Properties

Label 90.2.i.b
Level 9090
Weight 22
Character orbit 90.i
Analytic conductor 0.7190.719
Analytic rank 00
Dimension 88
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [90,2,Mod(49,90)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(90, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([2, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("90.49"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: N N == 90=2325 90 = 2 \cdot 3^{2} \cdot 5
Weight: k k == 2 2
Character orbit: [χ][\chi] == 90.i (of order 66, degree 22, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 0.7186536181920.718653618192
Analytic rank: 00
Dimension: 88
Relative dimension: 44 over Q(ζ6)\Q(\zeta_{6})
Coefficient field: Q(ζ24)\Q(\zeta_{24})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x8x4+1 x^{8} - x^{4} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: SU(2)[C6]\mathrm{SU}(2)[C_{6}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a primitive root of unity ζ24\zeta_{24}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+ζ242q2+(ζ247++ζ242)q3+ζ244q4+(ζ246+2ζ245+ζ24)q5+(ζ247+ζ244+ζ24)q6++(2ζ247ζ245+5)q99+O(q100) q + \zeta_{24}^{2} q^{2} + ( - \zeta_{24}^{7} + \cdots + \zeta_{24}^{2}) q^{3} + \zeta_{24}^{4} q^{4} + (\zeta_{24}^{6} + 2 \zeta_{24}^{5} + \cdots - \zeta_{24}) q^{5} + ( - \zeta_{24}^{7} + \zeta_{24}^{4} + \zeta_{24}) q^{6}+ \cdots + ( - 2 \zeta_{24}^{7} - \zeta_{24}^{5} + \cdots - 5) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q+4q44q5+4q64q98q10+4q118q148q154q16+24q19+4q2032q214q2424q29+16q3016q31+4q34+40q35+8q99+O(q100) 8 q + 4 q^{4} - 4 q^{5} + 4 q^{6} - 4 q^{9} - 8 q^{10} + 4 q^{11} - 8 q^{14} - 8 q^{15} - 4 q^{16} + 24 q^{19} + 4 q^{20} - 32 q^{21} - 4 q^{24} - 24 q^{29} + 16 q^{30} - 16 q^{31} + 4 q^{34} + 40 q^{35}+ \cdots - 8 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/90Z)×\left(\mathbb{Z}/90\mathbb{Z}\right)^\times.

nn 1111 3737
χ(n)\chi(n) ζ244-\zeta_{24}^{4} 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
49.1
0.258819 + 0.965926i
−0.258819 0.965926i
−0.965926 + 0.258819i
0.965926 0.258819i
0.258819 0.965926i
−0.258819 + 0.965926i
−0.965926 0.258819i
0.965926 + 0.258819i
−0.866025 + 0.500000i −1.57313 0.724745i 0.500000 0.866025i 2.03906 + 0.917738i 1.72474 0.158919i 3.85337 2.22474i 1.00000i 1.94949 + 2.28024i −2.22474 + 0.224745i
49.2 −0.866025 + 0.500000i −0.158919 + 1.72474i 0.500000 0.866025i −1.30701 + 1.81431i −0.724745 1.57313i −0.389270 + 0.224745i 1.00000i −2.94949 0.548188i 0.224745 2.22474i
49.3 0.866025 0.500000i 0.158919 1.72474i 0.500000 0.866025i −0.917738 + 2.03906i −0.724745 1.57313i 0.389270 0.224745i 1.00000i −2.94949 0.548188i 0.224745 + 2.22474i
49.4 0.866025 0.500000i 1.57313 + 0.724745i 0.500000 0.866025i −1.81431 1.30701i 1.72474 0.158919i −3.85337 + 2.22474i 1.00000i 1.94949 + 2.28024i −2.22474 0.224745i
79.1 −0.866025 0.500000i −1.57313 + 0.724745i 0.500000 + 0.866025i 2.03906 0.917738i 1.72474 + 0.158919i 3.85337 + 2.22474i 1.00000i 1.94949 2.28024i −2.22474 0.224745i
79.2 −0.866025 0.500000i −0.158919 1.72474i 0.500000 + 0.866025i −1.30701 1.81431i −0.724745 + 1.57313i −0.389270 0.224745i 1.00000i −2.94949 + 0.548188i 0.224745 + 2.22474i
79.3 0.866025 + 0.500000i 0.158919 + 1.72474i 0.500000 + 0.866025i −0.917738 2.03906i −0.724745 + 1.57313i 0.389270 + 0.224745i 1.00000i −2.94949 + 0.548188i 0.224745 2.22474i
79.4 0.866025 + 0.500000i 1.57313 0.724745i 0.500000 + 0.866025i −1.81431 + 1.30701i 1.72474 + 0.158919i −3.85337 2.22474i 1.00000i 1.94949 2.28024i −2.22474 + 0.224745i
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 49.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner
9.c even 3 1 inner
45.j even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 90.2.i.b 8
3.b odd 2 1 270.2.i.b 8
4.b odd 2 1 720.2.by.c 8
5.b even 2 1 inner 90.2.i.b 8
5.c odd 4 1 450.2.e.k 4
5.c odd 4 1 450.2.e.n 4
