L(s) = 1 | + (−1.12 + 0.850i)2-s + (1.73 + 1.73i)3-s + (0.552 − 1.92i)4-s + (2.10 − 0.767i)5-s + (−3.43 − 0.484i)6-s + (−1.19 + 1.19i)7-s + (1.01 + 2.64i)8-s + 3.01i·9-s + (−1.71 + 2.65i)10-s + 4.02i·11-s + (4.29 − 2.37i)12-s + (−0.809 + 0.809i)13-s + (0.332 − 2.36i)14-s + (4.97 + 2.31i)15-s + (−3.38 − 2.12i)16-s + (−0.339 − 0.339i)17-s + ⋯ |
L(s) = 1 | + (−0.798 + 0.601i)2-s + (1.00 + 1.00i)3-s + (0.276 − 0.961i)4-s + (0.939 − 0.343i)5-s + (−1.40 − 0.197i)6-s + (−0.450 + 0.450i)7-s + (0.357 + 0.933i)8-s + 1.00i·9-s + (−0.543 + 0.839i)10-s + 1.21i·11-s + (1.23 − 0.685i)12-s + (−0.224 + 0.224i)13-s + (0.0889 − 0.631i)14-s + (1.28 + 0.596i)15-s + (−0.847 − 0.531i)16-s + (−0.0823 − 0.0823i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 820 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.584 - 0.811i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 820 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.584 - 0.811i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.708882 + 1.38404i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.708882 + 1.38404i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.12 - 0.850i)T \) |
| 5 | \( 1 + (-2.10 + 0.767i)T \) |
| 41 | \( 1 - T \) |
good | 3 | \( 1 + (-1.73 - 1.73i)T + 3iT^{2} \) |
| 7 | \( 1 + (1.19 - 1.19i)T - 7iT^{2} \) |
| 11 | \( 1 - 4.02iT - 11T^{2} \) |
| 13 | \( 1 + (0.809 - 0.809i)T - 13iT^{2} \) |
| 17 | \( 1 + (0.339 + 0.339i)T + 17iT^{2} \) |
| 19 | \( 1 + 4.20T + 19T^{2} \) |
| 23 | \( 1 + (-1.29 - 1.29i)T + 23iT^{2} \) |
| 29 | \( 1 - 4.18iT - 29T^{2} \) |
| 31 | \( 1 - 5.69iT - 31T^{2} \) |
| 37 | \( 1 + (-4.60 - 4.60i)T + 37iT^{2} \) |
| 43 | \( 1 + (0.412 + 0.412i)T + 43iT^{2} \) |
| 47 | \( 1 + (-8.15 + 8.15i)T - 47iT^{2} \) |
| 53 | \( 1 + (-0.269 + 0.269i)T - 53iT^{2} \) |
| 59 | \( 1 + 5.44T + 59T^{2} \) |
| 61 | \( 1 - 0.729T + 61T^{2} \) |
| 67 | \( 1 + (-9.31 + 9.31i)T - 67iT^{2} \) |
| 71 | \( 1 - 1.57iT - 71T^{2} \) |
| 73 | \( 1 + (-5.88 + 5.88i)T - 73iT^{2} \) |
| 79 | \( 1 + 13.9T + 79T^{2} \) |
| 83 | \( 1 + (3.59 + 3.59i)T + 83iT^{2} \) |
| 89 | \( 1 + 6.99iT - 89T^{2} \) |
| 97 | \( 1 + (9.75 + 9.75i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.10087761792402229109692195689, −9.509021295798309868955256628185, −9.003844521252919156813543127849, −8.373470924239241490981491289859, −7.15667860705911520436798473268, −6.31246559091472369377795973293, −5.17773993011667377656143513929, −4.42489633430785054914548974189, −2.80076920232169193056671078987, −1.83981367142285065798452332820,
0.891026530746769056787687856113, 2.25657171579917319201556060729, 2.83234307402179150479692215911, 3.95985515618478882272889933273, 5.95248729777663873313011858985, 6.72503480650282377320763538502, 7.57142020802499942975944791417, 8.347977679952194613192162715050, 9.051236713688374192013217572307, 9.818822940993404959075103646151