Properties

Label 81.7.d.c.53.2
Level $81$
Weight $7$
Character 81.53
Analytic conductor $18.634$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [81,7,Mod(26,81)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(81, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([1])) N = Newforms(chi, 7, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("81.26"); S:= CuspForms(chi, 7); N := Newforms(S);
 
Level: \( N \) \(=\) \( 81 = 3^{4} \)
Weight: \( k \) \(=\) \( 7 \)
Character orbit: \([\chi]\) \(=\) 81.d (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,52] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.6343807732\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{-10})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 10x^{2} + 100 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: no (minimal twist has level 27)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 53.2
Root \(2.73861 - 1.58114i\) of defining polynomial
Character \(\chi\) \(=\) 81.53
Dual form 81.7.d.c.26.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(8.21584 - 4.74342i) q^{2} +(13.0000 - 22.5167i) q^{4} +(-115.022 - 66.4078i) q^{5} +(201.500 + 349.008i) q^{7} +360.500i q^{8} -1260.00 q^{10} +(-1298.10 + 749.460i) q^{11} +(480.500 - 832.250i) q^{13} +(3310.98 + 1911.60i) q^{14} +(2542.00 + 4402.87i) q^{16} +9619.65i q^{17} +8021.00 q^{19} +(-2990.57 + 1726.60i) q^{20} +(-7110.00 + 12314.9i) q^{22} +(-9185.31 - 5303.14i) q^{23} +(1007.50 + 1745.04i) q^{25} -9116.85i q^{26} +10478.0 q^{28} +(-2136.12 + 1233.29i) q^{29} +(-24427.0 + 42308.8i) q^{31} +(21788.4 + 12579.5i) q^{32} +(45630.0 + 79033.5i) q^{34} -53524.7i q^{35} +24167.0 q^{37} +(65899.2 - 38046.9i) q^{38} +(23940.0 - 41465.3i) q^{40} +(-61290.2 - 35385.9i) q^{41} +(30401.0 + 52656.1i) q^{43} +38971.9i q^{44} -100620. q^{46} +(-23382.3 + 13499.8i) q^{47} +(-22380.0 + 38763.3i) q^{49} +(16554.9 + 9557.98i) q^{50} +(-12493.0 - 21638.5i) q^{52} -137635. i q^{53} +199080. q^{55} +(-125817. + 72640.7i) q^{56} +(-11700.0 + 20265.0i) q^{58} +(84475.3 + 48771.8i) q^{59} +(-136500. - 236424. i) q^{61} +463470. i q^{62} -86696.0 q^{64} +(-110536. + 63817.9i) q^{65} +(42789.5 - 74113.6i) q^{67} +(216602. + 125055. i) q^{68} +(-253890. - 439750. i) q^{70} +341754. i q^{71} -152737. q^{73} +(198552. - 114634. i) q^{74} +(104273. - 180606. i) q^{76} +(-523135. - 302032. i) q^{77} +(37029.5 + 64137.0i) q^{79} -675235. i q^{80} -671400. q^{82} +(83637.2 - 48288.0i) q^{83} +(638820. - 1.10647e6i) q^{85} +(499539. + 288409. i) q^{86} +(-270180. - 467965. i) q^{88} -1.19369e6i q^{89} +387283. q^{91} +(-238818. + 137882. i) q^{92} +(-128070. + 221824. i) q^{94} +(-922589. - 532657. i) q^{95} +(598656. + 