.794691 0.607014i \(-0.792367\pi\)
0.607014 + 0.794691i \(0.292367\pi\)
\(488\) 0.737512 + 1.92798i 0.0333856 + 0.0872753i
\(489\) 10.9221i 0.493914i
\(490\) −11.0334 7.14782i −0.498439 0.322906i
\(491\) 36.1178i 1.62997i −0.579480 0.814987i \(-0.696744\pi\)
0.579480 0.814987i \(-0.303256\pi\)
\(492\) 4.29292 2.37526i 0.193540 0.107085i
\(493\) 1.41927 1.41927i 0.0639206 0.0639206i
\(494\) −0.949914 + 6.74005i −0.0427386 + 0.303249i
\(495\) −25.5283 + 9.33477i −1.14741 + 0.419567i
\(496\) 12.1014 19.2997i 0.543370 0.866584i
\(497\) −1.87474 1.87474i −0.0840937 0.0840937i
\(498\) 10.6149 + 14.0978i 0.475666 + 0.631739i
\(499\) 19.6148 0.878078 0.439039 0.898468i \(-0.355319\pi\)
0.439039 + 0.898468i \(0.355319\pi\)
\(500\) −15.5926 16.0272i −0.697322 0.716758i
\(501\) −3.62900 −0.162132
\(502\) 15.5657 + 20.6730i 0.694731 + 0.922682i
\(503\) 17.4984 + 17.4984i 0.780214 + 0.780214i 0.979867 0.199653i \(-0.0639815\pi\)
−0.199653 + 0.979867i \(0.563982\pi\)
\(504\) 5.86870 13.1402i 0.261412 0.585311i
\(505\) −0.989511 + 0.361828i −0.0440327 + 0.0161011i
\(506\) 1.45643 10.3340i 0.0647461 0.459402i
\(507\) −20.2790 + 20.2790i −0.900620 + 0.900620i
\(508\) 13.0636 + 23.6105i 0.579604 + 1.04755i
\(509\) 35.9686i 1.59428i 0.603795 + 0.797140i \(0.293655\pi\)
−0.603795 + 0.797140i \(0.706345\pi\)
\(510\) 3.12483 + 2.02437i 0.138370 + 0.0896408i
\(511\) 14.0416i 0.621163i
\(512\) −20.1253 10.3428i −0.889419 0.457093i
\(513\) 0.129487 0.129487i 0.00571697 0.00571697i
\(514\) −13.0805 1.84351i −0.576957 0.0813138i
\(515\) 39.0424 + 18.1348i 1.72041 + 0.799114i
\(516\) −2.74912 0.790603i −0.121023 0.0348043i
\(517\) 32.8505 + 32.8505i 1.44476 + 1.44476i
\(518\) 12.4032 9.33899i 0.544967 0.410331i
\(519\) 29.9352 1.31401
\(520\) −7.21914 0.502398i −0.316580 0.0220316i
\(521\) 7.17372 0.314286 0.157143 0.987576i \(-0.449772\pi\)
0.157143 + 0.987576i \(0.449772\pi\)
\(522\) 14.2576 10.7352i 0.624037 0.469867i
\(523\) −24.2846 24.2846i −1.06189 1.06189i −0.997954 0.0639394i \(-0.979634\pi\)
−0.0639394 0.997954i \(-0.520366\pi\)
\(524\) −38.3460 11.0277i −1.67515 0.481746i
\(525\) −15.8022 + 13.3403i −0.689665 + 0.582219i
\(526\) −17.7897 2.50720i −0.775667 0.109319i
\(527\) 1.93279 1.93279i 0.0841935 0.0841935i
\(528\) 38.5266 8.83174i 1.67666 0.384352i
\(529\) 19.6439i 0.854082i
\(530\) 0.251802 + 1.17822i 0.0109376 + 0.0511787i
\(531\) 16.4362i 0.713270i
\(532\) −6.86716 12.4113i −0.297729 0.538100i
\(533\) −0.809077 + 0.809077i −0.0350450 + 0.0350450i
\(534\) −3.38737 + 24.0348i −0.146586 + 1.04009i
\(535\) −4.11752 + 8.86461i −0.178016 + 0.383251i
\(536\) 34.0367 + 15.2015i 1.47016 + 0.656605i
\(537\) −13.2200 13.2200i −0.570487 0.570487i
\(538\) 0.686613 + 0.911900i 0.0296020 + 0.0393148i
\(539\) −16.7460 −0.721302
\(540\) 0.147025 + 0.127621i 0.00632696 + 0.00549195i
\(541\) −43.7163 −1.87951 −0.939754 0.341850i \(-0.888946\pi\)
−0.939754 + 0.341850i \(0.888946\pi\)
\(542\) 2.80542 + 3.72592i 0.120503 + 0.160042i
\(543\) 1.47257 + 1.47257i 0.0631939 + 0.0631939i
\(544\) −2.07648 1.74924i −0.0890285 0.0749980i
\(545\) −10.9697 29.9995i −0.469892 1.28504i
\(546\) −0.934020 + 6.62727i −0.0399724 + 0.283621i
\(547\) 4.05775 4.05775i 0.173497 0.173497i −0.615017 0.788514i \(-0.710851\pi\)
0.788514 + 0.615017i \(0.210851\pi\)
\(548\) −24.7256 + 13.6806i −1.05623 + 0.584407i
\(549\) 2.20239i 0.0939957i
\(550\) −27.7698 6.33512i −1.18411 0.270131i
\(551\) 17.5908i 0.749395i
\(552\) −11.8720 + 4.54144i −0.505308 + 0.193296i
\(553\) 16.6225 16.6225i 0.706860 0.706860i
