L(s) = 1 | + (−1.12 − 0.850i)2-s + (1.73 − 1.73i)3-s + (0.552 + 1.92i)4-s + (2.10 + 0.767i)5-s + (−3.43 + 0.484i)6-s + (−1.19 − 1.19i)7-s + (1.01 − 2.64i)8-s − 3.01i·9-s + (−1.71 − 2.65i)10-s − 4.02i·11-s + (4.29 + 2.37i)12-s + (−0.809 − 0.809i)13-s + (0.332 + 2.36i)14-s + (4.97 − 2.31i)15-s + (−3.38 + 2.12i)16-s + (−0.339 + 0.339i)17-s + ⋯ |
L(s) = 1 | + (−0.798 − 0.601i)2-s + (1.00 − 1.00i)3-s + (0.276 + 0.961i)4-s + (0.939 + 0.343i)5-s + (−1.40 + 0.197i)6-s + (−0.450 − 0.450i)7-s + (0.357 − 0.933i)8-s − 1.00i·9-s + (−0.543 − 0.839i)10-s − 1.21i·11-s + (1.23 + 0.685i)12-s + (−0.224 − 0.224i)13-s + (0.0889 + 0.631i)14-s + (1.28 − 0.596i)15-s + (−0.847 + 0.531i)16-s + (−0.0823 + 0.0823i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 820 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.584 + 0.811i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 820 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.584 + 0.811i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.708882 - 1.38404i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.708882 - 1.38404i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.12 + 0.850i)T \) |
| 5 | \( 1 + (-2.10 - 0.767i)T \) |
| 41 | \( 1 - T \) |
good | 3 | \( 1 + (-1.73 + 1.73i)T - 3iT^{2} \) |
| 7 | \( 1 + (1.19 + 1.19i)T + 7iT^{2} \) |
| 11 | \( 1 + 4.02iT - 11T^{2} \) |
| 13 | \( 1 + (0.809 + 0.809i)T + 13iT^{2} \) |
| 17 | \( 1 + (0.339 - 0.339i)T - 17iT^{2} \) |
| 19 | \( 1 + 4.20T + 19T^{2} \) |
| 23 | \( 1 + (-1.29 + 1.29i)T - 23iT^{2} \) |
| 29 | \( 1 + 4.18iT - 29T^{2} \) |
| 31 | \( 1 + 5.69iT - 31T^{2} \) |
| 37 | \( 1 + (-4.60 + 4.60i)T - 37iT^{2} \) |
| 43 | \( 1 + (0.412 - 0.412i)T - 43iT^{2} \) |
| 47 | \( 1 + (-8.15 - 8.15i)T + 47iT^{2} \) |
| 53 | \( 1 + (-0.269 - 0.269i)T + 53iT^{2} \) |
| 59 | \( 1 + 5.44T + 59T^{2} \) |
| 61 | \( 1 - 0.729T + 61T^{2} \) |
| 67 | \( 1 + (-9.31 - 9.31i)T + 67iT^{2} \) |
| 71 | \( 1 + 1.57iT - 71T^{2} \) |
| 73 | \( 1 + (-5.88 - 5.88i)T + 73iT^{2} \) |
| 79 | \( 1 + 13.9T + 79T^{2} \) |
| 83 | \( 1 + (3.59 - 3.59i)T - 83iT^{2} \) |
| 89 | \( 1 - 6.99iT - 89T^{2} \) |
| 97 | \( 1 + (9.75 - 9.75i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.818822940993404959075103646151, −9.051236713688374192013217572307, −8.347977679952194613192162715050, −7.57142020802499942975944791417, −6.72503480650282377320763538502, −5.95248729777663873313011858985, −3.95985515618478882272889933273, −2.83234307402179150479692215911, −2.25657171579917319201556060729, −0.891026530746769056787687856113,
1.83981367142285065798452332820, 2.80076920232169193056671078987, 4.42489633430785054914548974189, 5.17773993011667377656143513929, 6.31246559091472369377795973293, 7.15667860705911520436798473268, 8.373470924239241490981491289859, 9.003844521252919156813543127849, 9.509021295798309868955256628185, 10.10087761792402229109692195689