1.03690e6i) q^{97} +424631. i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 52 q^{4} + 806 q^{7} - 5040 q^{10} + 1922 q^{13} + 10168 q^{16} + 32084 q^{19} - 28440 q^{22} + 4030 q^{25} + 41912 q^{28} - 97708 q^{31} + 182520 q^{34} + 96668 q^{37} + 95760 q^{40} + 121604 q^{43}+ \cdots + 2394626 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/81\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 8.21584 4.74342i 1.02698 0.592927i 0.110862 0.993836i \(-0.464639\pi\)
0.916118 + 0.400909i \(0.131306\pi\)
\(3\) 0 0
\(4\) 13.0000 22.5167i 0.203125 0.351823i
\(5\) −115.022 66.4078i −0.920174 0.531263i −0.0364834 0.999334i \(-0.511616\pi\)
−0.883691 + 0.468072i \(0.844949\pi\)
\(6\) 0 0
\(7\) 201.500 + 349.008i 0.587464 + 1.01752i 0.994563 + 0.104133i \(0.0332068\pi\)
−0.407100 + 0.913384i \(0.633460\pi\)
\(8\) 360.500i 0.704101i
\(9\) 0 0
\(10\) −1260.00 −1.26000
\(11\) −1298.10 + 749.460i −0.975284 + 0.563080i −0.900843 0.434145i \(-0.857050\pi\)
−0.0744407 + 0.997225i \(0.523717\pi\)
\(12\) 0 0
\(13\) 480.500 832.250i 0.218707 0.378812i −0.735706 0.677301i \(-0.763149\pi\)
0.954413 + 0.298489i \(0.0964827\pi\)
\(14\) 3310.98 + 1911.60i 1.20663 + 0.696646i
\(15\) 0 0
\(16\) 2542.00 + 4402.87i 0.620605 + 1.07492i
\(17\) 9619.65i 1.95800i 0.203863 + 0.978999i \(0.434650\pi\)
−0.203863 + 0.978999i \(0.565350\pi\)
\(18\) 0 0
\(19\) 8021.00 1.16941 0.584706 0.811245i \(-0.301210\pi\)
0.584706 + 0.811245i \(0.301210\pi\)
\(20\) −2990.57 + 1726.60i −0.373821 + 0.215825i
\(21\) 0 0
\(22\) −7110.00 + 12314.9i −0.667731 + 1.15654i
\(23\) −9185.31 5303.14i −0.754936 0.435863i 0.0725386 0.997366i \(-0.476890\pi\)
−0.827475 + 0.561503i \(0.810223\pi\)
\(24\) 0 0
\(25\) 1007.50 + 1745.04i 0.0644800 + 0.111683i
\(26\) 9116.85i 0.518710i
\(27\) 0 0
\(28\) 10478.0 0.477314
\(29\) −2136.12 + 1233.29i −0.0875853 + 0.0505674i −0.543153 0.839634i \(-0.682770\pi\)
0.455568 + 0.890201i \(0.349436\pi\)
\(30\) 0 0
\(31\) −24427.0 + 42308.8i −0.819946 + 1.42019i 0.0857760 + 0.996314i \(0.472663\pi\)
−0.905722 + 0.423873i \(0.860670\pi\)
\(32\) 21788.4 + 12579.5i 0.664929 + 0.383897i
\(33\) 0 0
\(34\) 45630.0 + 79033.5i 1.16095 + 2.01083i
\(35\) 53524.7i 1.24839i
\(36\) 0 0
\(37\) 24167.0 0.477109 0.238554 0.971129i \(-0.423326\pi\)
0.238554 + 0.971129i \(0.423326\pi\)
\(38\) 65899.2 38046.9i 1.20096 0.693376i
\(39\) 0 0
\(40\) 23940.0 41465.3i 0.374063 0.647895i
\(41\) −61290.2 35385.9i −0.889281 0.513427i −0.0155739 0.999879i \(-0.504958\pi\)
−0.873707 + 0.486452i \(0.838291\pi\)
\(42\) 0 0
\(43\) 30401.0 + 52656.1i 0.382369 + 0.662282i 0.991400 0.130864i \(-0.0417750\pi\)
−0.609032 + 0.793146i \(0.708442\pi\)
\(44\) 38971.9i 0.457503i
\(45\) 0 0
