Defining parameters
Level: | \( N \) | \(=\) | \( 820 = 2^{2} \cdot 5 \cdot 41 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 820.k (of order \(4\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 20 \) |
Character field: | \(\Q(i)\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(252\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(820, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 260 | 240 | 20 |
Cusp forms | 244 | 240 | 4 |
Eisenstein series | 16 | 0 | 16 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(820, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
820.2.k.a | $4$ | $6.548$ | \(\Q(i, \sqrt{5})\) | None | \(-4\) | \(0\) | \(-8\) | \(0\) | \(q+(-1+\beta _{1})q^{2}-\beta _{3}q^{3}-2\beta _{1}q^{4}+\cdots\) |
820.2.k.b | $8$ | $6.548$ | 8.0.\(\cdots\).8 | None | \(-8\) | \(0\) | \(8\) | \(0\) | \(q+(-1-\beta _{2})q^{2}+\beta _{1}q^{3}+2\beta _{2}q^{4}+\cdots\) |
820.2.k.c | $108$ | $6.548$ | None | \(12\) | \(0\) | \(0\) | \(0\) | ||
820.2.k.d | $120$ | $6.548$ | None | \(0\) | \(0\) | \(0\) | \(0\) |
Decomposition of \(S_{2}^{\mathrm{old}}(820, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(820, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(20, [\chi])\)\(^{\oplus 2}\)