\(554\) −40.4280 5.69775i −1.71762 0.242074i
\(555\) 12.2662 + 33.5449i 0.520669 + 1.42390i
\(556\) 2.66632 9.27144i 0.113077 0.393197i
\(557\) −20.3398 20.3398i −0.861826 0.861826i 0.129724 0.991550i \(-0.458591\pi\)
−0.991550 + 0.129724i \(0.958591\pi\)
\(558\) 19.4162 14.6194i 0.821955 0.618889i
\(559\) 0.667124 0.0282164
\(560\) 12.6480 8.21271i 0.534474 0.347050i
\(561\) 4.74273 0.200238
\(562\) −5.14056 + 3.87057i −0.216841 + 0.163270i
\(563\) 8.97565 + 8.97565i 0.378279 + 0.378279i 0.870481 0.492202i \(-0.163808\pi\)
−0.492202 + 0.870481i \(0.663808\pi\)
\(564\) 15.6390 54.3806i 0.658519 2.28984i
\(565\) 3.67340 7.90846i 0.154541 0.332711i
\(566\) 3.62399 + 0.510750i 0.152328 + 0.0214684i
\(567\) −10.6661 + 10.6661i −0.447933 + 0.447933i
\(568\) −4.15411 + 1.58908i −0.174302 + 0.0666762i
\(569\) 0.150643i 0.00631527i −0.999995 0.00315763i \(-0.998995\pi\)
0.999995 0.00315763i \(-0.00100511\pi\)
\(570\) 31.9105 6.81971i 1.33658 0.285646i
\(571\) 4.12312i 0.172547i −0.996271 0.0862736i \(-0.972504\pi\)
0.996271 0.0862736i \(-0.0274959\pi\)
\(572\) −8.06576 + 4.46276i −0.337247 + 0.186598i
\(573\) 8.56503 8.56503i 0.357809 0.357809i
\(574\) 0.332763 2.36109i 0.0138892 0.0985502i
\(575\) 9.12735 + 0.771057i 0.380637 + 0.0321553i
\(576\) −16.1124 17.9785i −0.671350 0.749103i
\(577\) −25.1465 25.1465i −1.04686 1.04686i −0.998847 0.0480152i \(-0.984710\pi\)
−0.0480152 0.998847i \(-0.515290\pi\)
\(578\) 14.2652 + 18.9458i 0.593355 + 0.788043i
\(579\) 22.5169 0.935768
\(580\) 18.6555 1.31802i 0.774627 0.0547276i
\(581\) 8.57659 0.355817
\(582\) 28.7910 + 38.2377i 1.19342 + 1.58500i
\(583\) 1.08521 + 1.08521i 0.0449449 + 0.0449449i
\(584\) 21.5079 + 9.60587i 0.890001 + 0.397494i
\(585\) −7.00245 3.25257i −0.289516 0.134477i
\(586\) 0.691960 4.90975i 0.0285846 0.202820i
\(587\) 22.4571 22.4571i 0.926902 0.926902i −0.0706023 0.997505i \(-0.522492\pi\)
0.997505 + 0.0706023i \(0.0224921\pi\)
\(588\) 9.87455 + 17.8467i 0.407219 + 0.735987i
\(589\) 23.9556i 0.987071i
\(590\) 9.36453 14.4551i 0.385532 0.595108i
\(591\) 28.5938i 1.17619i
\(592\) −5.81969 25.3872i −0.239188 1.04341i
\(593\) −31.1826 + 31.1826i −1.28051 + 1.28051i −0.340140 + 0.940375i \(0.610475\pi\)
−0.940375 + 0.340140i \(0.889525\pi\)
\(594\) 0.245570 + 0.0346095i 0.0100758 + 0.00142005i
\(595\) 1.69946 0.621429i 0.0696709 0.0254761i
\(596\) −31.4974 9.05815i −1.29019 0.371036i
\(597\) −5.47320 5.47320i −0.224003 0.224003i
\(598\) 2.36817 1.78311i 0.0968419 0.0729168i
\(599\) 36.9215 1.50857 0.754286 0.656546i \(-0.227983\pi\)
0.754286 + 0.656546i \(0.227983\pi\)
\(600\) 9.62339 + 33.3308i 0.392873 + 1.36072i
\(601\) −19.1488 −0.781098 −0.390549 0.920582i \(-0.627715\pi\)
−0.390549 + 0.920582i \(0.627715\pi\)
\(602\) −1.11061 + 0.836231i −0.0452651 + 0.0340822i
\(603\) 28.1232 + 28.1232i 1.14527 + 1.14527i
\(604\) 25.1324 + 7.22766i 1.02262 + 0.294089i
\(605\) −10.9749 + 4.01312i −0.446193 + 0.163156i
\(606\) 1.61863 + 0.228123i 0.0657524 + 0.00926686i
\(607\) −7.79352 + 7.79352i −0.316329 + 0.316329i −0.847355 0.531026i \(-0.821807\pi\)
0.531026 + 0.847355i \(0.321807\pi\)
\(608\) −23.7086 + 2.02799i −0.961511 + 0.0822458i
\(609\) 17.2965i 0.700890i
\(610\) −1.25481 + 1.93693i −0.0508059 + 0.0784241i
\(611\) 13.1964i 0.533871i
\(612\) −1.40244 2.53469i −0.0566901 0.102459i
\(613\) 14.3260 14.3260i 0.578621 0.578621i −0.355902 0.934523i \(-0.615826\pi\)
0.934523 + 0.355902i \(0.115826\pi\)
\(614\) 1.24337 8.82224i 0.0501783 0.356037i
\(615\) 4.97485 + 2.31076i 0.200605 + 0.0931790i
