Properties

Label 270.2.i.b
Level 270270
Weight 22
Character orbit 270.i
Analytic conductor 2.1562.156
Analytic rank 00
Dimension 88
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [270,2,Mod(19,270)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(270, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("270.19"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: N N == 270=2335 270 = 2 \cdot 3^{3} \cdot 5
Weight: k k == 2 2
Character orbit: [χ][\chi] == 270.i (of order 66, degree 22, not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 2.155960854572.15596085457
Analytic rank: 00
Dimension: 88
Relative dimension: 44 over Q(ζ6)\Q(\zeta_{6})
Coefficient field: Q(ζ24)\Q(\zeta_{24})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x8x4+1 x^{8} - x^{4} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 32 3^{2}
Twist minimal: no (minimal twist has level 90)
Sato-Tate group: SU(2)[C6]\mathrm{SU}(2)[C_{6}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β71,\beta_1,\ldots,\beta_{7} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β4+β1)q2+(β2+1)q4+(β6β2β1+1)q5+(β7+β6++2β1)q7β4q8+(β7+β5β41)q10++(4β74β5+4β3)q98+O(q100) q + ( - \beta_{4} + \beta_1) q^{2} + ( - \beta_{2} + 1) q^{4} + ( - \beta_{6} - \beta_{2} - \beta_1 + 1) q^{5} + (\beta_{7} + \beta_{6} + \cdots + 2 \beta_1) q^{7} - \beta_{4} q^{8} + ( - \beta_{7} + \beta_{5} - \beta_{4} - 1) q^{10}+ \cdots + (4 \beta_{7} - 4 \beta_{5} + \cdots - 4 \beta_{3}) q^{98}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q+4q4+4q58q104q11+8q144q16+24q194q20+24q2916q31+4q3440q354q404q418q4416q46+12q49+4q50++24q95+O(q100) 8 q + 4 q^{4} + 4 q^{5} - 8 q^{10} - 4 q^{11} + 8 q^{14} - 4 q^{16} + 24 q^{19} - 4 q^{20} + 24 q^{29} - 16 q^{31} + 4 q^{34} - 40 q^{35} - 4 q^{40} - 4 q^{41} - 8 q^{44} - 16 q^{46} + 12 q^{49} + 4 q^{50}+ \cdots + 24 q^{95}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring

β1\beta_{1}== ζ242 \zeta_{24}^{2} Copy content Toggle raw display
β2\beta_{2}== ζ244 \zeta_{24}^{4} Copy content Toggle raw display
β3\beta_{3}== ζ245+ζ24 \zeta_{24}^{5} + \zeta_{24} Copy content Toggle raw display
β4\beta_{4}== ζ246 \zeta_{24}^{6} Copy content Toggle raw display
β5\beta_{5}== ζ247+ζ243 \zeta_{24}^{7} + \zeta_{24}^{3} Copy content Toggle raw display
β6\beta_{6}== ζ245+2ζ24 -\zeta_{24}^{5} + 2\zeta_{24} Copy content Toggle raw display
β7\beta_{7}== ζ247+2ζ243 -\zeta_{24}^{7} + 2\zeta_{24}^{3} Copy content Toggle raw display
ζ24\zeta_{24}== (β6+β3)/3 ( \beta_{6} + \beta_{3} ) / 3 Copy content Toggle raw display
ζ242\zeta_{24}^{2}== β1 \beta_1 Copy content Toggle raw display
ζ243\zeta_{24}^{3}== (β7+β5)/3 ( \beta_{7} + \beta_{5} ) / 3 Copy content Toggle raw display
ζ244\zeta_{24}^{4}== β2 \beta_{2} Copy content Toggle raw display
ζ245\zeta_{24}^{5}== (β6+2β3)/3 ( -\beta_{6} + 2\beta_{3} ) / 3 Copy content Toggle raw display
ζ246\zeta_{24}^{6}== β4 \beta_{4} Copy content Toggle raw display
ζ247\zeta_{24}^{7}== (β7+2β5)/3 ( -\beta_{7} + 2\beta_{5} ) / 3 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/270Z)×\left(\mathbb{Z}/270\mathbb{Z}\right)^\times.

