Defining parameters
Level: | \( N \) | \(=\) | \( 810 = 2 \cdot 3^{4} \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 810.c (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 5 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 7 \) | ||
Sturm bound: | \(324\) | ||
Trace bound: | \(5\) | ||
Distinguishing \(T_p\): | \(7\), \(11\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(810, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 186 | 24 | 162 |
Cusp forms | 138 | 24 | 114 |
Eisenstein series | 48 | 0 | 48 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(810, [\chi])\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(810, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(810, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(30, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(45, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(90, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(135, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(270, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(405, [\chi])\)\(^{\oplus 2}\)