\(616\) 7.83365 17.5398i 0.315627 0.706699i
\(617\) 16.0568 + 16.0568i 0.646423 + 0.646423i 0.952127 0.305703i \(-0.0988916\pi\)
−0.305703 + 0.952127i \(0.598892\pi\)
\(618\) −40.1740 53.3557i −1.61604 2.14628i
\(619\) −13.0984 −0.526468 −0.263234 0.964732i \(-0.584789\pi\)
−0.263234 + 0.964732i \(0.584789\pi\)
\(620\) 25.4054 1.79490i 1.02031 0.0720849i
\(621\) −0.0797525 −0.00320036
\(622\) −4.06630 5.40052i −0.163044 0.216541i
\(623\) 8.34131 + 8.34131i 0.334188 + 0.334188i
\(624\) 9.51220 + 5.96439i 0.380793 + 0.238767i
\(625\) 4.19395 24.6457i 0.167758 0.985828i
\(626\) 0.983148 6.97586i 0.0392945 0.278811i
\(627\) 29.3915 29.3915i 1.17378 1.17378i
\(628\) 28.8121 15.9416i 1.14973 0.636141i
\(629\) 3.12523i 0.124611i
\(630\) 15.7345 3.36269i 0.626879 0.133973i
\(631\) 28.9292i 1.15165i −0.817572 0.575826i \(-0.804680\pi\)
0.817572 0.575826i \(-0.195320\pi\)
\(632\) −14.0896 36.8326i −0.560455 1.46512i
\(633\) 21.1808 21.1808i 0.841861 0.841861i
\(634\) 39.9885 + 5.63581i 1.58815 + 0.223827i
\(635\) −12.7089 + 27.3610i −0.504337 + 1.08579i
\(636\) 0.516632 1.79646i 0.0204858 0.0712342i
\(637\) −3.36354 3.36354i −0.133268 0.133268i
\(638\) 19.0313 14.3296i 0.753456 0.567312i
\(639\) −4.74537 −0.187724
\(640\) −3.92712 24.9916i −0.155233 0.987878i
\(641\) −6.06791 −0.239668 −0.119834 0.992794i \(-0.538236\pi\)
−0.119834 + 0.992794i \(0.538236\pi\)
\(642\) 12.1145 9.12155i 0.478120 0.359999i
\(643\) −27.8619 27.8619i −1.09877 1.09877i −0.994555 0.104210i \(-0.966768\pi\)
−0.104210 0.994555i \(-0.533232\pi\)
\(644\) −1.70737 + 5.93694i −0.0672797 + 0.233948i
\(645\) −1.09833 3.00368i −0.0432469 0.118270i
\(646\) −2.82725 0.398461i −0.111237 0.0156772i
\(647\) −2.65043 + 2.65043i −0.104199 + 0.104199i −0.757284 0.653085i \(-0.773474\pi\)
0.653085 + 0.757284i \(0.273474\pi\)
\(648\) 9.04083 + 23.6342i 0.355157 + 0.928438i
\(649\) 21.9394i 0.861195i
\(650\) −4.30529 6.85018i −0.168867 0.268686i
\(651\) 23.5547i 0.923183i
\(652\) 7.79157 4.31105i 0.305141 0.168834i
\(653\) 20.0573 20.0573i 0.784903 0.784903i −0.195751 0.980654i \(-0.562714\pi\)
0.980654 + 0.195751i \(0.0627144\pi\)
\(654\) −6.91612 + 49.0729i −0.270442 + 1.91890i
\(655\) −15.3201 41.8966i −0.598604 1.63704i
\(656\) −3.38891 2.12493i −0.132315 0.0829645i
\(657\) 17.7711 + 17.7711i 0.693317 + 0.693317i
\(658\) −16.5415 21.9690i −0.644856 0.856443i
\(659\) −12.2990 −0.479101 −0.239550 0.970884i \(-0.577000\pi\)
−0.239550 + 0.970884i \(0.577000\pi\)
\(660\) 33.3725 + 28.9681i 1.29902 + 1.12758i
\(661\) 4.67919 0.181999 0.0909997 0.995851i \(-0.470994\pi\)
0.0909997 + 0.995851i \(0.470994\pi\)
\(662\) −14.9851 19.9020i −0.582414 0.773513i
\(663\) 0.952606 + 0.952606i 0.0369961 + 0.0369961i
\(664\) 5.86726 13.1370i 0.227694 0.509814i
\(665\) 6.68070 14.3829i 0.259066 0.557744i
\(666\) 3.87814 27.5171i 0.150275 1.06627i
\(667\) −5.41722 + 5.41722i −0.209756 + 0.209756i
\(668\) 1.43240 + 2.58884i 0.0554211 + 0.100165i
\(669\) 35.3362i 1.36617i
\(670\) 8.71028 + 40.7567i 0.336507 + 1.57457i
\(671\) 2.93979i 0.113489i
\(672\) −23.3119 + 1.99406i −0.899277 + 0.0769224i
\(673\) 0.936252 0.936252i 0.0360899 0.0360899i −0.688832 0.724921i \(-0.741876\pi\)
0.724921 + 0.688832i \(0.241876\pi\)
\(674\) −44.0116 6.20280i −1.69526 0.238923i
\(675\) −0.0183229 + 0.216896i −0.000705247 + 0.00834833i
\(676\) 22.4708 + 6.46224i 0.864262 + 0.248548i
\(677\) 23.9486 + 23.9486i 0.920421 + 0.920421i 0.997059 0.0766377i \(-0.0244185\pi\)
−0.0766377 + 0.997059i \(0.524418\pi\)
\(678\) −10.8078 + 8.13768i −0.415070 + 0.312526i
