Newspace parameters
Level: | \( N \) | \(=\) | \( 82 = 2 \cdot 41 \) |
Weight: | \( k \) | \(=\) | \( 5 \) |
Character orbit: | \([\chi]\) | \(=\) | 82.e (of order \(8\), degree \(4\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(8.47633697288\) |
Analytic rank: | \(0\) |
Dimension: | \(28\) |
Relative dimension: | \(7\) over \(\Q(\zeta_{8})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{8}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
3.1 | −2.00000 | + | 2.00000i | −6.17854 | + | 14.9163i | − | 8.00000i | −15.3528 | − | 15.3528i | −17.4755 | − | 42.1897i | 22.0538 | − | 53.2426i | 16.0000 | + | 16.0000i | −127.046 | − | 127.046i | 61.4114 | |||
3.2 | −2.00000 | + | 2.00000i | −3.50051 | + | 8.45098i | − | 8.00000i | 13.5876 | + | 13.5876i | −9.90093 | − | 23.9030i | −23.8235 | + | 57.5149i | 16.0000 | + | 16.0000i | −1.88977 | − | 1.88977i | −54.3502 | |||
3.3 | −2.00000 | + | 2.00000i | −1.67187 | + | 4.03626i | − | 8.00000i | 22.2467 | + | 22.2467i | −4.72877 | − | 11.4163i | 30.2176 | − | 72.9518i | 16.0000 | + | 16.0000i | 43.7794 | + | 43.7794i | −88.9870 | |||
3.4 | −2.00000 | + | 2.00000i | 0.493125 | − | 1.19051i | − | 8.00000i | −21.5675 | − | 21.5675i | 1.39477 | + | 3.36727i | −12.4355 | + | 30.0219i | 16.0000 | + | 16.0000i | 56.1015 | + | 56.1015i | 86.2700 | |||
3.5 | −2.00000 | + | 2.00000i | 2.85757 | − | 6.89878i | − | 8.00000i | 3.97800 | + | 3.97800i | 8.08243 | + | 19.5127i | 9.68798 | − | 23.3888i | 16.0000 | + | 16.0000i | 17.8481 | + | 17.8481i | −15.9120 | |||
3.6 | −2.00000 | + | 2.00000i | 5.22888 | − | 12.6236i | − | 8.00000i | 25.8818 | + | 25.8818i | 14.7895 | + | 35.7050i | −20.1271 | + | 48.5912i | 16.0000 | + | 16.0000i | −74.7392 | − | 74.7392i | −103.527 | |||
3.7 | −2.00000 | + | 2.00000i | 5.35713 | − | 12.9333i | − | 8.00000i | −14.6317 | − | 14.6317i | 15.1523 | + | 36.5808i | 11.3972 | − | 27.5153i | 16.0000 | + | 16.0000i | −81.2948 | − | 81.2948i | 58.5267 | |||
27.1 | −2.00000 | − | 2.00000i | −14.6503 | + | 6.06835i | 8.00000i | −28.4451 | + | 28.4451i | 41.4373 | + | 17.1639i | −67.9576 | + | 28.1489i | 16.0000 | − | 16.0000i | 120.530 | − | 120.530i | 113.780 | ||||
27.2 | −2.00000 | − | 2.00000i | −9.30077 | + | 3.85250i | 8.00000i | 16.4694 | − | 16.4694i | 26.3065 | + | 10.8965i | 32.0596 | − | 13.2795i | 16.0000 | − | 16.0000i | 14.3868 | − | 14.3868i | −65.8775 | ||||
27.3 | −2.00000 | − | 2.00000i | −4.49014 | + | 1.85988i | 8.00000i | −21.9230 | + | 21.9230i | 12.7000 | + | 5.26053i | 50.6726 | − | 20.9893i | 16.0000 | − | 16.0000i | −40.5734 | + | 40.5734i | 87.6922 | ||||
