L(s) = 1 | + (−2 + 2i)2-s + (5.35 − 12.9i)3-s − 8i·4-s + (−14.6 − 14.6i)5-s + (15.1 + 36.5i)6-s + (11.3 − 27.5i)7-s + (16 + 16i)8-s + (−81.2 − 81.2i)9-s + 58.5·10-s + (−40.0 − 16.5i)11-s + (−103. − 42.8i)12-s + (−116. + 280. i)13-s + (32.2 + 77.8i)14-s + (−267. + 110. i)15-s − 64·16-s + (48.6 + 117. i)17-s + ⋯ |
L(s) = 1 | + (−0.5 + 0.5i)2-s + (0.595 − 1.43i)3-s − 0.5i·4-s + (−0.585 − 0.585i)5-s + (0.420 + 1.01i)6-s + (0.232 − 0.561i)7-s + (0.250 + 0.250i)8-s + (−1.00 − 1.00i)9-s + 0.585·10-s + (−0.330 − 0.136i)11-s + (−0.718 − 0.297i)12-s + (−0.686 + 1.65i)13-s + (0.164 + 0.397i)14-s + (−1.18 + 0.492i)15-s − 0.250·16-s + (0.168 + 0.406i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 82 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.888 + 0.458i)\, \overline{\Lambda}(5-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 82 ^{s/2} \, \Gamma_{\C}(s+2) \, L(s)\cr =\mathstrut & (-0.888 + 0.458i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{5}{2})\) |
\(\approx\) |
\(0.223085 - 0.918202i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.223085 - 0.918202i\) |
\(L(3)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (2 - 2i)T \) |
| 41 | \( 1 + (1.63e3 + 389. i)T \) |
good | 3 | \( 1 + (-5.35 + 12.9i)T + (-57.2 - 57.2i)T^{2} \) |
| 5 | \( 1 + (14.6 + 14.6i)T + 625iT^{2} \) |
| 7 | \( 1 + (-11.3 + 27.5i)T + (-1.69e3 - 1.69e3i)T^{2} \) |
| 11 | \( 1 + (40.0 + 16.5i)T + (1.03e4 + 1.03e4i)T^{2} \) |
| 13 | \( 1 + (116. - 280. i)T + (-2.01e4 - 2.01e4i)T^{2} \) |
| 17 | \( 1 + (-48.6 - 117. i)T + (-5.90e4 + 5.90e4i)T^{2} \) |
| 19 | \( 1 + (257. + 622. i)T + (-9.21e4 + 9.21e4i)T^{2} \) |
| 23 | \( 1 + 141. iT - 2.79e5T^{2} \) |
| 29 | \( 1 + (341. - 823. i)T + (-5.00e5 - 5.00e5i)T^{2} \) |
| 31 | \( 1 + 1.25e3iT - 9.23e5T^{2} \) |
| 37 | \( 1 - 1.03e3T + 1.87e6T^{2} \) |
| 43 | \( 1 + (-626. + 626. i)T - 3.41e6iT^{2} \) |
| 47 | \( 1 + (-184. - 445. i)T + (-3.45e6 + 3.45e6i)T^{2} \) |
| 53 | \( 1 + (1.31e3 + 544. i)T + (5.57e6 + 5.57e6i)T^{2} \) |
| 59 | \( 1 - 3.75e3T + 1.21e7T^{2} \) |
| 61 | \( 1 + (-1.25e3 + 1.25e3i)T - 1.38e7iT^{2} \) |
| 67 | \( 1 + (2.34e3 + 5.65e3i)T + (-1.42e7 + 1.42e7i)T^{2} \) |
| 71 | \( 1 + (-1.61e3 + 3.91e3i)T + (-1.79e7 - 1.79e7i)T^{2} \) |
| 73 | \( 1 + (-4.49e3 + 4.49e3i)T - 2.83e7iT^{2} \) |
| 79 | \( 1 + (1.14e3 + 475. i)T + (2.75e7 + 2.75e7i)T^{2} \) |
| 83 | \( 1 - 170.T + 4.74e7T^{2} \) |
| 89 | \( 1 + (4.13e3 - 9.98e3i)T + (-4.43e7 - 4.43e7i)T^{2} \) |
| 97 | \( 1 + (-7.73e3 + 3.20e3i)T + (6.25e7 - 6.25e7i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.26015343950845701128402549162, −12.22632932769452309415921776111, −11.08072694554883594543953958216, −9.251772154646168503253955082345, −8.338114631365679763179574710382, −7.38409377127990473113029651320, −6.60041205018225633938741962350, −4.53563908096151620515128822542, −2.08924396664372077928137107283, −0.50234956494031979924896954793,
2.73565817666765947748448248419, 3.77772681899019996222911501840, 5.33705633997460280100190425972, 7.69798363971584084999831637139, 8.540053846707439987639115073271, 9.937654927788981200168361841670, 10.38560892502360040294394818248, 11.56791737085733597757842921526, 12.76534260694946002413753111178, 14.49791841409621753305684604617