\(679\) 23.2623 0.892727
\(680\) 0.210741 3.02822i 0.00808156 0.116127i
\(681\) 65.4479 2.50797
\(682\) 25.9172 19.5143i 0.992420 0.747240i
\(683\) −7.26579 7.26579i −0.278018 0.278018i 0.554300 0.832317i \(-0.312986\pi\)
−0.832317 + 0.554300i \(0.812986\pi\)
\(684\) −24.3990 7.01675i −0.932919 0.268292i
\(685\) −28.6533 13.3092i −1.09479 0.508517i
\(686\) 26.3433 + 3.71272i 1.00579 + 0.141752i
\(687\) −25.2147 + 25.2147i −0.961999 + 0.961999i
\(688\) 0.521106 + 2.27322i 0.0198670 + 0.0866656i
\(689\) 0.435943i 0.0166081i
\(690\) −11.9272 7.72686i −0.454061 0.294157i
\(691\) 26.3604i 1.00280i 0.865217 + 0.501398i \(0.167181\pi\)
−0.865217 + 0.501398i \(0.832819\pi\)
\(692\) −11.8157 21.3550i −0.449165 0.811796i
\(693\) 14.4925 14.4925i 0.550523 0.550523i
\(694\) 6.51029 46.1933i 0.247127 1.75347i
\(695\) 10.1299 3.70414i 0.384250 0.140506i
\(696\) −26.4935 11.8326i −1.00423 0.448513i
\(697\) −0.339384 0.339384i −0.0128551 0.0128551i
\(698\) −6.66707 8.85464i −0.252352 0.335153i
\(699\) −72.8791 −2.75654
\(700\) 15.7539 + 6.00737i 0.595443 + 0.227057i
\(701\) 15.9649 0.602986 0.301493 0.953468i \(-0.402515\pi\)
0.301493 + 0.953468i \(0.402515\pi\)
\(702\) 0.0423726 + 0.0562757i 0.00159925 + 0.00212399i
\(703\) −19.3676 19.3676i −0.730461 0.730461i
\(704\) −21.5071 23.9980i −0.810581 0.904459i
\(705\) 59.4159 21.7262i 2.23773 0.818257i
\(706\) −5.88990 + 41.7914i −0.221669 + 1.57284i
\(707\) 0.561747 0.561747i 0.0211267 0.0211267i
\(708\) −23.3814 + 12.9369i −0.878728 + 0.486198i
\(709\) 35.8367i 1.34587i 0.739700 + 0.672937i \(0.234967\pi\)
−0.739700 + 0.672937i \(0.765033\pi\)
\(710\) −4.17341 2.70368i −0.156625 0.101467i
\(711\) 42.0750i 1.57794i
\(712\) 18.4829 7.07030i 0.692676 0.264971i
\(713\) −7.37727 + 7.37727i −0.276281 + 0.276281i
\(714\) −2.77995 0.391794i −0.104037 0.0146625i
\(715\) −9.34701 4.34159i −0.349558 0.162366i
\(716\) −4.21279 + 14.6489i −0.157439 + 0.547456i
\(717\) 30.0781 + 30.0781i 1.12329 + 1.12329i
\(718\) −11.4336 + 8.60892i −0.426699 + 0.321282i
\(719\) −38.4310 −1.43324 −0.716618 0.697466i \(-0.754311\pi\)
−0.716618 + 0.697466i \(0.754311\pi\)
\(720\) 5.61330 26.4014i 0.209195 0.983922i
\(721\) −32.4596 −1.20886
\(722\) 1.47538 1.11088i 0.0549079 0.0413427i
\(723\) 46.6192 + 46.6192i 1.73379 + 1.73379i
\(724\) 0.469259 1.63173i 0.0174399 0.0606428i
\(725\) 13.4882 + 15.9773i 0.500937 + 0.593383i
\(726\) 17.9526 + 2.53016i 0.666283 + 0.0939031i
\(727\) 6.57510 6.57510i 0.243857 0.243857i −0.574587 0.818444i \(-0.694837\pi\)
0.818444 + 0.574587i \(0.194837\pi\)
\(728\) 5.09641 1.94954i 0.188885 0.0722547i
\(729\) 27.3185i 1.01180i
\(730\) 5.50404 + 25.7542i 0.203714 + 0.953207i
\(731\) 0.279839i 0.0103502i
\(732\) 3.13303 1.73349i 0.115800 0.0640718i
\(733\) −22.4799 + 22.4799i −0.830315 + 0.830315i −0.987560 0.157245i \(-0.949739\pi\)
0.157245 + 0.987560i \(0.449739\pi\)
\(734\) −6.36514 + 45.1634i −0.234942 + 1.66701i
\(735\) −9.60643 + 20.6817i −0.354338 + 0.762856i
\(736\) 7.92575 + 6.67669i 0.292147 + 0.246106i
\(737\) 37.5394 + 37.5394i 1.38278 + 1.38278i
\(738\) −2.56707 3.40936i −0.0944951 0.125500i
\(739\) −27.7449 −1.02061 −0.510307 0.859992i \(-0.670468\pi\)
−0.510307 + 0.859992i \(0.670468\pi\)
\(740\) 19.0886 21.9909i 0.701710 0.808400i
\(741\) 11.8069 0.433737
\(742\) −0.546448 0.725745i −0.0200607 0.0266430i
\(743\) 9.61246 + 9.61246i 0.352647 + 0.352647i 0.861094 0.508447i \(-0.169780\pi\)
−0.508447 + 0.861094i \(0.669780\pi\)
\(744\) −36.0794 16.1138i −1.32273 0.590762i
\(745\) −12.5839 34.4139i −0.461039 1.26083i
