gp: [N,k,chi] = [270,2,Mod(19,270)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(270, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([4, 3]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("270.19");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [8]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , … , β 7 1,\beta_1,\ldots,\beta_{7} 1 , β 1 , … , β 7 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring
β 1 \beta_{1} β 1 = = =
ζ 24 2 \zeta_{24}^{2} ζ 2 4 2
v^2
β 2 \beta_{2} β 2 = = =
ζ 24 4 \zeta_{24}^{4} ζ 2 4 4
v^4
β 3 \beta_{3} β 3 = = =
ζ 24 5 + ζ 24 \zeta_{24}^{5} + \zeta_{24} ζ 2 4 5 + ζ 2 4
v^5 + v
β 4 \beta_{4} β 4 = = =
ζ 24 6 \zeta_{24}^{6} ζ 2 4 6
v^6
β 5 \beta_{5} β 5 = = =
ζ 24 7 + ζ 24 3 \zeta_{24}^{7} + \zeta_{24}^{3} ζ 2 4 7 + ζ 2 4 3
v^7 + v^3
β 6 \beta_{6} β 6 = = =
− ζ 24 5 + 2 ζ 24 -\zeta_{24}^{5} + 2\zeta_{24} − ζ 2 4 5 + 2 ζ 2 4
-v^5 + 2*v
β 7 \beta_{7} β 7 = = =
− ζ 24 7 + 2 ζ 24 3 -\zeta_{24}^{7} + 2\zeta_{24}^{3} − ζ 2 4 7 + 2 ζ 2 4 3
-v^7 + 2*v^3
ζ 24 \zeta_{24} ζ 2 4 = = =
( β 6 + β 3 ) / 3 ( \beta_{6} + \beta_{3} ) / 3 ( β 6 + β 3 ) / 3
(b6 + b3) / 3
ζ 24 2 \zeta_{24}^{2} ζ 2 4 2 = = =
β 1 \beta_1 β 1
b1
ζ 24 3 \zeta_{24}^{3} ζ 2 4 3 = = =
( β 7 + β 5 ) / 3 ( \beta_{7} + \beta_{5} ) / 3 ( β 7 + β 5 ) / 3
(b7 + b5) / 3
ζ 24 4 \zeta_{24}^{4} ζ 2 4 4 = = =
β 2 \beta_{2} β 2
b2
ζ 24 5 \zeta_{24}^{5} ζ 2 4 5 = = =
( − β 6 + 2 β 3 ) / 3 ( -\beta_{6} + 2\beta_{3} ) / 3 ( − β 6 + 2 β 3 ) / 3
(-b6 + 2*b3) / 3
ζ 24 6 \zeta_{24}^{6} ζ 2 4 6 = = =
β 4 \beta_{4} β 4
b4
ζ 24 7 \zeta_{24}^{7} ζ 2 4 7 = = =
( − β 7 + 2 β 5 ) / 3 ( -\beta_{7} + 2\beta_{5} ) / 3 ( − β 7 + 2 β 5 ) / 3
(-b7 + 2*b5) / 3
Character values
We give the values of χ \chi χ on generators for ( Z / 270 Z ) × \left(\mathbb{Z}/270\mathbb{Z}\right)^\times ( Z / 2 7 0 Z ) × .
n n n
191 191 1 9 1
217 217 2 1 7
χ ( n ) \chi(n) χ ( n )
− 1 + β 2 -1 + \beta_{2} − 1 + β 2
− 1 -1 − 1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
T 7 8 − 20 T 7 6 + 396 T 7 4 − 80 T 7 2 + 16 T_{7}^{8} - 20T_{7}^{6} + 396T_{7}^{4} - 80T_{7}^{2} + 16 T 7 8 − 2 0 T 7 6 + 3 9 6 T 7 4 − 8 0 T 7 2 + 1 6
T7^8 - 20*T7^6 + 396*T7^4 - 80*T7^2 + 16
acting on S 2 n e w ( 270 , [ χ ] ) S_{2}^{\mathrm{new}}(270, [\chi]) S 2 n e w ( 2 7 0 , [ χ ] ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
( T 4 − T 2 + 1 ) 2 (T^{4} - T^{2} + 1)^{2} ( T 4 − T 2 + 1 ) 2
(T^4 - T^2 + 1)^2
3 3 3
T 8 T^{8} T 8
T^8
5 5 5
T 8 − 4 T 7 + ⋯ + 625 T^{8} - 4 T^{7} + \cdots + 625 T 8 − 4 T 7 + ⋯ + 6 2 5
T^8 - 4*T^7 + 8*T^6 + 8*T^5 - 41*T^4 + 40*T^3 + 200*T^2 - 500*T + 625
7 7 7
T 8 − 20 T 6 + ⋯ + 16 T^{8} - 20 T^{6} + \cdots + 16 T 8 − 2 0 T 6 + ⋯ + 1 6
