Properties

Label 450.2.e.n
Level 450450
Weight 22
Character orbit 450.e
Analytic conductor 3.5933.593
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [450,2,Mod(151,450)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("450.151"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(450, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4, 0])) N = Newforms(chi, 2, names="a")
 
Level: N N == 450=23252 450 = 2 \cdot 3^{2} \cdot 5^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 450.e (of order 33, degree 22, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,2,-2,-2,0,2,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 3.593268090963.59326809096
Analytic rank: 00
Dimension: 44
Relative dimension: 22 over Q(ζ3)\Q(\zeta_{3})
Coefficient field: Q(2,3)\Q(\sqrt{-2}, \sqrt{-3})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x42x2+4 x^{4} - 2x^{2} + 4 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 90)
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β2q2+(β3β2β1)q3+(β21)q4+(β2β1+1)q6+(β32β2+β1)q7q8+(β2+2β1+1)q9++(β3+8β2+2β13)q99+O(q100) q + \beta_{2} q^{2} + (\beta_{3} - \beta_{2} - \beta_1) q^{3} + (\beta_{2} - 1) q^{4} + ( - \beta_{2} - \beta_1 + 1) q^{6} + (\beta_{3} - 2 \beta_{2} + \beta_1) q^{7} - q^{8} + ( - \beta_{2} + 2 \beta_1 + 1) q^{9}+ \cdots + (\beta_{3} + 8 \beta_{2} + 2 \beta_1 - 3) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+2q22q32q4+2q64q74q8+2q9+2q11+4q12+4q142q164q17+4q1812q1916q212q224q23+2q2420q27++4q99+O(q100) 4 q + 2 q^{2} - 2 q^{3} - 2 q^{4} + 2 q^{6} - 4 q^{7} - 4 q^{8} + 2 q^{9} + 2 q^{11} + 4 q^{12} + 4 q^{14} - 2 q^{16} - 4 q^{17} + 4 q^{18} - 12 q^{19} - 16 q^{21} - 2 q^{22} - 4 q^{23} + 2 q^{24} - 20 q^{27}+ \cdots + 4 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x42x2+4 x^{4} - 2x^{2} + 4 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (ν2)/2 ( \nu^{2} ) / 2 Copy content Toggle raw display
β3\beta_{3}== (ν3)/2 ( \nu^{3} ) / 2 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== 2β2 2\beta_{2} Copy content Toggle raw display
ν3\nu^{3}== 2β3 2\beta_{3} Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/450Z)×\left(\mathbb{Z}/450\mathbb{Z}\right)^\times.

nn 101101 127127
χ(n)\chi(n) 1+β2-1 + \beta_{2} 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
151.1
1.22474 0.707107i
−1.22474 + 0.707107i
1.22474 + 0.707107i
−1.22474 0.707107i
0.500000 0.866025i −1.72474 + 0.158919i −0.500000 0.866025i 0 −0.724745 + 1.57313i 0.224745 0.389270i −1.00000 2.94949 0.548188i 0
151.2 0.500000 0.866025i 0.724745 + 1.57313i −0.500000 0.866025i 0 1.72474 + 0.158919i −2.22474 + 3.85337i −1.00000 −1.94949 + 2.28024i 0
301.1 0.500000 + 0.866025i −1.72474 0.158919i −0.500000 + 0.866025i 0 −0.724745 1.57313i 0.224745 + 0.389270i −1.00000 2.94949 + 0.548188i 0
301.2 0.500000 + 0.866025i 0.724745 1.57313i −0.500000 + 0.866025i 0 1.72474 0.158919i −2.22474 3.85337i −1.00000 −1.94949 2.28024i 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
9.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 450.2.e.n 4
3.b odd 2 1 1350.2.e.j 4
5.b even 2 1 450.2.e.k 4
5.c odd 4 2 90.2.i.b 8
9.c even 3 1 inner 450.2.e.n 4
9.c even 3 1 4050.2.a.bq 2
9.d odd 6 1 1350.2.e.j 4
9.d odd 6 1 4050.2.a.bz 2
15.d odd 2 1 1350.2.e.m 4
15.e even 4 2 270.2.i.b 8
20.e even 4 2 720.2.by.c 8
45.h odd 6 1 1350.2.e.m 4
45.h odd 6 1 4050.2.a.bm 2
45.j even 6 1 450.2.e.k 4
45.j even 6 1 4050.2.a.bs 2
45.k odd 12 2 90.2.i.b 8
45.k odd 12 2 810.2.c.f 4
45.l even 12 2 270.2.i.b 8
45.l even 12 2 810.2.c.e 4
60.l odd 4 2 2160.2.by.d 8
180.v odd 12 2 2160.2.by.d 8
180.x even 12 2 720.2.by.c 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
90.2.i.b 8 5.c odd 4 2
90.2.i.b 8 45.k odd 12 2
270.2.i.b 8 15.e even 4 2
270.2.i.b 8 45.l even 12 2
450.2.e.k 4 5.b even 2 1
450.2.e.k 4 45.j even 6 1
450.2.e.n 4 1.a even 1 1 trivial
450.2.e.n 4 9.c even 3 1 inner
720.2.by.c 8 20.e even 4 2
720.2.by.c 8 180.x even 12 2
810.2.c.e 4 45.l even 12 2
810.2.c.f 4 45.k odd 12 2
1350.2.e.j 4 3.b odd 2 1
1350.2.e.j 4 9.d odd 6 1
1350.2.e.m 4 15.d odd 2 1
1350.2.e.m 4 45.h odd 6 1
2160.2.by.d 8 60.l odd 4 2
2160.2.by.d 8 180.v odd 12 2
4050.2.a.bm 2 45.h odd 6 1
4050.2.a.bq 2 9.c even 3 1
4050.2.a.bs 2 45.j even 6 1
4050.2.a.bz 2 9.d odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(450,[χ])S_{2}^{\mathrm{new}}(450, [\chi]):