\(746\) −1.92359 + 13.6487i −0.0704275 + 0.499714i
\(747\) 10.8546 10.8546i 0.397148 0.397148i
\(748\) −1.87200 3.38335i −0.0684471 0.123708i
\(749\) 7.36998i 0.269293i
\(750\) −23.7543 + 30.6622i −0.867385 + 1.11962i
\(751\) 33.9677i 1.23950i 0.784799 + 0.619750i \(0.212766\pi\)
−0.784799 + 0.619750i \(0.787234\pi\)
\(752\) −44.9666 + 10.3080i −1.63976 + 0.375895i
\(753\) 31.7406 31.7406i 1.15669 1.15669i
\(754\) 6.70072 + 0.944371i 0.244026 + 0.0343920i
\(755\) 10.0409 + 27.4595i 0.365427 + 0.999353i
\(756\) −0.141081 0.0405727i −0.00513108 0.00147562i
\(757\) 13.2933 + 13.2933i 0.483154 + 0.483154i 0.906138 0.422983i \(-0.139017\pi\)
−0.422983 + 0.906138i \(0.639017\pi\)
\(758\) 32.3192 24.3347i 1.17389 0.883874i
\(759\) −18.1026 −0.657083
\(760\) −17.4604 20.0724i −0.633354 0.728101i
\(761\) 36.5509 1.32497 0.662485 0.749075i \(-0.269502\pi\)
0.662485 + 0.749075i \(0.269502\pi\)
\(762\) 37.3918 28.1541i 1.35456 1.01991i
\(763\) 17.0308 + 17.0308i 0.616556 + 0.616556i
\(764\) −9.49078 2.72939i −0.343364 0.0987460i
\(765\) 1.36436 2.93733i 0.0493284 0.106199i
\(766\) 10.2735 + 1.44791i 0.371198 + 0.0523150i
\(767\) 4.40665 4.40665i 0.159115 0.159115i
\(768\) −12.8934 + 37.0716i −0.465250 + 1.33771i
\(769\) 30.4508i 1.09808i 0.835794 + 0.549042i \(0.185007\pi\)
−0.835794 + 0.549042i \(0.814993\pi\)
\(770\) 21.0028 4.48858i 0.756887 0.161757i
\(771\) 22.9138i 0.825221i
\(772\) −8.88760 16.0630i −0.319872 0.578120i
\(773\) −25.5875 + 25.5875i −0.920320 + 0.920320i −0.997052 0.0767318i \(-0.975551\pi\)
0.0767318 + 0.997052i \(0.475551\pi\)
\(774\) −0.347256 + 2.46393i −0.0124819 + 0.0885643i
\(775\) 18.3684 + 21.7582i 0.659813 + 0.781579i
\(776\) 15.9138 35.6315i 0.571272 1.27910i
\(777\) −19.0435 19.0435i −0.683182 0.683182i
\(778\) −10.1701 13.5070i −0.364615 0.484251i
\(779\) −4.20643 −0.150711
\(780\) 0.884647 + 12.5215i 0.0316754 + 0.448341i
\(781\) −6.33422 −0.226656
\(782\) 0.747963 + 0.993380i 0.0267471 + 0.0355232i
\(783\) −0.128731 0.128731i −0.00460047 0.00460047i
\(784\) 8.83386 14.0885i 0.315495 0.503162i
\(785\) 33.3889 + 15.5088i 1.19170 + 0.553533i
\(786\) −9.65889 + 68.5340i −0.344521 + 2.44453i
\(787\) 20.4444 20.4444i 0.728764 0.728764i −0.241609 0.970374i \(-0.577675\pi\)
0.970374 + 0.241609i \(0.0776753\pi\)
\(788\) −20.3981 + 11.2862i −0.726653 + 0.402055i
\(789\) 31.1631i 1.10944i
\(790\) 23.9723 37.0037i 0.852895 1.31653i
\(791\) 6.57504i 0.233781i
\(792\) −12.2842 32.1128i −0.436499 1.14108i
\(793\) −0.590475 + 0.590475i −0.0209684 + 0.0209684i
\(794\) −27.6964 3.90342i −0.982910 0.138527i
\(795\) 1.96280 0.717724i 0.0696133 0.0254551i
\(796\) −1.74413 + 6.06477i −0.0618190 + 0.214960i
\(797\) 7.81866 + 7.81866i 0.276951 + 0.276951i 0.831891 0.554940i \(-0.187259\pi\)
−0.554940 + 0.831891i \(0.687259\pi\)
\(798\) −19.6558 + 14.7998i −0.695807 + 0.523906i
\(799\) −5.53552 −0.195833
\(800\) 19.9789 20.0210i 0.706362 0.707851i
\(801\) 21.1136 0.746014
\(802\) −14.6841 + 11.0564i −0.518514 + 0.390413i
\(803\) 23.7212 + 23.7212i 0.837104 + 0.837104i
\(804\) 17.8712 62.1425i 0.630268 2.19160i
\(805\) −6.48667 + 2.37194i −0.228625 + 0.0835999i
\(806\) 9.12517 + 1.28606i 0.321420 + 0.0452996i
\(807\) 1.40010 1.40010i 0.0492858 0.0492858i
\(808\) −0.476151 1.24473i −0.0167509 0.0437896i
\(809\) 15.2368i 0.535698i −0.963461 0.267849i \(-0.913687\pi\)
0.963461 0.267849i \(-0.0863129\pi\)
\(810\) −15.3822 + 23.7440i −0.540475 + 0.834279i
\(811\) 13.6670i 0.479912i 0.970784 + 0.239956i \(0.0771330\pi\)
−0.970784 + 0.239956i \(0.922867\pi\)