T^8 - 20*T^6 + 396*T^4 - 80*T^2 + 16
11 11 1 1
( T 4 + 2 T 3 + 9 T 2 + ⋯ + 25 ) 2 (T^{4} + 2 T^{3} + 9 T^{2} + \cdots + 25)^{2} ( T 4 + 2 T 3 + 9 T 2 + ⋯ + 2 5 ) 2
(T^4 + 2*T^3 + 9*T^2 - 10*T + 25)^2
13 13 1 3
( T 4 − 6 T 2 + 36 ) 2 (T^{4} - 6 T^{2} + 36)^{2} ( T 4 − 6 T 2 + 3 6 ) 2
(T^4 - 6*T^2 + 36)^2
17 17 1 7
( T 4 + 50 T 2 + 529 ) 2 (T^{4} + 50 T^{2} + 529)^{2} ( T 4 + 5 0 T 2 + 5 2 9 ) 2
(T^4 + 50*T^2 + 529)^2
19 19 1 9
( T 2 − 6 T + 3 ) 4 (T^{2} - 6 T + 3)^{4} ( T 2 − 6 T + 3 ) 4
(T^2 - 6*T + 3)^4
23 23 2 3
T 8 − 56 T 6 + ⋯ + 160000 T^{8} - 56 T^{6} + \cdots + 160000 T 8 − 5 6 T 6 + ⋯ + 1 6 0 0 0 0
T^8 - 56*T^6 + 2736*T^4 - 22400*T^2 + 160000
29 29 2 9
( T 2 − 6 T + 36 ) 4 (T^{2} - 6 T + 36)^{4} ( T 2 − 6 T + 3 6 ) 4
(T^2 - 6*T + 36)^4
31 31 3 1
( T 4 + 8 T 3 + ⋯ + 100 ) 2 (T^{4} + 8 T^{3} + \cdots + 100)^{2} ( T 4 + 8 T 3 + ⋯ + 1 0 0 ) 2
(T^4 + 8*T^3 + 54*T^2 + 80*T + 100)^2
37 37 3 7
( T 2 + 64 ) 4 (T^{2} + 64)^{4} ( T 2 + 6 4 ) 4
(T^2 + 64)^4
41 41 4 1
( T 2 + T + 1 ) 4 (T^{2} + T + 1)^{4} ( T 2 + T + 1 ) 4
(T^2 + T + 1)^4
43 43 4 3
T 8 − 62 T 6 + ⋯ + 130321 T^{8} - 62 T^{6} + \cdots + 130321 T 8 − 6 2 T 6 + ⋯ + 1 3 0 3 2 1
T^8 - 62*T^6 + 3483*T^4 - 22382*T^2 + 130321
47 47 4 7
T 8 − 20 T 6 + ⋯ + 16 T^{8} - 20 T^{6} + \cdots + 16 T 8 − 2 0 T 6 + ⋯ + 1 6
T^8 - 20*T^6 + 396*T^4 - 80*T^2 + 16
53 53 5 3
( T 4 + 84 T 2 + 900 ) 2 (T^{4} + 84 T^{2} + 900)^{2} ( T 4 + 8 4 T 2 + 9 0 0 ) 2
(T^4 + 84*T^2 + 900)^2
59 59 5 9
( T 4 + 2 T 3 + ⋯ + 22201 ) 2 (T^{4} + 2 T^{3} + \cdots + 22201)^{2} ( T 4 + 2 T 3 + ⋯ + 2 2 2 0 1 ) 2
(T^4 + 2*T^3 + 153*T^2 - 298*T + 22201)^2
61 61 6 1
( T 4 + 4 T 3 + 18 T 2 + ⋯ + 4 ) 2 (T^{4} + 4 T^{3} + 18 T^{2} + \cdots + 4)^{2} ( T 4 + 4 T 3 + 1 8 T 2 + ⋯ + 4 ) 2
(T^4 + 4*T^3 + 18*T^2 - 8*T + 4)^2
67 67 6 7
T 8 − 110 T 6 + ⋯ + 3418801 T^{8} - 110 T^{6} + \cdots + 3418801 T 8 − 1 1 0 T 6 + ⋯ + 3 4 1 8 8 0 1
T^8 - 110*T^6 + 10251*T^4 - 203390*T^2 + 3418801
71 71 7 1
( T 2 − 6 ) 4 (T^{2} - 6)^{4} ( T 2 − 6 ) 4
(T^2 - 6)^4
73 73 7 3
( T 4 + 242 T 2 + 5041 ) 2 (T^{4} + 242 T^{2} + 5041)^{2} ( T 4 + 2 4 2 T 2 + 5 0 4 1 ) 2
(T^4 + 242*T^2 + 5041)^2
79 79 7 9
( T 4 + 54 T 2 + 2916 ) 2 (T^{4} + 54 T^{2} + 2916)^{2} ( T 4 + 5 4 T 2 + 2 9 1 6 ) 2
(T^4 + 54*T^2 + 2916)^2
83 83 8 3
( T 4 − 16 T 2 + 256 ) 2 (T^{4} - 16 T^{2} + 256)^{2} ( T 4 − 1 6 T 2 + 2 5 6 ) 2
(T^4 - 16*T^2 + 256)^2
89 89 8 9
( T 2 − 16 T + 40 ) 4 (T^{2} - 16 T + 40)^{4} ( T 2 − 1 6 T + 4 0 ) 4
(T^2 - 16*T + 40)^4
97 97 9 7
( T 4 − 169 T 2 + 28561 ) 2 (T^{4} - 169 T^{2} + 28561)^{2} ( T 4 − 1 6 9 T 2 + 2 8 5 6 1 ) 2
(T^4 - 169*T^2 + 28561)^2
show more
show less