gp: [N,k,chi] = [1350,2,Mod(451,1350)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1350, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([4, 0]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1350.451");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [4,2,0,-2,0,0,4,-4,0,0,-2,0,0,-4,0,-2,-4]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , β 2 , β 3 1,\beta_1,\beta_2,\beta_3 1 , β 1 , β 2 , β 3 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring in terms of a root ν \nu ν of
x 4 − 2 x 2 + 4 x^{4} - 2x^{2} + 4 x 4 − 2 x 2 + 4
x^4 - 2*x^2 + 4
:
β 1 \beta_{1} β 1 = = =
( ν 2 ) / 2 ( \nu^{2} ) / 2 ( ν 2 ) / 2
(v^2) / 2
β 2 \beta_{2} β 2 = = =
( ν 3 + 2 ν ) / 2 ( \nu^{3} + 2\nu ) / 2 ( ν 3 + 2 ν ) / 2
(v^3 + 2*v) / 2
β 3 \beta_{3} β 3 = = =
( − ν 3 + 4 ν ) / 2 ( -\nu^{3} + 4\nu ) / 2 ( − ν 3 + 4 ν ) / 2
(-v^3 + 4*v) / 2
ν \nu ν = = =
( β 3 + β 2 ) / 3 ( \beta_{3} + \beta_{2} ) / 3 ( β 3 + β 2 ) / 3
(b3 + b2) / 3
ν 2 \nu^{2} ν 2 = = =
2 β 1 2\beta_1 2 β 1
2*b1
ν 3 \nu^{3} ν 3 = = =
( − 2 β 3 + 4 β 2 ) / 3 ( -2\beta_{3} + 4\beta_{2} ) / 3 ( − 2 β 3 + 4 β 2 ) / 3
(-2*b3 + 4*b2) / 3
Character values
We give the values of χ \chi χ on generators for ( Z / 1350 Z ) × \left(\mathbb{Z}/1350\mathbb{Z}\right)^\times ( Z / 1 3 5 0 Z ) × .
n n n
1001 1001 1 0 0 1
1027 1027 1 0 2 7
χ ( n ) \chi(n) χ ( n )
− β 1 -\beta_{1} − β 1
1 1 1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 2 n e w ( 1350 , [ χ ] ) S_{2}^{\mathrm{new}}(1350, [\chi]) S 2 n e w ( 1 3 5 0 , [ χ ] ) :
T 7 4 − 4 T 7 3 + 18 T 7 2 + 8 T 7 + 4 T_{7}^{4} - 4T_{7}^{3} + 18T_{7}^{2} + 8T_{7} + 4 T 7 4 − 4 T 7 3 + 1 8 T 7 2 + 8 T 7 + 4
T7^4 - 4*T7^3 + 18*T7^2 + 8*T7 + 4
T 11 4 + 2 T 11 3 + 9 T 11 2 − 10 T 11 + 25 T_{11}^{4} + 2T_{11}^{3} + 9T_{11}^{2} - 10T_{11} + 25 T 1 1 4 + 2 T 1 1 3 + 9 T 1 1 2 − 1 0 T 1 1 + 2 5
T11^4 + 2*T11^3 + 9*T11^2 - 10*T11 + 25
T 17 2 + 2 T 17 − 23 T_{17}^{2} + 2T_{17} - 23 T 1 7 2 + 2 T 1 7 − 2 3
T17^2 + 2*T17 - 23
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
( T 2 − T + 1 ) 2 (T^{2} - T + 1)^{2} ( T 2 − T + 1 ) 2
(T^2 - T + 1)^2
3 3 3
T 4 T^{4} T 4
T^4
5 5 5
T 4 T^{4} T 4
T^4
7 7 7
T 4 − 4 T 3 + ⋯ + 4 T^{4} - 4 T^{3} + \cdots + 4 T 4 − 4 T 3 + ⋯ + 4