\(812\) −12.3389 + 6.82709i −0.433011 + 0.239584i
\(813\) 5.72065 5.72065i 0.200632 0.200632i
\(814\) 5.17662 36.7304i 0.181440 1.28740i
\(815\) 9.02926 + 4.19400i 0.316281 + 0.146909i
\(816\) −2.50189 + 3.99009i −0.0875836 + 0.139681i
\(817\) 1.73421 + 1.73421i 0.0606723 + 0.0606723i
\(818\) −4.22148 5.60660i −0.147600 0.196030i
\(819\) 5.82179 0.203430
\(820\) −0.315172 4.46102i −0.0110063 0.155785i
\(821\) −28.7443 −1.00318 −0.501591 0.865105i \(-0.667252\pi\)
−0.501591 + 0.865105i \(0.667252\pi\)
\(822\) 29.4838 + 39.1579i 1.02837 + 1.36579i
\(823\) −7.37471 7.37471i −0.257066 0.257066i 0.566794 0.823860i \(-0.308184\pi\)
−0.823860 + 0.566794i \(0.808184\pi\)
\(824\) −22.2056 + 49.7191i −0.773570 + 1.73205i
\(825\) −4.15901 + 49.2321i −0.144798 + 1.71404i
\(826\) −1.81240 + 12.8597i −0.0630613 + 0.447447i
\(827\) 16.1240 16.1240i 0.560686 0.560686i −0.368817 0.929502i \(-0.620237\pi\)
0.929502 + 0.368817i \(0.120237\pi\)
\(828\) 5.35298 + 9.67469i 0.186029 + 0.336219i
\(829\) 49.1497i 1.70704i 0.521060 + 0.853520i \(0.325537\pi\)
−0.521060 + 0.853520i \(0.674463\pi\)
\(830\) 15.7307 3.36187i 0.546020 0.116692i
\(831\) 70.8199i 2.45672i
\(832\) 0.500303 9.13998i 0.0173449 0.316872i
\(833\) 1.41091 1.41091i 0.0488850 0.0488850i
\(834\) −16.5704 2.33536i −0.573786 0.0808670i
\(835\) −1.39350 + 3.00008i −0.0482242 + 0.103822i
\(836\) −32.5682 9.36610i −1.12640 0.323933i
\(837\) −0.175308 0.175308i −0.00605954 0.00605954i
\(838\) 22.0021 16.5664i 0.760051 0.572278i
\(839\) −17.6328 −0.608751 −0.304376 0.952552i \(-0.598448\pi\)
−0.304376 + 0.952552i \(0.598448\pi\)
\(840\) −17.1682 19.7365i −0.592360 0.680974i
\(841\) 11.5118 0.396958
\(842\) 40.5298 30.5168i 1.39675 1.05168i
\(843\) 7.89263 + 7.89263i 0.271837 + 0.271837i
\(844\) −23.4701 6.74962i −0.807874 0.232332i
\(845\) 8.97759 + 24.5515i 0.308838 + 0.844597i
\(846\) −48.7392 6.86910i −1.67569 0.236164i
\(847\) 6.23046 6.23046i 0.214081 0.214081i
\(848\) −1.48547 + 0.340525i −0.0510112 + 0.0116937i
\(849\) 6.34833i 0.217874i
\(850\) 2.87345 1.80594i 0.0985586 0.0619434i
\(851\) 11.9287i 0.408912i
\(852\) 3.73507 + 6.75057i 0.127961 + 0.231271i
\(853\) −21.5659 + 21.5659i −0.738403 + 0.738403i −0.972269 0.233866i \(-0.924862\pi\)
0.233866 + 0.972269i \(0.424862\pi\)
\(854\) 0.242854 1.72316i 0.00831030 0.0589652i
\(855\) −9.74793 26.6582i −0.333372 0.911691i
\(856\) −11.2888 5.04181i −0.385843 0.172326i
\(857\) −29.2248 29.2248i −0.998302 0.998302i 0.00169682 0.999999i \(-0.499460\pi\)
−0.999999 + 0.00169682i \(0.999460\pi\)
\(858\) 9.61793 + 12.7737i 0.328351 + 0.436087i
\(859\) −21.4596 −0.732191 −0.366095 0.930577i \(-0.619306\pi\)
−0.366095 + 0.930577i \(0.619306\pi\)
\(860\) −1.70923 + 1.96910i −0.0582842 + 0.0671459i
\(861\) −4.13605 −0.140956
\(862\) −17.1294 22.7498i −0.583431 0.774863i
\(863\) 15.8786 + 15.8786i 0.540514 + 0.540514i 0.923680 0.383166i \(-0.125166\pi\)
−0.383166 + 0.923680i \(0.625166\pi\)
\(864\) −0.158660 + 0.188342i −0.00539773 + 0.00640753i
\(865\) 11.4949 24.7473i 0.390837 0.841433i
\(866\) −0.764029 + 5.42111i −0.0259628 + 0.184217i
\(867\) 29.0888 29.0888i 0.987907 0.987907i
\(868\) −16.8034 + 9.29726i −0.570344 + 0.315570i
\(869\) 56.1626i 1.90518i
\(870\) −6.77992 31.7243i −0.229861 1.07555i
\(871\) 15.0800i 0.510967i
\(872\) 37.7373 14.4357i 1.27795 0.488855i
\(873\) 29.4410 29.4410i 0.996426 0.996426i
\(874\) 10.7914 + 1.52089i 0.365024 + 0.0514449i
\(875\) 4.96047 + 18.1862i 0.167694 + 0.614805i
\(876\) 11.2928 39.2680i 0.381550 1.32674i
