L(s) = 1 | + (−2 − 2i)2-s + (−3.50 − 8.45i)3-s + 8i·4-s + (13.5 − 13.5i)5-s + (−9.90 + 23.9i)6-s + (−23.8 − 57.5i)7-s + (16 − 16i)8-s + (−1.88 + 1.88i)9-s − 54.3·10-s + (−20.9 + 8.69i)11-s + (67.6 − 28.0i)12-s + (−31.3 − 75.7i)13-s + (−67.3 + 162. i)14-s + (−162. − 67.2i)15-s − 64·16-s + (−173. + 420. i)17-s + ⋯ |
L(s) = 1 | + (−0.5 − 0.5i)2-s + (−0.388 − 0.938i)3-s + 0.5i·4-s + (0.543 − 0.543i)5-s + (−0.275 + 0.663i)6-s + (−0.486 − 1.17i)7-s + (0.250 − 0.250i)8-s + (−0.0233 + 0.0233i)9-s − 0.543·10-s + (−0.173 + 0.0718i)11-s + (0.469 − 0.194i)12-s + (−0.185 − 0.447i)13-s + (−0.343 + 0.829i)14-s + (−0.721 − 0.298i)15-s − 0.250·16-s + (−0.602 + 1.45i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 82 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.907 - 0.420i)\, \overline{\Lambda}(5-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 82 ^{s/2} \, \Gamma_{\C}(s+2) \, L(s)\cr =\mathstrut & (-0.907 - 0.420i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{5}{2})\) |
\(\approx\) |
\(0.163702 + 0.741579i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.163702 + 0.741579i\) |
\(L(3)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (2 + 2i)T \) |
| 41 | \( 1 + (1.61e3 - 457. i)T \) |
good | 3 | \( 1 + (3.50 + 8.45i)T + (-57.2 + 57.2i)T^{2} \) |
| 5 | \( 1 + (-13.5 + 13.5i)T - 625iT^{2} \) |
| 7 | \( 1 + (23.8 + 57.5i)T + (-1.69e3 + 1.69e3i)T^{2} \) |
| 11 | \( 1 + (20.9 - 8.69i)T + (1.03e4 - 1.03e4i)T^{2} \) |
| 13 | \( 1 + (31.3 + 75.7i)T + (-2.01e4 + 2.01e4i)T^{2} \) |
| 17 | \( 1 + (173. - 420. i)T + (-5.90e4 - 5.90e4i)T^{2} \) |
| 19 | \( 1 + (114. - 275. i)T + (-9.21e4 - 9.21e4i)T^{2} \) |
| 23 | \( 1 + 365. iT - 2.79e5T^{2} \) |
| 29 | \( 1 + (224. + 541. i)T + (-5.00e5 + 5.00e5i)T^{2} \) |
| 31 | \( 1 + 429. iT - 9.23e5T^{2} \) |
| 37 | \( 1 - 1.39e3T + 1.87e6T^{2} \) |
| 43 | \( 1 + (157. + 157. i)T + 3.41e6iT^{2} \) |
| 47 | \( 1 + (-1.60e3 + 3.86e3i)T + (-3.45e6 - 3.45e6i)T^{2} \) |
| 53 | \( 1 + (-3.05e3 + 1.26e3i)T + (5.57e6 - 5.57e6i)T^{2} \) |
| 59 | \( 1 + 1.14e3T + 1.21e7T^{2} \) |
| 61 | \( 1 + (-31.8 - 31.8i)T + 1.38e7iT^{2} \) |
| 67 | \( 1 + (831. - 2.00e3i)T + (-1.42e7 - 1.42e7i)T^{2} \) |
| 71 | \( 1 + (2.40e3 + 5.81e3i)T + (-1.79e7 + 1.79e7i)T^{2} \) |
| 73 | \( 1 + (1.56e3 + 1.56e3i)T + 2.83e7iT^{2} \) |
| 79 | \( 1 + (4.74e3 - 1.96e3i)T + (2.75e7 - 2.75e7i)T^{2} \) |
| 83 | \( 1 - 709.T + 4.74e7T^{2} \) |
| 89 | \( 1 + (786. + 1.89e3i)T + (-4.43e7 + 4.43e7i)T^{2} \) |
| 97 | \( 1 + (-1.21e4 - 5.03e3i)T + (6.25e7 + 6.25e7i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.11543724528571708775497894939, −12.04559319397503286161409214850, −10.63037437899060639775086048662, −9.845362013839556288374624440321, −8.357839268025003640079417366178, −7.18563580095063412291424118723, −6.04076002914725765832945880247, −3.99681159947776394973821805503, −1.78220600468556040006204173754, −0.45737260428299239425265973133,
2.56872399439332084458299122792, 4.81403811220777601169596421069, 5.92299882894475692593985944528, 7.13823810528419223941898749135, 8.997519869756915017649470667442, 9.602688426853818273827944993629, 10.68972697273821505657395244293, 11.71847163651593333992907194017, 13.31112324531674402601313458681, 14.50133111329165708117718954930