gp: [N,k,chi] = [810,2,Mod(649,810)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(810, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 1]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("810.649");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [4,0,0,-4,4]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , β 2 , β 3 1,\beta_1,\beta_2,\beta_3 1 , β 1 , β 2 , β 3 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring in terms of a root ν \nu ν of
x 4 + 9 x^{4} + 9 x 4 + 9
x^4 + 9
:
β 1 \beta_{1} β 1 = = =
ν \nu ν
v
β 2 \beta_{2} β 2 = = =
( ν 2 ) / 3 ( \nu^{2} ) / 3 ( ν 2 ) / 3
(v^2) / 3
β 3 \beta_{3} β 3 = = =
( ν 3 ) / 3 ( \nu^{3} ) / 3 ( ν 3 ) / 3
(v^3) / 3
ν \nu ν = = =
β 1 \beta_1 β 1
b1
ν 2 \nu^{2} ν 2 = = =
3 β 2 3\beta_{2} 3 β 2
3*b2
ν 3 \nu^{3} ν 3 = = =
3 β 3 3\beta_{3} 3 β 3
3*b3
Character values
We give the values of χ \chi χ on generators for ( Z / 810 Z ) × \left(\mathbb{Z}/810\mathbb{Z}\right)^\times ( Z / 8 1 0 Z ) × .
n n n
487 487 4 8 7
731 731 7 3 1
χ ( n ) \chi(n) χ ( n )
− 1 -1 − 1
1 1 1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 2 n e w ( 810 , [ χ ] ) S_{2}^{\mathrm{new}}(810, [\chi]) S 2 n e w ( 8 1 0 , [ χ ] ) :
T 7 4 + 20 T 7 2 + 4 T_{7}^{4} + 20T_{7}^{2} + 4 T 7 4 + 2 0 T 7 2 + 4
T7^4 + 20*T7^2 + 4
T 11 2 + 2 T 11 − 5 T_{11}^{2} + 2T_{11} - 5 T 1 1 2 + 2 T 1 1 − 5
T11^2 + 2*T11 - 5
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
( T 2 + 1 ) 2 (T^{2} + 1)^{2} ( T 2 + 1 ) 2
(T^2 + 1)^2
3 3 3
T 4 T^{4} T 4
T^4
5 5 5
T 4 − 4 T 3 + ⋯ + 25 T^{4} - 4 T^{3} + \cdots + 25 T 4 − 4 T 3 + ⋯ + 2 5
T^4 - 4*T^3 + 8*T^2 - 20*T + 25
7 7 7
T 4 + 20 T 2 + 4 T^{4} + 20T^{2} + 4 T 4 + 2 0 T 2 + 4
T^4 + 20*T^2 + 4
11 11 1 1
( T 2 + 2 T − 5 ) 2 (T^{2} + 2 T - 5)^{2} ( T 2 + 2 T − 5 ) 2
(T^2 + 2*T - 5)^2
13 13 1 3
( T 2 + 6 ) 2 (T^{2} + 6)^{2} ( T 2 + 6 ) 2
(T^2 + 6)^2
17 17 1 7
T 4 + 50 T 2 + 529 T^{4} + 50T^{2} + 529 T 4 + 5 0 T 2 + 5 2 9
T^4 + 50*T^2 + 529
19 19 1 9
( T 2 − 6 T + 3 ) 2 (T^{2} - 6 T + 3)^{2} ( T 2 − 6 T + 3 ) 2
(T^2 - 6*T + 3)^2
23 23 2 3
T 4 + 56 T 2 + 400 T^{4} + 56T^{2} + 400 T 4 + 5 6 T 2 + 4 0 0
T^4 + 56*T^2 + 400
29 29 2 9
( T − 6 ) 4 (T - 6)^{4} ( T − 6 ) 4
(T - 6)^4
31 31 3 1
( T 2 − 8 T + 10 ) 2 (T^{2} - 8 T + 10)^{2} ( T 2 − 8 T + 1 0 ) 2
(T^2 - 8*T + 10)^2
37 37 3 7
( T 2 + 64 ) 2 (T^{2} + 64)^{2} ( T 2 + 6 4 ) 2
(T^2 + 64)^2
41 41 4 1
( T + 1 ) 4 (T + 1)^{4} ( T + 1 ) 4
(T + 1)^4
43 43 4 3
T 4 + 62 T 2 + 361 T^{4} + 62T^{2} + 361 T 4 + 6 2 T 2 + 3 6 1
T^4 + 62*T^2 + 361
47 47 4 7
T 4 + 20 T 2 + 4 T^{4} + 20T^{2} + 4 T 4 + 2 0 T 2 + 4
T^4 + 20*T^2 + 4
53 53 5 3
T 4 + 84 T 2 + 900 T^{4} + 84T^{2} + 900 T 4 + 8 4 T 2 + 9 0 0
T^4 + 84*T^2 + 900
59 59 5 9
( T 2 + 2 T − 149 ) 2 (T^{2} + 2 T - 149)^{2} ( T 2 + 2 T − 1 4 9 ) 2
(T^2 + 2*T - 149)^2
61 61 6 1
( T 2 − 4 T − 2 ) 2 (T^{2} - 4 T - 2)^{2} ( T 2 − 4 T − 2 ) 2
(T^2 - 4*T - 2)^2
67 67 6 7
T 4 + 110 T 2 + 1849 T^{4} + 110T^{2} + 1849 T 4 + 1 1 0 T 2 + 1 8 4 9
T^4 + 110*T^2 + 1849
71 71 7 1
( T 2 − 6 ) 2 (T^{2} - 6)^{2} ( T 2 − 6 ) 2
(T^2 - 6)^2
73 73 7 3
T 4 + 242 T 2 + 5041 T^{4} + 242T^{2} + 5041 T 4 + 2 4 2 T 2 + 5 0 4 1
T^4 + 242*T^2 + 5041
79 79 7 9
( T 2 − 54 ) 2 (T^{2} - 54)^{2} ( T 2 − 5 4 ) 2
(T^2 - 54)^2
83 83 8 3
( T 2 + 16 ) 2 (T^{2} + 16)^{2} ( T 2 + 1 6 ) 2
(T^2 + 16)^2
89 89 8 9
( T 2 + 16 T + 40 ) 2 (T^{2} + 16 T + 40)^{2} ( T 2 + 1 6 T + 4 0 ) 2
(T^2 + 16*T + 40)^2
97 97 9 7
( T 2 + 169 ) 2 (T^{2} + 169)^{2} ( T 2 + 1 6 9 ) 2
(T^2 + 169)^2
show more
show less