\(877\) 17.9936 + 17.9936i 0.607601 + 0.607601i 0.942319 0.334717i \(-0.108641\pi\)
−0.334717 + 0.942319i \(0.608641\pi\)
\(878\) 24.9164 18.7607i 0.840888 0.633145i
\(879\) −8.60067 −0.290094
\(880\) 7.49274 35.2411i 0.252580 1.18798i
\(881\) −5.90202 −0.198844 −0.0994221 0.995045i \(-0.531699\pi\)
−0.0994221 + 0.995045i \(0.531699\pi\)
\(882\) 14.1736 10.6720i 0.477249 0.359343i
\(883\) −17.8376 17.8376i −0.600283 0.600283i 0.340105 0.940387i \(-0.389537\pi\)
−0.940387 + 0.340105i \(0.889537\pi\)
\(884\) 0.303564 1.05557i 0.0102100 0.0355026i
\(885\) −27.0956 12.5856i −0.910808 0.423061i
\(886\) −38.0244 5.35900i −1.27746 0.180039i
\(887\) 3.93049 3.93049i 0.131973 0.131973i −0.638035 0.770008i \(-0.720252\pi\)
0.770008 + 0.638035i \(0.220252\pi\)
\(888\) −42.1971 + 16.1417i −1.41604 + 0.541681i
\(889\) 22.7477i 0.762935i
\(890\) 18.5688 + 12.0295i 0.622427 + 0.403230i
\(891\) 36.0376i 1.20730i
\(892\) −25.2080 + 13.9475i −0.844025 + 0.466997i
\(893\) −34.3045 + 34.3045i −1.14796 + 1.14796i
\(894\) −7.93382 + 56.2939i −0.265347 + 1.88275i
\(895\) −16.0053 + 5.85257i −0.534999 + 0.195630i
\(896\) 10.6239 + 15.8431i 0.354921 + 0.529281i
\(897\) −3.63601 3.63601i −0.121403 0.121403i
\(898\) 18.4245 + 24.4699i 0.614835 + 0.816571i
\(899\) −23.8158 −0.794301
\(900\) 27.5412 12.3353i 0.918041 0.411177i
\(901\) −0.182865 −0.00609213
\(902\) −3.42657 4.55088i −0.114092 0.151528i
\(903\) 1.70519 + 1.70519i 0.0567452 + 0.0567452i
\(904\) 10.0712 + 4.49799i 0.334962 + 0.149601i
\(905\) 1.78282 0.651912i 0.0592629 0.0216703i
\(906\) 6.33054 44.9179i 0.210318 1.49230i
\(907\) −40.0074 + 40.0074i −1.32842 + 1.32842i −0.421678 + 0.906745i \(0.638559\pi\)
−0.906745 + 0.421678i \(0.861441\pi\)
\(908\) −25.8329 46.6890i −0.857294 1.54943i
\(909\) 1.42190i 0.0471615i
\(910\) 5.12009 + 3.31697i 0.169729 + 0.109956i
\(911\) 38.8693i 1.28780i −0.765110 0.643899i \(-0.777316\pi\)
0.765110 0.643899i \(-0.222684\pi\)
\(912\) 9.22263 + 40.2318i 0.305392 + 1.33221i
\(913\) 14.4889 14.4889i 0.479513 0.479513i
\(914\) −19.1103 2.69333i −0.632113 0.0890873i
\(915\) 3.63071 + 1.68643i 0.120027 + 0.0557515i
\(916\) 27.9400 + 8.03509i 0.923163 + 0.265487i
\(917\) 23.7848 + 23.7848i 0.785442 + 0.785442i
\(918\) −0.0236060 + 0.0177741i −0.000779114 + 0.000586632i
\(919\) 39.1154 1.29030 0.645149 0.764057i \(-0.276795\pi\)
0.645149 + 0.764057i \(0.276795\pi\)
\(920\) −0.804381 + 11.5584i −0.0265196 + 0.381071i
\(921\) −15.4544 −0.509240
\(922\) 23.2126 17.4778i 0.764465 0.575602i
\(923\) −1.27226 1.27226i −0.0418771 0.0418771i
\(924\) −32.0233 9.20939i −1.05349 0.302967i
\(925\) 32.4416 + 2.74059i 1.06667 + 0.0901100i
\(926\) 49.1790 + 6.93108i 1.61612 + 0.227769i
\(927\) −41.0810 + 41.0810i −1.34928 + 1.34928i
\(928\) 2.01615 + 23.5703i 0.0661835 + 0.773732i
\(929\) 47.6946i 1.56481i 0.622771 + 0.782404i \(0.286007\pi\)
−0.622771 + 0.782404i \(0.713993\pi\)
\(930\) −9.23303 43.2027i −0.302763 1.41667i
\(931\) 17.4872i 0.573120i
\(932\) 28.7660 + 51.9902i 0.942262 + 1.70300i
\(933\) −8.29177 + 8.29177i −0.271460 + 0.271460i
\(934\) −4.26102 + 30.2338i −0.139425 + 0.989280i
\(935\) 1.82117 3.92080i 0.0595586 0.128224i
\(936\) 3.98270 8.91739i 0.130178 0.291474i
\(937\) 26.6067 + 26.6067i 0.869204 + 0.869204i 0.992384 0.123180i \(-0.0393094\pi\)
−0.123180 + 0.992384i \(0.539309\pi\)
\(938\) −18.9026 25.1048i −0.617191 0.819700i
\(939\) −12.2200 −0.398784
\(940\) −38.9510 33.8104i −1.27044 1.10277i
\(941\) −41.7503 −1.36102 −0.680511 0.732738i \(-0.738242\pi\)
−0.680511 + 0.732738i \(0.738242\pi\)