\(46\) −100620. −1.03374
\(47\) −23382.3 + 13499.8i −0.225213 + 0.130027i −0.608362 0.793660i \(-0.708173\pi\)
0.383149 + 0.923687i \(0.374840\pi\)
\(48\) 0 0
\(49\) −22380.0 + 38763.3i −0.190227 + 0.329483i
\(50\) 16554.9 + 9557.98i 0.132439 + 0.0764639i
\(51\) 0 0
\(52\) −12493.0 21638.5i −0.0888499 0.153892i
\(53\) 137635.i 0.924488i −0.886753 0.462244i \(-0.847044\pi\)
0.886753 0.462244i \(-0.152956\pi\)
\(54\) 0 0
\(55\) 199080. 1.19657
\(56\) −125817. + 72640.7i −0.716434 + 0.413634i
\(57\) 0 0
\(58\) −11700.0 + 20265.0i −0.0599656 + 0.103863i
\(59\) 84475.3 + 48771.8i 0.411314 + 0.237472i 0.691354 0.722516i \(-0.257014\pi\)
−0.280040 + 0.959988i \(0.590348\pi\)
\(60\) 0 0
\(61\) −136500. 236424.i −0.601370 1.04160i −0.992614 0.121316i \(-0.961289\pi\)
0.391244 0.920287i \(-0.372045\pi\)
\(62\) 463470.i 1.94467i
\(63\) 0 0
\(64\) −86696.0 −0.330719
\(65\) −110536. + 63817.9i −0.402498 + 0.232382i
\(66\) 0 0
\(67\) 42789.5 74113.6i 0.142270 0.246419i −0.786081 0.618123i \(-0.787893\pi\)
0.928351 + 0.371705i \(0.121227\pi\)
\(68\) 216602. + 125055.i 0.688869 + 0.397719i
\(69\) 0 0
\(70\) −253890. 439750.i −0.740204 1.28207i
\(71\) 341754.i 0.954857i 0.878671 + 0.477428i \(0.158431\pi\)
−0.878671 + 0.477428i \(0.841569\pi\)
\(72\) 0 0
\(73\) −152737. −0.392623 −0.196311 0.980542i \(-0.562896\pi\)
−0.196311 + 0.980542i \(0.562896\pi\)
\(74\) 198552. 114634.i 0.489981 0.282891i
\(75\) 0 0
\(76\) 104273. 180606.i 0.237537 0.411426i
\(77\) −523135. 302032.i −1.14589 0.661578i
\(78\) 0 0
\(79\) 37029.5 + 64137.0i 0.0751046 + 0.130085i 0.901132 0.433545i \(-0.142738\pi\)
−0.826027 + 0.563630i \(0.809404\pi\)
\(80\) 675235.i 1.31882i
\(81\) 0 0
\(82\) −671400. −1.21770
\(83\) 83637.2 48288.0i 0.146273 0.0844510i −0.425077 0.905157i \(-0.639753\pi\)
0.571351 + 0.820706i \(0.306420\pi\)
\(84\) 0 0
\(85\) 638820. 1.10647e6i 1.04021 1.80170i
\(86\) 499539. + 288409.i 0.785370 + 0.453434i
\(87\) 0 0
\(88\) −270180. 467965.i −0.396465 0.686698i
\(89\) 1.19369e6i 1.69325i −0.532188 0.846626i \(-0.678630\pi\)
0.532188 0.846626i \(-0.321370\pi\)
\(90\) 0 0
\(91\) 387283. 0.513930
\(92\) −238818. + 137882.i −0.306693 + 0.177069i
\(93\) 0 0
\(94\) −128070. + 221824.i −0.154193 + 0.267070i
\(95\) −922589. 532657.i −1.07606 0.621265i
\(96\) 0 0
\(97\) 598656. + 1.03690e6i 0.655938 + 1.13612i 0.981658 + 0.190651i \(0.0610599\pi\)
−0.325720 + 0.945466i \(0.605607\pi\)
\(98\) 424631.i 0.451163i
\(99\) 0 0
\(100\) 52390.0 0.0523900
\(101\) 765585. 442011.i 0.743069 0.429011i −0.0801151 0.996786i \(-0.525529\pi\)
0.823184 + 0.567775i \(0.192195\pi\)
\(102\) 0 0
\(103\) −587066. + 1.01683e6i −0.537249 + 0.930543i 0.461802 + 0.886983i \(0.347203\pi\)
−0.999051 + 0.0435595i \(0.986130\pi\)
