L(s) = 1 | + (−2 + 2i)2-s + (−9.30 − 3.85i)3-s − 8i·4-s + (16.4 + 16.4i)5-s + (26.3 − 10.8i)6-s + (32.0 + 13.2i)7-s + (16 + 16i)8-s + (14.3 + 14.3i)9-s − 65.8·10-s + (−5.87 + 14.1i)11-s + (−30.8 + 74.4i)12-s + (−235. − 97.4i)13-s + (−90.6 + 37.5i)14-s + (−89.7 − 216. i)15-s − 64·16-s + (−147. + 61.2i)17-s + ⋯ |
L(s) = 1 | + (−0.5 + 0.5i)2-s + (−1.03 − 0.428i)3-s − 0.5i·4-s + (0.658 + 0.658i)5-s + (0.730 − 0.302i)6-s + (0.654 + 0.271i)7-s + (0.250 + 0.250i)8-s + (0.177 + 0.177i)9-s − 0.658·10-s + (−0.0485 + 0.117i)11-s + (−0.214 + 0.516i)12-s + (−1.39 − 0.576i)13-s + (−0.462 + 0.191i)14-s + (−0.398 − 0.962i)15-s − 0.250·16-s + (−0.511 + 0.212i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 82 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.933 + 0.358i)\, \overline{\Lambda}(5-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 82 ^{s/2} \, \Gamma_{\C}(s+2) \, L(s)\cr =\mathstrut & (-0.933 + 0.358i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{5}{2})\) |
\(\approx\) |
\(0.00597952 - 0.0322574i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.00597952 - 0.0322574i\) |
\(L(3)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (2 - 2i)T \) |
| 41 | \( 1 + (1.24e3 - 1.13e3i)T \) |
good | 3 | \( 1 + (9.30 + 3.85i)T + (57.2 + 57.2i)T^{2} \) |
| 5 | \( 1 + (-16.4 - 16.4i)T + 625iT^{2} \) |
| 7 | \( 1 + (-32.0 - 13.2i)T + (1.69e3 + 1.69e3i)T^{2} \) |
| 11 | \( 1 + (5.87 - 14.1i)T + (-1.03e4 - 1.03e4i)T^{2} \) |
| 13 | \( 1 + (235. + 97.4i)T + (2.01e4 + 2.01e4i)T^{2} \) |
| 17 | \( 1 + (147. - 61.2i)T + (5.90e4 - 5.90e4i)T^{2} \) |
| 19 | \( 1 + (411. - 170. i)T + (9.21e4 - 9.21e4i)T^{2} \) |
| 23 | \( 1 + 365. iT - 2.79e5T^{2} \) |
| 29 | \( 1 + (1.10e3 + 457. i)T + (5.00e5 + 5.00e5i)T^{2} \) |
| 31 | \( 1 - 403. iT - 9.23e5T^{2} \) |
| 37 | \( 1 + 812.T + 1.87e6T^{2} \) |
| 43 | \( 1 + (1.11e3 - 1.11e3i)T - 3.41e6iT^{2} \) |
| 47 | \( 1 + (-778. + 322. i)T + (3.45e6 - 3.45e6i)T^{2} \) |
| 53 | \( 1 + (-1.24e3 + 3.01e3i)T + (-5.57e6 - 5.57e6i)T^{2} \) |
| 59 | \( 1 - 3.92e3T + 1.21e7T^{2} \) |
| 61 | \( 1 + (1.97e3 - 1.97e3i)T - 1.38e7iT^{2} \) |
| 67 | \( 1 + (505. - 209. i)T + (1.42e7 - 1.42e7i)T^{2} \) |
| 71 | \( 1 + (2.26e3 + 937. i)T + (1.79e7 + 1.79e7i)T^{2} \) |
| 73 | \( 1 + (-3.59e3 + 3.59e3i)T - 2.83e7iT^{2} \) |
| 79 | \( 1 + (1.51e3 - 3.65e3i)T + (-2.75e7 - 2.75e7i)T^{2} \) |
| 83 | \( 1 + 2.91e3T + 4.74e7T^{2} \) |
| 89 | \( 1 + (8.96e3 + 3.71e3i)T + (4.43e7 + 4.43e7i)T^{2} \) |
| 97 | \( 1 + (-5.37e3 - 1.29e4i)T + (-6.25e7 + 6.25e7i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.58135682475857765381602097075, −13.01529672029465076613667552067, −11.90472447300036418528218141948, −10.80252156459891209675241665713, −9.950989458398724836547233318507, −8.397943467335411391607147372272, −7.03755549246459092371654883278, −6.11973233505212265374534839930, −5.02983610367471202697987304371, −2.09870093189553539353228178990,
0.02036330294038793508328596142, 1.94518867844849218722168930273, 4.49798339250215341143956244534, 5.45592794241889922176820925571, 7.16239135306709171965635562856, 8.758377659130957692446154315829, 9.783316722483932212176455404559, 10.85580996514238128272805467063, 11.63205296927901947140679419274, 12.71278704894908028820100315476