L(s) = 1 | + (−2 + 2i)2-s + (2.35 + 0.974i)3-s − 8i·4-s + (−5.07 − 5.07i)5-s + (−6.65 + 2.75i)6-s + (13.7 + 5.69i)7-s + (16 + 16i)8-s + (−52.6 − 52.6i)9-s + 20.2·10-s + (53.0 − 128. i)11-s + (7.79 − 18.8i)12-s + (−78.5 − 32.5i)13-s + (−38.8 + 16.1i)14-s + (−6.98 − 16.8i)15-s − 64·16-s + (187. − 77.7i)17-s + ⋯ |
L(s) = 1 | + (−0.5 + 0.5i)2-s + (0.261 + 0.108i)3-s − 0.5i·4-s + (−0.202 − 0.202i)5-s + (−0.184 + 0.0765i)6-s + (0.280 + 0.116i)7-s + (0.250 + 0.250i)8-s + (−0.650 − 0.650i)9-s + 0.202·10-s + (0.438 − 1.05i)11-s + (0.0541 − 0.130i)12-s + (−0.465 − 0.192i)13-s + (−0.198 + 0.0821i)14-s + (−0.0310 − 0.0749i)15-s − 0.250·16-s + (0.649 − 0.268i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 82 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.680 + 0.732i)\, \overline{\Lambda}(5-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 82 ^{s/2} \, \Gamma_{\C}(s+2) \, L(s)\cr =\mathstrut & (0.680 + 0.732i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{5}{2})\) |
\(\approx\) |
\(1.07865 - 0.470410i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.07865 - 0.470410i\) |
\(L(3)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (2 - 2i)T \) |
| 41 | \( 1 + (-1.51e3 - 730. i)T \) |
good | 3 | \( 1 + (-2.35 - 0.974i)T + (57.2 + 57.2i)T^{2} \) |
| 5 | \( 1 + (5.07 + 5.07i)T + 625iT^{2} \) |
| 7 | \( 1 + (-13.7 - 5.69i)T + (1.69e3 + 1.69e3i)T^{2} \) |
| 11 | \( 1 + (-53.0 + 128. i)T + (-1.03e4 - 1.03e4i)T^{2} \) |
| 13 | \( 1 + (78.5 + 32.5i)T + (2.01e4 + 2.01e4i)T^{2} \) |
| 17 | \( 1 + (-187. + 77.7i)T + (5.90e4 - 5.90e4i)T^{2} \) |
| 19 | \( 1 + (-542. + 224. i)T + (9.21e4 - 9.21e4i)T^{2} \) |
| 23 | \( 1 + 173. iT - 2.79e5T^{2} \) |
| 29 | \( 1 + (-745. - 308. i)T + (5.00e5 + 5.00e5i)T^{2} \) |
| 31 | \( 1 + 515. iT - 9.23e5T^{2} \) |
| 37 | \( 1 + 2.58e3T + 1.87e6T^{2} \) |
| 43 | \( 1 + (949. - 949. i)T - 3.41e6iT^{2} \) |
| 47 | \( 1 + (1.90e3 - 789. i)T + (3.45e6 - 3.45e6i)T^{2} \) |
| 53 | \( 1 + (448. - 1.08e3i)T + (-5.57e6 - 5.57e6i)T^{2} \) |
| 59 | \( 1 + 3.21e3T + 1.21e7T^{2} \) |
| 61 | \( 1 + (-1.48e3 + 1.48e3i)T - 1.38e7iT^{2} \) |
| 67 | \( 1 + (-1.62e3 + 674. i)T + (1.42e7 - 1.42e7i)T^{2} \) |
| 71 | \( 1 + (-4.66e3 - 1.93e3i)T + (1.79e7 + 1.79e7i)T^{2} \) |
| 73 | \( 1 + (-1.84e3 + 1.84e3i)T - 2.83e7iT^{2} \) |
| 79 | \( 1 + (782. - 1.88e3i)T + (-2.75e7 - 2.75e7i)T^{2} \) |
| 83 | \( 1 - 2.50e3T + 4.74e7T^{2} \) |
| 89 | \( 1 + (-6.72e3 - 2.78e3i)T + (4.43e7 + 4.43e7i)T^{2} \) |
| 97 | \( 1 + (-1.15e3 - 2.78e3i)T + (-6.25e7 + 6.25e7i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.90547599398752666081923559156, −12.17046847799080556668918076824, −11.28783657616525048561949069003, −9.814804457266512124701312512328, −8.818813769198509019018135523246, −7.915748236076828458482836708176, −6.44369375143678551470254011429, −5.13620760522457102661524143598, −3.17072429080308475301394798795, −0.70592335398933533383553775152,
1.70115964401999361610039916047, 3.35539709134853310565187349206, 5.12913237067639462973763508804, 7.16605076169191955497782107590, 8.035563186176324245610030647261, 9.368595158510675031223332208500, 10.36676121760830478978884036557, 11.59790403988357847722120445371, 12.35207469550541778132759311027, 13.81196798858697785022932414785