\(104\) 300026. + 173220.i 0.266722 + 0.153992i
\(105\) 0 0
\(106\) −652860. 1.13079e6i −0.548154 0.949430i
\(107\) 583839.i 0.476586i 0.971193 + 0.238293i \(0.0765879\pi\)
−0.971193 + 0.238293i \(0.923412\pi\)
\(108\) 0 0
\(109\) 188786. 0.145777 0.0728887 0.997340i \(-0.476778\pi\)
0.0728887 + 0.997340i \(0.476778\pi\)
\(110\) 1.63561e6 944319.i 1.22886 0.709481i
\(111\) 0 0
\(112\) −1.02443e6 + 1.77436e6i −0.729166 + 1.26295i
\(113\) 1.42372e6 + 821987.i 0.986711 + 0.569678i 0.904290 0.426920i \(-0.140401\pi\)
0.0824216 + 0.996598i \(0.473735\pi\)
\(114\) 0 0
\(115\) 704340. + 1.21995e6i 0.463115 + 0.802139i
\(116\) 64131.0i 0.0410860i
\(117\) 0 0
\(118\) 925380. 0.563215
\(119\) −3.35734e6 + 1.93836e6i −1.99230 + 1.15025i
\(120\) 0 0
\(121\) 237600. 411534.i 0.134119 0.232300i
\(122\) −2.24292e6 1.29495e6i −1.23519 0.713137i
\(123\) 0 0
\(124\) 635102. + 1.10003e6i 0.333103 + 0.576951i
\(125\) 1.80762e6i 0.925502i
\(126\) 0 0
\(127\) 3.10101e6 1.51388 0.756940 0.653484i \(-0.226693\pi\)
0.756940 + 0.653484i \(0.226693\pi\)
\(128\) −2.10674e6 + 1.21633e6i −1.00457 + 0.579989i
\(129\) 0 0
\(130\) −605430. + 1.04864e6i −0.275571 + 0.477303i
\(131\) 2.78422e6 + 1.60747e6i 1.23848 + 0.715037i 0.968783 0.247908i \(-0.0797432\pi\)
0.269697 + 0.962945i \(0.413077\pi\)
\(132\) 0 0
\(133\) 1.61623e6 + 2.79940e6i 0.686987 + 1.18990i
\(134\) 811874.i 0.337423i
\(135\) 0 0
\(136\) −3.46788e6 −1.37863
\(137\) 2.49283e6 1.43924e6i 0.969464 0.559720i 0.0703910 0.997519i \(-0.477575\pi\)
0.899073 + 0.437799i \(0.144242\pi\)
\(138\) 0 0
\(139\) 738310. 1.27879e6i 0.274912 0.476162i −0.695201 0.718816i \(-0.744685\pi\)
0.970113 + 0.242654i \(0.0780179\pi\)
\(140\) −1.20520e6 695821.i −0.439212 0.253579i
\(141\) 0 0
\(142\) 1.62108e6 + 2.80779e6i 0.566160 + 0.980618i
\(143\) 1.44046e6i 0.492599i
\(144\) 0 0
\(145\) 327600. 0.107458
\(146\) −1.25486e6 + 724495.i −0.403216 + 0.232797i
\(147\) 0 0
\(148\) 314171. 544160.i 0.0969128 0.167858i
\(149\) −483946. 279406.i −0.146298 0.0844651i 0.425064 0.905163i \(-0.360251\pi\)
−0.571362 + 0.820698i \(0.693585\pi\)
\(150\) 0 0
\(151\) −1.85869e6 3.21935e6i −0.539855 0.935056i −0.998911 0.0466492i \(-0.985146\pi\)
0.459056 0.888407i \(-0.348188\pi\)
\(152\) 2.89157e6i 0.823384i
\(153\) 0 0
\(154\) −5.73066e6 −1.56907
\(155\) 5.61927e6 3.24429e6i 1.50899 0.871213i
\(156\) 0 0
\(157\) −618481. + 1.07124e6i −0.159819 + 0.276814i −0.934803 0.355166i \(-0.884424\pi\)
0.774985 + 0.631980i \(0.217758\pi\)
\(158\) 608457. + 351293.i 0.154262 + 0.0890631i
\(159\) 0 0
\(160\) −1.67076e6 2.89384e6i −0.407900 0.706504i
\(161\) 4.27433e6i 1.02421i
\(162\) 0 0
\(163\) 6.87639e6 1.58781 0.793903 0.608044i \(-0.208046\pi\)