\(942\) −34.3567 45.6296i −1.11940 1.48669i
\(943\) 1.29540 + 1.29540i 0.0421840 + 0.0421840i
\(944\) 18.4577 + 11.5735i 0.600748 + 0.376684i
\(945\) −0.0563651 0.154145i −0.00183356 0.00501433i
\(946\) −0.463524 + 3.28891i −0.0150705 + 0.106932i
\(947\) −18.8783 + 18.8783i −0.613463 + 0.613463i −0.943847 0.330384i \(-0.892822\pi\)
0.330384 + 0.943847i \(0.392822\pi\)
\(948\) −59.8541 + 33.1171i −1.94397 + 1.07559i
\(949\) 9.52910i 0.309328i
\(950\) 6.61552 28.9990i 0.214636 0.940850i
\(951\) 70.0500i 2.27153i
\(952\) 0.817774 + 2.13779i 0.0265042 + 0.0692863i
\(953\) 8.80988 8.80988i 0.285380 0.285380i −0.549870 0.835250i \(-0.685323\pi\)
0.835250 + 0.549870i \(0.185323\pi\)
\(954\) −1.61010 0.226920i −0.0521288 0.00734681i
\(955\) −3.79178 10.3696i −0.122699 0.335552i
\(956\) 9.58492 33.3291i 0.309998 1.07794i
\(957\) −29.2200 29.2200i −0.944548 0.944548i
\(958\) 5.43295 4.09072i 0.175531 0.132165i
\(959\) 23.8222 0.769258
\(960\) −41.9757 + 12.7952i −1.35476 + 0.412964i
\(961\) −1.43278 −0.0462187
\(962\) 8.41726 6.33775i 0.271383 0.204337i
\(963\) −9.32749 9.32749i −0.300574 0.300574i
\(964\) 14.8560 51.6581i 0.478480 1.66379i
\(965\) 8.64628 18.6146i 0.278334 0.599225i
\(966\) 10.6108 + 1.49544i 0.341397 + 0.0481151i
\(967\) −9.32272 + 9.32272i −0.299799 + 0.299799i −0.840935 0.541136i \(-0.817994\pi\)
0.541136 + 0.840935i \(0.317994\pi\)
\(968\) −5.28109 13.8056i −0.169741 0.443730i
\(969\) 4.95265i 0.159102i
\(970\) 42.6664 9.11842i 1.36994 0.292775i
\(971\) 41.5696i 1.33403i 0.745043 + 0.667016i \(0.232429\pi\)
−0.745043 + 0.667016i \(0.767571\pi\)
\(972\) 38.6349 21.3766i 1.23921 0.685654i
\(973\) −5.75077 + 5.75077i −0.184361 + 0.184361i
\(974\) 1.15600 8.20232i 0.0370406 0.262819i
\(975\) −10.7239 + 9.05319i −0.343440 + 0.289934i
\(976\) −2.47327 1.55080i −0.0791673 0.0496399i
\(977\) −16.1348 16.1348i −0.516197 0.516197i 0.400222 0.916418i \(-0.368933\pi\)
−0.916418 + 0.400222i \(0.868933\pi\)
\(978\) −9.29097 12.3395i −0.297092 0.394573i
\(979\) 28.1829 0.900729
\(980\) 18.5456 1.31025i 0.592416 0.0418544i
\(981\) 43.1085 1.37635
\(982\) 30.7239 + 40.8048i 0.980438 + 1.30213i
\(983\) 1.26930 + 1.26930i 0.0404842 + 0.0404842i 0.727059 0.686575i \(-0.240887\pi\)
−0.686575 + 0.727059i \(0.740887\pi\)
\(984\) −2.82948 + 6.33530i −0.0902005 + 0.201962i
\(985\) −23.6384 10.9798i −0.753181 0.349845i
\(986\) −0.396136 + 2.81076i −0.0126155 + 0.0895127i
\(987\) −33.7305 + 33.7305i −1.07365 + 1.07365i
\(988\) −4.66029 8.42276i −0.148264 0.267964i
\(989\) 1.06812i 0.0339643i
\(990\) 20.9004 32.2620i 0.664260 1.02535i
\(991\) 42.1399i 1.33862i 0.742985 + 0.669308i \(0.233410\pi\)
−0.742985 + 0.669308i \(0.766590\pi\)
\(992\) 2.74564 + 32.0984i 0.0871741 + 1.01913i
\(993\) −30.5568 + 30.5568i −0.969691 + 0.969691i
\(994\) 3.71279 + 0.523265i 0.117763 + 0.0165970i
\(995\) −6.62633 + 2.42301i −0.210069 + 0.0768145i
\(996\) −23.9849 6.89766i −0.759990 0.218561i
\(997\) 31.3866 + 31.3866i 0.994023 + 0.994023i 0.999982 0.00595958i \(-0.00189701\pi\)
−0.00595958 + 0.999982i \(0.501897\pi\)
\(998\) −22.1602 + 16.6855i −0.701469 + 0.528169i
\(999\) −0.283466 −0.00896847
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 820.2.k.c.247.11 yes 108
4.3 odd 2 inner 820.2.k.c.247.38 yes 108
5.3 odd 4 inner 820.2.k.c.83.38 yes 108
20.3 even 4 inner 820.2.k.c.83.11 108
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
820.2.k.c.83.11 108 20.3 even 4 inner
820.2.k.c.83.38 yes 108 5.3 odd 4 inner
820.2.k.c.247.11 yes 108 1.1 even 1 trivial
820.2.k.c.247.38 yes 108 4.3 odd 2 inner