nn 191191 217217
χ(n)\chi(n) 1+β2-1 + \beta_{2} 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
19.1
−0.258819 0.965926i
0.258819 + 0.965926i
0.965926 0.258819i
−0.965926 + 0.258819i
−0.258819 + 0.965926i
0.258819 0.965926i
0.965926 + 0.258819i
−0.965926 0.258819i
−0.866025 0.500000i 0 0.500000 + 0.866025i 0.917738 + 2.03906i 0 0.389270 + 0.224745i 1.00000i 0 0.224745 2.22474i
19.2 −0.866025 0.500000i 0 0.500000 + 0.866025i 1.81431 1.30701i 0 −3.85337 2.22474i 1.00000i 0 −2.22474 + 0.224745i
19.3 0.866025 + 0.500000i 0 0.500000 + 0.866025i −2.03906 + 0.917738i 0 3.85337 + 2.22474i 1.00000i 0 −2.22474 0.224745i
19.4 0.866025 + 0.500000i 0 0.500000 + 0.866025i 1.30701 + 1.81431i 0 −0.389270 0.224745i 1.00000i 0 0.224745 + 2.22474i
199.1 −0.866025 + 0.500000i 0 0.500000 0.866025i 0.917738 2.03906i 0 0.389270 0.224745i 1.00000i 0 0.224745 + 2.22474i
199.2 −0.866025 + 0.500000i 0 0.500000 0.866025i 1.81431 + 1.30701i 0 −3.85337 + 2.22474i 1.00000i 0 −2.22474 0.224745i
199.3 0.866025 0.500000i 0 0.500000 0.866025i −2.03906 0.917738i 0 3.85337 2.22474i 1.00000i 0 −2.22474 + 0.224745i
199.4 0.866025 0.500000i 0 0.500000 0.866025i 1.30701 1.81431i 0 −0.389270 + 0.224745i 1.00000i 0 0.224745 2.22474i
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 19.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner
9.c even 3 1 inner
45.j even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 270.2.i.b 8
3.b odd 2 1 90.2.i.b 8
4.b odd 2 1 2160.2.by.d 8
5.b even 2 1 inner 270.2.i.b 8
5.c odd 4 1 1350.2.e.j 4
5.c odd 4 1 1350.2.e.m 4
9.c even 3 1 inner 270.2.i.b 8
9.c even 3 1 810.2.c.e 4
9.d odd 6 1 90.2.i.b 8
9.d odd 6 1 810.2.c.f 4
12.b even 2 1 720.2.by.c 8
15.d odd 2 1 90.2.i.b 8
15.e even 4 1 450.2.e.k 4
15.e even 4 1 450.2.e.n 4
20.d odd 2 1 2160.2.by.d 8
36.f odd 6 1 2160.2.by.d 8
36.h even 6 1 720.2.by.c 8
45.h odd 6 1 90.2.i.b 8
45.h odd 6 1 810.2.c.f 4
45.j even 6 1 inner 270.2.i.b 8
45.j even 6 1 810.2.c.e 4
45.k odd 12 1 1350.2.e.j 4
45.k odd 12 1 1350.2.e.m 4
45.k odd 12 1 4050.2.a.bm 2
45.k odd 12 1 4050.2.a.bz 2
45.l even 12 1 450.2.e.k 4
45.l even 12 1 450.2.e.n 4
45.l even 12 1 4050.2.a.bq 2
45.l even 12 1 4050.2.a.bs 2
60.h even 2 1 720.2.by.c 8
180.n even 6 1 720.2.by.c 8
180.p odd 6 1 2160.2.by.d 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
90.2.i.b 8 3.b odd 2 1
90.2.i.b 8 9.d odd 6 1
90.2.i.b 8 15.d odd 2 1
90.2.i.b 8 45.h odd 6 1
270.2.i.b 8 1.a even 1 1 trivial
270.2.i.b 8 5.b even 2 1 inner
270.2.i.b 8 9.c even 3 1 inner
270.2.i.b 8 45.j even 6 1 inner
450.2.e.k 4 15.e even 4 1
450.2.e.k 4 45.l even 12 1
450.2.e.n 4 15.e even 4 1
450.2.e.n 4 45.l even 12 1
720.2.by.c 8 12.b even 2 1
720.2.by.c 8 36.h even 6 1
