Properties

Label 820.2.k
Level $820$
Weight $2$
Character orbit 820.k
Rep. character $\chi_{820}(83,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $240$
Newform subspaces $4$
Sturm bound $252$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 820 = 2^{2} \cdot 5 \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 820.k (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 20 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 4 \)
Sturm bound: \(252\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(820, [\chi])\).

Total New Old
Modular forms 260 240 20
Cusp forms 244 240 4
Eisenstein series 16 0 16

Trace form

\( 240 q - 8 q^{6} + 8 q^{16} + 28 q^{18} + 20 q^{20} + 20 q^{22} - 16 q^{26} - 32 q^{28} + 20 q^{32} + 16 q^{33} - 20 q^{40} - 8 q^{46} + 8 q^{48} - 16 q^{50} - 36 q^{52} - 48 q^{53} - 64 q^{56} - 32 q^{57}+ \cdots - 20 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(820, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
820.2.k.a 820.k 20.e $4$ $6.548$ \(\Q(i, \sqrt{5})\) None 820.2.k.a \(-4\) \(0\) \(-8\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q+(-1+\beta _{1})q^{2}-\beta _{3}q^{3}-2\beta _{1}q^{4}+\cdots\)
820.2.k.b 820.k 20.e $8$ $6.548$ 8.0.\(\cdots\).8 None 820.2.k.b \(-8\) \(0\) \(8\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q+(-1-\beta _{2})q^{2}+\beta _{1}q^{3}+2\beta _{2}q^{4}+\cdots\)
820.2.k.c 820.k 20.e $108$ $6.548$ None 820.2.k.c \(12\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$
820.2.k.d 820.k 20.e $120$ $6.548$ None 820.2.k.d \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$

Decomposition of \(S_{2}^{\mathrm{old}}(820, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(820, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(20, [\chi])\)\(^{\oplus 2}\)