T^4 - 4*T^3 + 18*T^2 + 8*T + 4
11 11 1 1
T 4 + 2 T 3 + ⋯ + 25 T^{4} + 2 T^{3} + \cdots + 25 T 4 + 2 T 3 + ⋯ + 2 5
T^4 + 2*T^3 + 9*T^2 - 10*T + 25
13 13 1 3
T 4 + 6 T 2 + 36 T^{4} + 6T^{2} + 36 T 4 + 6 T 2 + 3 6
T^4 + 6*T^2 + 36
17 17 1 7
( T 2 + 2 T − 23 ) 2 (T^{2} + 2 T - 23)^{2} ( T 2 + 2 T − 2 3 ) 2
(T^2 + 2*T - 23)^2
19 19 1 9
( T 2 + 6 T + 3 ) 2 (T^{2} + 6 T + 3)^{2} ( T 2 + 6 T + 3 ) 2
(T^2 + 6*T + 3)^2
23 23 2 3
T 4 + 4 T 3 + ⋯ + 400 T^{4} + 4 T^{3} + \cdots + 400 T 4 + 4 T 3 + ⋯ + 4 0 0
T^4 + 4*T^3 + 36*T^2 - 80*T + 400
29 29 2 9
( T 2 + 6 T + 36 ) 2 (T^{2} + 6 T + 36)^{2} ( T 2 + 6 T + 3 6 ) 2
(T^2 + 6*T + 36)^2
31 31 3 1
T 4 + 8 T 3 + ⋯ + 100 T^{4} + 8 T^{3} + \cdots + 100 T 4 + 8 T 3 + ⋯ + 1 0 0
T^4 + 8*T^3 + 54*T^2 + 80*T + 100
37 37 3 7
( T + 8 ) 4 (T + 8)^{4} ( T + 8 ) 4
(T + 8)^4
41 41 4 1
( T 2 + T + 1 ) 2 (T^{2} + T + 1)^{2} ( T 2 + T + 1 ) 2
(T^2 + T + 1)^2
43 43 4 3
T 4 − 10 T 3 + ⋯ + 361 T^{4} - 10 T^{3} + \cdots + 361 T 4 − 1 0 T 3 + ⋯ + 3 6 1
T^4 - 10*T^3 + 81*T^2 - 190*T + 361
47 47 4 7
T 4 − 4 T 3 + ⋯ + 4 T^{4} - 4 T^{3} + \cdots + 4 T 4 − 4 T 3 + ⋯ + 4
T^4 - 4*T^3 + 18*T^2 + 8*T + 4
53 53 5 3
( T 2 − 12 T + 30 ) 2 (T^{2} - 12 T + 30)^{2} ( T 2 − 1 2 T + 3 0 ) 2
(T^2 - 12*T + 30)^2
59 59 5 9
T 4 − 2 T 3 + ⋯ + 22201 T^{4} - 2 T^{3} + \cdots + 22201 T 4 − 2 T 3 + ⋯ + 2 2 2 0 1
T^4 - 2*T^3 + 153*T^2 + 298*T + 22201
61 61 6 1
T 4 + 4 T 3 + ⋯ + 4 T^{4} + 4 T^{3} + \cdots + 4 T 4 + 4 T 3 + ⋯ + 4
T^4 + 4*T^3 + 18*T^2 - 8*T + 4
67 67 6 7
T 4 − 14 T 3 + ⋯ + 1849 T^{4} - 14 T^{3} + \cdots + 1849 T 4 − 1 4 T 3 + ⋯ + 1 8 4 9
T^4 - 14*T^3 + 153*T^2 - 602*T + 1849
71 71 7 1
( T 2 − 6 ) 2 (T^{2} - 6)^{2} ( T 2 − 6 ) 2
(T^2 - 6)^2
73 73 7 3
( T 2 + 10 T − 71 ) 2 (T^{2} + 10 T - 71)^{2} ( T 2 + 1 0 T − 7 1 ) 2
(T^2 + 10*T - 71)^2
79 79 7 9
T 4 + 54 T 2 + 2916 T^{4} + 54T^{2} + 2916 T 4 + 5 4 T 2 + 2 9 1 6
T^4 + 54*T^2 + 2916
83 83 8 3
( T 2 − 4 T + 16 ) 2 (T^{2} - 4 T + 16)^{2} ( T 2 − 4 T + 1 6 ) 2
(T^2 - 4*T + 16)^2
89 89 8 9
( T 2 + 16 T + 40 ) 2 (T^{2} + 16 T + 40)^{2} ( T 2 + 1 6 T + 4 0 ) 2
(T^2 + 16*T + 40)^2
97 97 9 7
( T 2 − 13 T + 169 ) 2 (T^{2} - 13 T + 169)^{2} ( T 2 − 1 3 T + 1 6 9 ) 2
(T^2 - 13*T + 169)^2
show more
show less