720.2.by.c 8 60.h even 2 1
720.2.by.c 8 180.n even 6 1
810.2.c.e 4 9.c even 3 1
810.2.c.e 4 45.j even 6 1
810.2.c.f 4 9.d odd 6 1
810.2.c.f 4 45.h odd 6 1
1350.2.e.j 4 5.c odd 4 1
1350.2.e.j 4 45.k odd 12 1
1350.2.e.m 4 5.c odd 4 1
1350.2.e.m 4 45.k odd 12 1
2160.2.by.d 8 4.b odd 2 1
2160.2.by.d 8 20.d odd 2 1
2160.2.by.d 8 36.f odd 6 1
2160.2.by.d 8 180.p odd 6 1
4050.2.a.bm 2 45.k odd 12 1
4050.2.a.bq 2 45.l even 12 1
4050.2.a.bs 2 45.l even 12 1
4050.2.a.bz 2 45.k odd 12 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T7820T76+396T7480T72+16 T_{7}^{8} - 20T_{7}^{6} + 396T_{7}^{4} - 80T_{7}^{2} + 16 acting on S2new(270,[χ])S_{2}^{\mathrm{new}}(270, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T4T2+1)2 (T^{4} - T^{2} + 1)^{2} Copy content Toggle raw display
33 T8 T^{8} Copy content Toggle raw display
55 T84T7++625 T^{8} - 4 T^{7} + \cdots + 625 Copy content Toggle raw display
77 T820T6++16 T^{8} - 20 T^{6} + \cdots + 16 Copy content Toggle raw display
1111 (T4+2T3+9T2++25)2 (T^{4} + 2 T^{3} + 9 T^{2} + \cdots + 25)^{2} Copy content Toggle raw display
1313 (T46T2+36)2 (T^{4} - 6 T^{2} + 36)^{2} Copy content Toggle raw display
1717 (T4+50T2+529)2 (T^{4} + 50 T^{2} + 529)^{2} Copy content Toggle raw display
1919 (T26T+3)4 (T^{2} - 6 T + 3)^{4} Copy content Toggle raw display
2323 T856T6++160000 T^{8} - 56 T^{6} + \cdots + 160000 Copy content Toggle raw display
2929 (T26T+36)4 (T^{2} - 6 T + 36)^{4} Copy content Toggle raw display
3131 (T4+8T3++100)2 (T^{4} + 8 T^{3} + \cdots + 100)^{2} Copy content Toggle raw display
3737 (T2+64)4 (T^{2} + 64)^{4} Copy content Toggle raw display
4141 (T2+T+1)4 (T^{2} + T + 1)^{4} Copy content Toggle raw display
4343 T862T6++130321 T^{8} - 62 T^{6} + \cdots + 130321 Copy content Toggle raw display
4747 T820T6++16 T^{8} - 20 T^{6} + \cdots + 16 Copy content Toggle raw display
5353 (T4+84T2+900)2 (T^{4} + 84 T^{2} + 900)^{2} Copy content Toggle raw display
5959 (T4+2T3++22201)2 (T^{4} + 2 T^{3} + \cdots + 22201)^{2} Copy content Toggle raw display
6161 (T4+4T3+18T2++4)2 (T^{4} + 4 T^{3} + 18 T^{2} + \cdots + 4)^{2} Copy content Toggle raw display
6767 T8110T6++3418801 T^{8} - 110 T^{6} + \cdots + 3418801 Copy content Toggle raw display
7171 (T26)4 (T^{2} - 6)^{4} Copy content Toggle raw display
7373 (T4+242T2+5041)2 (T^{4} + 242 T^{2} + 5041)^{2} Copy content Toggle raw display
7979 (T4+54T2+2916)2 (T^{4} + 54 T^{2} + 2916)^{2} Copy content Toggle raw display
8383 (T416T2+256)2 (T^{4} - 16 T^{2} + 256)^{2} Copy content Toggle raw display
8989 (T216T+40)4 (T^{2} - 16 T + 40)^{4} Copy content Toggle raw display
9797 (T4169T2+28561)2 (T^{4} - 169 T^{2} + 28561)^{2} Copy content Toggle raw display
show more
show less