T74+4T73+18T728T7+4 T_{7}^{4} + 4T_{7}^{3} + 18T_{7}^{2} - 8T_{7} + 4 Copy content Toggle raw display
T1142T113+9T112+10T11+25 T_{11}^{4} - 2T_{11}^{3} + 9T_{11}^{2} + 10T_{11} + 25 Copy content Toggle raw display
T172+2T1723 T_{17}^{2} + 2T_{17} - 23 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T2T+1)2 (T^{2} - T + 1)^{2} Copy content Toggle raw display
33 T4+2T3++9 T^{4} + 2 T^{3} + \cdots + 9 Copy content Toggle raw display
55 T4 T^{4} Copy content Toggle raw display
77 T4+4T3++4 T^{4} + 4 T^{3} + \cdots + 4 Copy content Toggle raw display
1111 T42T3++25 T^{4} - 2 T^{3} + \cdots + 25 Copy content Toggle raw display
1313 T4+6T2+36 T^{4} + 6T^{2} + 36 Copy content Toggle raw display
1717 (T2+2T23)2 (T^{2} + 2 T - 23)^{2} Copy content Toggle raw display
1919 (T2+6T+3)2 (T^{2} + 6 T + 3)^{2} Copy content Toggle raw display
2323 T4+4T3++400 T^{4} + 4 T^{3} + \cdots + 400 Copy content Toggle raw display
2929 (T26T+36)2 (T^{2} - 6 T + 36)^{2} Copy content Toggle raw display
3131 T4+8T3++100 T^{4} + 8 T^{3} + \cdots + 100 Copy content Toggle raw display
3737 (T8)4 (T - 8)^{4} Copy content Toggle raw display
4141 (T2T+1)2 (T^{2} - T + 1)^{2} Copy content Toggle raw display
4343 T4+10T3++361 T^{4} + 10 T^{3} + \cdots + 361 Copy content Toggle raw display
4747 T44T3++4 T^{4} - 4 T^{3} + \cdots + 4 Copy content Toggle raw display
5353 (T212T+30)2 (T^{2} - 12 T + 30)^{2} Copy content Toggle raw display
5959 T4+2T3++22201 T^{4} + 2 T^{3} + \cdots + 22201 Copy content Toggle raw display
6161 T4+4T3++4 T^{4} + 4 T^{3} + \cdots + 4 Copy content Toggle raw display
6767 T4+14T3++1849 T^{4} + 14 T^{3} + \cdots + 1849 Copy content Toggle raw display
7171 (T26)2 (T^{2} - 6)^{2} Copy content Toggle raw display
7373 (T210T71)2 (T^{2} - 10 T - 71)^{2} Copy content Toggle raw display
7979 T4+54T2+2916 T^{4} + 54T^{2} + 2916 Copy content Toggle raw display
8383 (T24T+16)2 (T^{2} - 4 T + 16)^{2} Copy content Toggle raw display
8989 (T216T+40)2 (T^{2} - 16 T + 40)^{2} Copy content Toggle raw display
9797 (T2+13T+169)2 (T^{2} + 13 T + 169)^{2} Copy content Toggle raw display
show more
show less