Properties

Label 1350.2
Level 1350
Weight 2
Dimension 11798
Nonzero newspaces 18
Sturm bound 194400
Trace bound 5

Downloads

Learn more about

Defining parameters

Level: \( N \) = \( 1350 = 2 \cdot 3^{3} \cdot 5^{2} \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 18 \)
Sturm bound: \(194400\)
Trace bound: \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(1350))\).

Total New Old
Modular forms 50280 11798 38482
Cusp forms 46921 11798 35123
Eisenstein series 3359 0 3359

Trace form

\( 11798q + q^{2} + q^{4} - 6q^{6} - 4q^{7} - 5q^{8} - 12q^{9} + O(q^{10}) \) \( 11798q + q^{2} + q^{4} - 6q^{6} - 4q^{7} - 5q^{8} - 12q^{9} - 8q^{10} - 50q^{11} - 3q^{12} - 42q^{13} - 36q^{14} + q^{16} - 54q^{17} + 6q^{18} - 30q^{19} - 8q^{20} + 24q^{21} - 16q^{22} - 30q^{23} - 16q^{25} + 32q^{26} + 27q^{27} + 2q^{28} - 12q^{29} - 36q^{31} + q^{32} + 75q^{33} + 58q^{34} + 96q^{35} + 54q^{36} + 60q^{37} + 227q^{38} + 198q^{39} + 32q^{40} + 298q^{41} + 168q^{42} + 228q^{43} + 80q^{44} + 120q^{45} + 96q^{46} + 378q^{47} + 42q^{48} + 213q^{49} + 160q^{50} + 192q^{51} + 54q^{52} + 336q^{53} + 108q^{54} + 32q^{55} + 76q^{56} + 135q^{57} + 46q^{58} + 65q^{59} + 6q^{61} + 56q^{62} - 6q^{63} - 5q^{64} + 144q^{65} + 114q^{67} + 57q^{68} + 18q^{69} + 128q^{70} + 16q^{71} + 24q^{72} + 134q^{73} + 146q^{74} + 72q^{75} + 39q^{76} + 548q^{77} + 36q^{78} + 364q^{79} + 192q^{81} + 126q^{82} + 580q^{83} + 208q^{85} + 34q^{86} + 276q^{87} + 11q^{88} + 505q^{89} + 206q^{91} - 8q^{92} + 282q^{93} - 34q^{94} + 136q^{95} + 6q^{96} + 84q^{97} - 105q^{98} + 204q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(1350))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list the newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
1350.2.a \(\chi_{1350}(1, \cdot)\) 1350.2.a.a 1 1
1350.2.a.b 1
1350.2.a.c 1
1350.2.a.d 1
1350.2.a.e 1
1350.2.a.f 1
1350.2.a.g 1
1350.2.a.h 1
1350.2.a.i 1
1350.2.a.j 1
1350.2.a.k 1
1350.2.a.l 1
1350.2.a.m 1
1350.2.a.n 1
1350.2.a.o 1
1350.2.a.p 1
1350.2.a.q 1
1350.2.a.r 1
1350.2.a.s 1
1350.2.a.t 1
1350.2.a.u 1
1350.2.a.v 1
1350.2.a.w 2
1350.2.a.x 2
1350.2.c \(\chi_{1350}(649, \cdot)\) 1350.2.c.a 2 1
1350.2.c.b 2
1350.2.c.c 2
1350.2.c.d 2
1350.2.c.e 2
1350.2.c.f 2
1350.2.c.g 2
1350.2.c.h 2
1350.2.c.i 2
1350.2.c.j 2
1350.2.c.k 2
1350.2.c.l 2
1350.2.e \(\chi_{1350}(451, \cdot)\) 1350.2.e.a 2 2
1350.2.e.b 2
1350.2.e.c 2
1350.2.e.d 2
1350.2.e.e 2
1350.2.e.f 2
1350.2.e.g 2
1350.2.e.h 2
1350.2.e.i 2
1350.2.e.j 4
1350.2.e.k 4
1350.2.e.l 4
1350.2.e.m 4
1350.2.e.n 4
1350.2.f \(\chi_{1350}(107, \cdot)\) 1350.2.f.a 8 2
1350.2.f.b 8
1350.2.f.c 8
1350.2.f.d 8
1350.2.f.e 8
1350.2.f.f 8
1350.2.h \(\chi_{1350}(271, \cdot)\) n/a 160 4
1350.2.j \(\chi_{1350}(199, \cdot)\) 1350.2.j.a 4 2
1350.2.j.b 4
1350.2.j.c 4
1350.2.j.d 4
1350.2.j.e 4
1350.2.j.f 8
1350.2.j.g 8
1350.2.l \(\chi_{1350}(151, \cdot)\) n/a 342 6
1350.2.m \(\chi_{1350}(109, \cdot)\) n/a 160 4
1350.2.q \(\chi_{1350}(143, \cdot)\) 1350.2.q.a 8 4
1350.2.q.b 8
1350.2.q.c 8
1350.2.q.d 8
1350.2.q.e 8
1350.2.q.f 8
1350.2.q.g 8
1350.2.q.h 16
1350.2.r \(\chi_{1350}(91, \cdot)\) n/a 240 8
1350.2.u \(\chi_{1350}(49, \cdot)\) n/a 324 6
1350.2.w \(\chi_{1350}(53, \cdot)\) n/a 320 8
1350.2.z \(\chi_{1350}(19, \cdot)\) n/a 240 8
1350.2.bb \(\chi_{1350}(257, \cdot)\) n/a 648 12
1350.2.bc \(\chi_{1350}(31, \cdot)\) n/a 2160 24
1350.2.bd \(\chi_{1350}(17, \cdot)\) n/a 480 16
1350.2.bf \(\chi_{1350}(79, \cdot)\) n/a 2160 24
1350.2.bi \(\chi_{1350}(23, \cdot)\) n/a 4320 48

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(1350))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(1350)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(15))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(18))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(25))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(27))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(30))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(45))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(50))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(54))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(75))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(90))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(135))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(150))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(225))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(270))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(450))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(675))\)\(^{\oplus 2}\)