9.c even 3 1 inner 90.2.i.b 8
9.c even 3 1 810.2.c.f 4
9.d odd 6 1 270.2.i.b 8
9.d odd 6 1 810.2.c.e 4
12.b even 2 1 2160.2.by.d 8
15.d odd 2 1 270.2.i.b 8
15.e even 4 1 1350.2.e.j 4
15.e even 4 1 1350.2.e.m 4
20.d odd 2 1 720.2.by.c 8
36.f odd 6 1 720.2.by.c 8
36.h even 6 1 2160.2.by.d 8
45.h odd 6 1 270.2.i.b 8
45.h odd 6 1 810.2.c.e 4
45.j even 6 1 inner 90.2.i.b 8
45.j even 6 1 810.2.c.f 4
45.k odd 12 1 450.2.e.k 4
45.k odd 12 1 450.2.e.n 4
45.k odd 12 1 4050.2.a.bq 2
45.k odd 12 1 4050.2.a.bs 2
45.l even 12 1 1350.2.e.j 4
45.l even 12 1 1350.2.e.m 4
45.l even 12 1 4050.2.a.bm 2
45.l even 12 1 4050.2.a.bz 2
60.h even 2 1 2160.2.by.d 8
180.n even 6 1 2160.2.by.d 8
180.p odd 6 1 720.2.by.c 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
90.2.i.b 8 1.a even 1 1 trivial
90.2.i.b 8 5.b even 2 1 inner
90.2.i.b 8 9.c even 3 1 inner
90.2.i.b 8 45.j even 6 1 inner
270.2.i.b 8 3.b odd 2 1
270.2.i.b 8 9.d odd 6 1
270.2.i.b 8 15.d odd 2 1
270.2.i.b 8 45.h odd 6 1
450.2.e.k 4 5.c odd 4 1
450.2.e.k 4 45.k odd 12 1
450.2.e.n 4 5.c odd 4 1
450.2.e.n 4 45.k odd 12 1
720.2.by.c 8 4.b odd 2 1
720.2.by.c 8 20.d odd 2 1
720.2.by.c 8 36.f odd 6 1
720.2.by.c 8 180.p odd 6 1
810.2.c.e 4 9.d odd 6 1
810.2.c.e 4 45.h odd 6 1
810.2.c.f 4 9.c even 3 1
810.2.c.f 4 45.j even 6 1
1350.2.e.j 4 15.e even 4 1
1350.2.e.j 4 45.l even 12 1
1350.2.e.m 4 15.e even 4 1
1350.2.e.m 4 45.l even 12 1
2160.2.by.d 8 12.b even 2 1
2160.2.by.d 8 36.h even 6 1
2160.2.by.d 8 60.h even 2 1
2160.2.by.d 8 180.n even 6 1
4050.2.a.bm 2 45.l even 12 1
4050.2.a.bq 2 45.k odd 12 1
4050.2.a.bs 2 45.k odd 12 1
4050.2.a.bz 2 45.l even 12 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T7820T76+396T7480T72+16 T_{7}^{8} - 20T_{7}^{6} + 396T_{7}^{4} - 80T_{7}^{2} + 16 acting on S2new(90,[χ])S_{2}^{\mathrm{new}}(90, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T4T2+1)2 (T^{4} - T^{2} + 1)^{2} Copy content Toggle raw display
33 T8+2T6++81 T^{8} + 2 T^{6} + \cdots + 81 Copy content Toggle raw display
55 T8+4T7++625 T^{8} + 4 T^{7} + \cdots + 625 Copy content Toggle raw display
77 T820T6++16 T^{8} - 20 T^{6} + \cdots + 16 Copy content Toggle raw display
1111 (T42T3+9T2++25)2 (T^{4} - 2 T^{3} + 9 T^{2} + \cdots + 25)^{2} Copy content Toggle raw display
1313 (T46T2+36)2 (T^{4} - 6 T^{2} + 36)^{2} Copy content Toggle raw display
1717 (T4+50T2+529)2 (T^{4} + 50 T^{2} + 529)^{2} Copy content Toggle raw display
1919 (T26T+3)4 (T^{2} - 6 T + 3)^{4} Copy content Toggle raw display
2323 T856T6++160000 T^{8} - 56 T^{6} + \cdots + 160000 Copy content Toggle raw display
2929 (T2+6T+36)4 (T^{2} + 6 T + 36)^{4} Copy content Toggle raw display
3131 (T4+8T3++100)2 (T^{4} + 8 T^{3} + \cdots + 100)^{2} Copy content Toggle raw display
3737 (T2+64)4 (T^{2} + 64)^{4} Copy content Toggle raw display
4141 (T2T+1)4 (T^{2} - T + 1)^{4} Copy content Toggle raw display
4343 T862T6++130321 T^{8} - 62 T^{6} + \cdots + 130321 Copy content Toggle raw display
4747 T820T6++16 T^{8} - 20 T^{6} + \cdots + 16 Copy content Toggle raw display
5353 (T4+84T2+900)2 (T^{4} + 84 T^{2} + 900)^{2} Copy content Toggle raw display
5959 (T42T3++22201)2 (T^{4} - 2 T^{3} + \cdots + 22201)^{2} Copy content Toggle raw display
6161 (T4+4T3+18T2++4)2 (T^{4} + 4 T^{3} + 18 T^{2} + \cdots + 4)^{2} Copy content Toggle raw display
6767 T8110T6++3418801 T^{8} - 110 T^{6} + \cdots + 3418801 Copy content Toggle raw display
7171 (T26)4 (T^{2} - 6)^{4} Copy content Toggle raw display
7373 (T4+242T2+5041)2 (T^{4} + 242 T^{2} + 5041)^{2} Copy content Toggle raw display
7979 (T4+54T2+2916)2 (T^{4} + 54 T^{2} + 2916)^{2} Copy content Toggle raw display
8383 (T416T2+256)2 (T^{4} - 16 T^{2} + 256)^{2} Copy content Toggle raw display
8989 (T2+16T+40)4 (T^{2} + 16 T + 40)^{4} Copy content Toggle raw display
9797 (T4169T2+28561)2 (T^{4} - 169 T^{2} + 28561)^{2} Copy content Toggle raw display
show more
show less