L(s) = 1 | + (−2 − 2i)2-s + (−4.49 + 1.85i)3-s + 8i·4-s + (−21.9 + 21.9i)5-s + (12.7 + 5.26i)6-s + (50.6 − 20.9i)7-s + (16 − 16i)8-s + (−40.5 + 40.5i)9-s + 87.6·10-s + (−63.9 − 154. i)11-s + (−14.8 − 35.9i)12-s + (216. − 89.6i)13-s + (−143. − 59.3i)14-s + (57.6 − 139. i)15-s − 64·16-s + (−214. − 88.8i)17-s + ⋯ |
L(s) = 1 | + (−0.5 − 0.5i)2-s + (−0.498 + 0.206i)3-s + 0.5i·4-s + (−0.876 + 0.876i)5-s + (0.352 + 0.146i)6-s + (1.03 − 0.428i)7-s + (0.250 − 0.250i)8-s + (−0.500 + 0.500i)9-s + 0.876·10-s + (−0.528 − 1.27i)11-s + (−0.103 − 0.249i)12-s + (1.28 − 0.530i)13-s + (−0.731 − 0.302i)14-s + (0.256 − 0.618i)15-s − 0.250·16-s + (−0.742 − 0.307i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 82 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.214 + 0.976i)\, \overline{\Lambda}(5-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 82 ^{s/2} \, \Gamma_{\C}(s+2) \, L(s)\cr =\mathstrut & (-0.214 + 0.976i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{5}{2})\) |
\(\approx\) |
\(0.408040 - 0.507256i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.408040 - 0.507256i\) |
\(L(3)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (2 + 2i)T \) |
| 41 | \( 1 + (933. - 1.39e3i)T \) |
good | 3 | \( 1 + (4.49 - 1.85i)T + (57.2 - 57.2i)T^{2} \) |
| 5 | \( 1 + (21.9 - 21.9i)T - 625iT^{2} \) |
| 7 | \( 1 + (-50.6 + 20.9i)T + (1.69e3 - 1.69e3i)T^{2} \) |
| 11 | \( 1 + (63.9 + 154. i)T + (-1.03e4 + 1.03e4i)T^{2} \) |
| 13 | \( 1 + (-216. + 89.6i)T + (2.01e4 - 2.01e4i)T^{2} \) |
| 17 | \( 1 + (214. + 88.8i)T + (5.90e4 + 5.90e4i)T^{2} \) |
| 19 | \( 1 + (124. + 51.5i)T + (9.21e4 + 9.21e4i)T^{2} \) |
| 23 | \( 1 + 744. iT - 2.79e5T^{2} \) |
| 29 | \( 1 + (-798. + 330. i)T + (5.00e5 - 5.00e5i)T^{2} \) |
| 31 | \( 1 + 1.26e3iT - 9.23e5T^{2} \) |
| 37 | \( 1 - 355.T + 1.87e6T^{2} \) |
| 43 | \( 1 + (-1.27e3 - 1.27e3i)T + 3.41e6iT^{2} \) |
| 47 | \( 1 + (-2.33e3 - 965. i)T + (3.45e6 + 3.45e6i)T^{2} \) |
| 53 | \( 1 + (1.62e3 + 3.91e3i)T + (-5.57e6 + 5.57e6i)T^{2} \) |
| 59 | \( 1 + 2.44e3T + 1.21e7T^{2} \) |
| 61 | \( 1 + (2.26e3 + 2.26e3i)T + 1.38e7iT^{2} \) |
| 67 | \( 1 + (-4.88e3 - 2.02e3i)T + (1.42e7 + 1.42e7i)T^{2} \) |
| 71 | \( 1 + (-170. + 70.8i)T + (1.79e7 - 1.79e7i)T^{2} \) |
| 73 | \( 1 + (7.23e3 + 7.23e3i)T + 2.83e7iT^{2} \) |
| 79 | \( 1 + (1.76e3 + 4.25e3i)T + (-2.75e7 + 2.75e7i)T^{2} \) |
| 83 | \( 1 + 1.06e4T + 4.74e7T^{2} \) |
| 89 | \( 1 + (1.51e3 - 628. i)T + (4.43e7 - 4.43e7i)T^{2} \) |
| 97 | \( 1 + (-49.9 + 120. i)T + (-6.25e7 - 6.25e7i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.27413773320893088822432270868, −11.51701935323000063388085955253, −11.03817058409763282018708514387, −10.60923547628615270561714413052, −8.449200649359860593369335750748, −7.914812688840319353689508833737, −6.20869236563340411603231437607, −4.42349300156624110591800841407, −2.86743678161029056634780284590, −0.44265665391363622730092223850,
1.41653115589178672464514704125, 4.38472239241574393339151482528, 5.56333251052544199566276962279, 7.06533530690653683213595384625, 8.351984561954658432758174038580, 8.963894063574316024248725433162, 10.76678270891057564265238836719, 11.74495735405897722276676378909, 12.53177769006799844149369310472, 14.05646910484501464150116992161