27.4 | −2.00000 | − | 2.00000i | 2.35294 | − | 0.974620i | 8.00000i | −5.07070 | + | 5.07070i | −6.65512 | − | 2.75664i | 13.7461 | − | 5.69383i | 16.0000 | − | 16.0000i | −52.6892 | + | 52.6892i | 20.2828 | ||||
27.5 | −2.00000 | − | 2.00000i | 7.72425 | − | 3.19949i | 8.00000i | −2.80585 | + | 2.80585i | −21.8475 | − | 9.04953i | −85.3865 | + | 35.3682i | 16.0000 | − | 16.0000i | −7.84828 | + | 7.84828i | 11.2234 | ||||
27.6 | −2.00000 | − | 2.00000i | 7.94391 | − | 3.29047i | 8.00000i | 35.0704 | − | 35.0704i | −22.4688 | − | 9.30687i | −0.0786306 | + | 0.0325699i | 16.0000 | − | 16.0000i | −4.99718 | + | 4.99718i | −140.282 | ||||
27.7 | −2.00000 | − | 2.00000i | 15.8343 | − | 6.55878i | 8.00000i | −7.43719 | + | 7.43719i | −44.7862 | − | 18.5510i | 39.9737 | − | 16.5577i | 16.0000 | − | 16.0000i | 150.432 | − | 150.432i | 29.7488 | ||||
55.1 | −2.00000 | − | 2.00000i | −6.17854 | − | 14.9163i | 8.00000i | −15.3528 | + | 15.3528i | −17.4755 | + | 42.1897i | 22.0538 | + | 53.2426i | 16.0000 | − | 16.0000i | −127.046 | + | 127.046i | 61.4114 | ||||
55.2 | −2.00000 | − | 2.00000i | −3.50051 | − | 8.45098i | 8.00000i | 13.5876 | − | 13.5876i | −9.90093 | + | 23.9030i | −23.8235 | − | 57.5149i | 16.0000 | − | 16.0000i | −1.88977 | + | 1.88977i | −54.3502 | ||||
55.3 | −2.00000 | − | 2.00000i | −1.67187 | − | 4.03626i | 8.00000i | 22.2467 | − | 22.2467i | −4.72877 | + | 11.4163i | 30.2176 | + | 72.9518i | 16.0000 | − | 16.0000i | 43.7794 | − | 43.7794i | −88.9870 | ||||
55.4 | −2.00000 | − | 2.00000i | 0.493125 | + | 1.19051i | 8.00000i | −21.5675 | + | 21.5675i | 1.39477 | − | 3.36727i | −12.4355 | − | 30.0219i | 16.0000 | − | 16.0000i | 56.1015 | − | 56.1015i | 86.2700 | ||||
55.5 | −2.00000 | − | 2.00000i | 2.85757 | + | 6.89878i | 8.00000i | 3.97800 | − | 3.97800i | 8.08243 | − | 19.5127i | 9.68798 | + | 23.3888i | 16.0000 | − | 16.0000i | 17.8481 | − | 17.8481i | −15.9120 | ||||
55.6 | −2.00000 | − | 2.00000i | 5.22888 | + | 12.6236i | 8.00000i | 25.8818 | − | 25.8818i | 14.7895 | − | 35.7050i | −20.1271 | − | 48.5912i | 16.0000 | − | 16.0000i | −74.7392 | + | 74.7392i | −103.527 | ||||
See all 28 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
41.e | odd | 8 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 82.5.e.a | ✓ | 28 |
41.e | odd | 8 | 1 | inner | 82.5.e.a | ✓ | 28 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
82.5.e.a | ✓ | 28 | 1.a | even | 1 | 1 | trivial |
82.5.e.a | ✓ | 28 | 41.e | odd | 8 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3}^{28} - 16 T_{3}^{27} + 116 T_{3}^{26} - 380 T_{3}^{25} - 504 T_{3}^{24} + 127668 T_{3}^{23} + \cdots + 83\!\cdots\!68 \)
acting on \(S_{5}^{\mathrm{new}}(82, [\chi])\).