Properties

Label 810.2.c.f
Level 810810
Weight 22
Character orbit 810.c
Analytic conductor 6.4686.468
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [810,2,Mod(649,810)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(810, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("810.649"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: N N == 810=2345 810 = 2 \cdot 3^{4} \cdot 5
Weight: k k == 2 2
Character orbit: [χ][\chi] == 810.c (of order 22, degree 11, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,-4,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 6.467882563726.46788256372
Analytic rank: 00
Dimension: 44
Coefficient field: Q(i,6)\Q(i, \sqrt{6})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x4+9 x^{4} + 9 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 90)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == qβ2q2q4+(β2+β1+1)q5+(β3+2β2β1)q7+β2q8+(β3β21)q10+(β3β11)q11++(4β3+3β24β1)q98+O(q100) q - \beta_{2} q^{2} - q^{4} + ( - \beta_{2} + \beta_1 + 1) q^{5} + ( - \beta_{3} + 2 \beta_{2} - \beta_1) q^{7} + \beta_{2} q^{8} + ( - \beta_{3} - \beta_{2} - 1) q^{10} + (\beta_{3} - \beta_1 - 1) q^{11}+ \cdots + ( - 4 \beta_{3} + 3 \beta_{2} - 4 \beta_1) q^{98}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q4q4+4q54q104q11+8q14+4q16+12q194q20+24q29+16q314q34+20q35+4q404q41+4q448q4612q49+4q50++24q95+O(q100) 4 q - 4 q^{4} + 4 q^{5} - 4 q^{10} - 4 q^{11} + 8 q^{14} + 4 q^{16} + 12 q^{19} - 4 q^{20} + 24 q^{29} + 16 q^{31} - 4 q^{34} + 20 q^{35} + 4 q^{40} - 4 q^{41} + 4 q^{44} - 8 q^{46} - 12 q^{49} + 4 q^{50}+ \cdots + 24 q^{95}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x4+9 x^{4} + 9 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (ν2)/3 ( \nu^{2} ) / 3 Copy content Toggle raw display
β3\beta_{3}== (ν3)/3 ( \nu^{3} ) / 3 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== 3β2 3\beta_{2} Copy content Toggle raw display
ν3\nu^{3}== 3β3 3\beta_{3} Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/810Z)×\left(\mathbb{Z}/810\mathbb{Z}\right)^\times.

nn 487487 731731
χ(n)\chi(n) 1-1 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
649.1
−1.22474 1.22474i
1.22474 + 1.22474i
−1.22474 + 1.22474i
1.22474 1.22474i
1.00000i 0 −1.00000 −0.224745 2.22474i 0 4.44949i 1.00000i 0 −2.22474 + 0.224745i
649.2 1.00000i 0 −1.00000 2.22474 + 0.224745i 0 0.449490i 1.00000i 0 0.224745 2.22474i
649.3 1.00000i 0 −1.00000 −0.224745 + 2.22474i 0 4.44949i 1.00000i 0 −2.22474 0.224745i
649.4 1.00000i 0 −1.00000 2.22474 0.224745i 0 0.449490i 1.00000i 0 0.224745 + 2.22474i
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 810.2.c.f 4
3.b odd 2 1 810.2.c.e 4
5.b even 2 1 inner 810.2.c.f 4
5.c odd 4 1 4050.2.a.bq 2
5.c odd 4 1 4050.2.a.bs 2
9.c even 3 2 90.2.i.b 8
9.d odd 6 2 270.2.i.b 8
15.d odd 2 1 810.2.c.e 4
15.e even 4 1 4050.2.a.bm 2
15.e even 4 1 4050.2.a.bz 2
36.f odd 6 2 720.2.by.c 8
36.h even 6 2 2160.2.by.d 8
45.h odd 6 2 270.2.i.b 8
45.j even 6 2 90.2.i.b 8
45.k odd 12 2 450.2.e.k 4
45.k odd 12 2 450.2.e.n 4
45.l even 12 2 1350.2.e.j 4
45.l even 12 2 1350.2.e.m 4
180.n even 6 2 2160.2.by.d 8
180.p odd 6 2 720.2.by.c 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
90.2.i.b 8 9.c even 3 2
90.2.i.b 8 45.j even 6 2
270.2.i.b 8 9.d odd 6 2
270.2.i.b 8 45.h odd 6 2
450.2.e.k 4 45.k odd 12 2
450.2.e.n 4 45.k odd 12 2
720.2.by.c 8 36.f odd 6 2
720.2.by.c 8 180.p odd 6 2
810.2.c.e 4 3.b odd 2 1
810.2.c.e 4 15.d odd 2 1
810.2.c.f 4 1.a even 1 1 trivial
810.2.c.f 4 5.b even 2 1 inner
1350.2.e.j 4 45.l even 12 2
1350.2.e.m 4 45.l even 12 2
2160.2.by.d 8 36.h even 6 2
2160.2.by.d 8 180.n even 6 2
4050.2.a.bm 2 15.e even 4 1
4050.2.a.bq 2 5.c odd 4 1
4050.2.a.bs 2 5.c odd 4 1
4050.2.a.bz 2 15.e even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(810,[χ])S_{2}^{\mathrm{new}}(810, [\chi]):

T74+20T72+4 T_{7}^{4} + 20T_{7}^{2} + 4 Copy content Toggle raw display
T112+2T115 T_{11}^{2} + 2T_{11} - 5 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T2+1)2 (T^{2} + 1)^{2} Copy content Toggle raw display
33 T4 T^{4} Copy content Toggle raw display
55 T44T3++25 T^{4} - 4 T^{3} + \cdots + 25 Copy content Toggle raw display
77 T4+20T2+4 T^{4} + 20T^{2} + 4 Copy content Toggle raw display
1111 (T2+2T5)2 (T^{2} + 2 T - 5)^{2} Copy content Toggle raw display
1313 (T2+6)2 (T^{2} + 6)^{2} Copy content Toggle raw display
1717 T4+50T2+529 T^{4} + 50T^{2} + 529 Copy content Toggle raw display
1919 (T26T+3)2 (T^{2} - 6 T + 3)^{2} Copy content Toggle raw display
2323 T4+56T2+400 T^{4} + 56T^{2} + 400 Copy content Toggle raw display
2929 (T6)4 (T - 6)^{4} Copy content Toggle raw display
3131 (T28T+10)2 (T^{2} - 8 T + 10)^{2} Copy content Toggle raw display
3737 (T2+64)2 (T^{2} + 64)^{2} Copy content Toggle raw display
4141 (T+1)4 (T + 1)^{4} Copy content Toggle raw display
4343 T4+62T2+361 T^{4} + 62T^{2} + 361 Copy content Toggle raw display
4747 T4+20T2+4 T^{4} + 20T^{2} + 4 Copy content Toggle raw display
5353 T4+84T2+900 T^{4} + 84T^{2} + 900 Copy content Toggle raw display
5959 (T2+2T149)2 (T^{2} + 2 T - 149)^{2} Copy content Toggle raw display
6161 (T24T2)2 (T^{2} - 4 T - 2)^{2} Copy content Toggle raw display
6767 T4+110T2+1849 T^{4} + 110T^{2} + 1849 Copy content Toggle raw display
7171 (T26)2 (T^{2} - 6)^{2} Copy content Toggle raw display
7373 T4+242T2+5041 T^{4} + 242T^{2} + 5041 Copy content Toggle raw display
7979 (T254)2 (T^{2} - 54)^{2} Copy content Toggle raw display
8383 (T2+16)2 (T^{2} + 16)^{2} Copy content Toggle raw display
8989 (T2+16T+40)2 (T^{2} + 16 T + 40)^{2} Copy content Toggle raw display
9797 (T2+169)2 (T^{2} + 169)^{2} Copy content Toggle raw display
show more
show less