0.793903 + 0.608044i \(0.208046\pi\)
\(164\) −1.59354e6 + 920033.i −0.361271 + 0.208580i
\(165\) 0 0
\(166\) 458100. 793452.i 0.100147 0.173459i
\(167\) 1.66093e6 + 958939.i 0.356617 + 0.205893i 0.667596 0.744524i \(-0.267323\pi\)
−0.310979 + 0.950417i \(0.600657\pi\)
\(168\) 0 0
\(169\) 1.95164e6 + 3.38035e6i 0.404334 + 0.700327i
\(170\) 1.21208e7i 2.46708i
\(171\) 0 0
\(172\) 1.58085e6 0.310675
\(173\) −3.31141e6 + 1.91184e6i −0.639550 + 0.369244i −0.784441 0.620203i \(-0.787050\pi\)
0.144891 + 0.989448i \(0.453717\pi\)
\(174\) 0 0
\(175\) −406022. + 703252.i −0.0757593 + 0.131219i
\(176\) −6.59955e6 3.81025e6i −1.21053 0.698901i
\(177\) 0 0
\(178\) −5.66217e6 9.80717e6i −1.00397 1.73894i
\(179\) 1.60130e6i 0.279199i 0.990208 + 0.139600i \(0.0445815\pi\)
−0.990208 + 0.139600i \(0.955418\pi\)
\(180\) 0 0
\(181\) 570647. 0.0962347 0.0481174 0.998842i \(-0.484678\pi\)
0.0481174 + 0.998842i \(0.484678\pi\)
\(182\) 3.18185e6 1.83704e6i 0.527796 0.304723i
\(183\) 0 0
\(184\) 1.91178e6 3.31130e6i 0.306891 0.531551i
\(185\) −2.77973e6 1.60488e6i −0.439023 0.253470i
\(186\) 0 0
\(187\) −7.20954e6 1.24873e7i −1.10251 1.90960i
\(188\) 701988.i 0.105647i
\(189\) 0 0
\(190\) −1.01065e7 −1.47346
\(191\) 3.59103e6 2.07328e6i 0.515369 0.297549i −0.219669 0.975575i \(-0.570498\pi\)
0.735038 + 0.678026i \(0.237164\pi\)
\(192\) 0 0
\(193\) 2.23619e6 3.87319e6i 0.311054 0.538762i −0.667536 0.744577i \(-0.732651\pi\)
0.978591 + 0.205815i \(0.0659845\pi\)
\(194\) 9.83693e6 + 5.67935e6i 1.34727 + 0.777846i
\(195\) 0 0
\(196\) 581880. + 1.00785e6i 0.0772797 + 0.133852i
\(197\) 1.18772e7i 1.55351i 0.629801 + 0.776757i \(0.283137\pi\)
−0.629801 + 0.776757i \(0.716863\pi\)
\(198\) 0 0
\(199\) 902693. 0.114546 0.0572731 0.998359i \(-0.481759\pi\)
0.0572731 + 0.998359i \(0.481759\pi\)
\(200\) −629087. + 363203.i −0.0786358 + 0.0454004i
\(201\) 0 0
\(202\) 4.19328e6 7.26297e6i 0.508745 0.881171i
\(203\) −860856. 497015.i −0.102906 0.0594130i
\(204\) 0 0
\(205\) 4.69980e6 + 8.14029e6i 0.545529 + 0.944884i
\(206\) 1.11388e7i 1.27420i
\(207\) 0 0
\(208\) 4.88572e6 0.542924
\(209\) −1.04121e7 + 6.01142e6i −1.14051 + 0.658473i
\(210\) 0 0
\(211\) −2.83768e6 + 4.91500e6i −0.302076 + 0.523211i −0.976606 0.215037i \(-0.931013\pi\)
0.674530 + 0.738247i \(0.264346\pi\)
\(212\) −3.09908e6 1.78925e6i −0.325256 0.187787i
\(213\) 0 0
\(214\) 2.76939e6 + 4.79672e6i 0.282581 + 0.489444i
\(215\) 8.07546e6i 0.812553i
\(216\) 0 0
\(217\) −1.96882e7 −1.92675
\(218\) 1.55104e6 895491.i 0.149710 0.0864354i
\(219\) 0 0
\(220\) 2.58804e6 4.48262e6i 0.243054 0.420982i
\(221\) 8.00596e6 + 4.62224e6i 0.741714 + 0.428229i
\(222\) 0 0
\(223\) 2.82382e6 + 4.89100e6i 0.254638 + 0.441045i 0.964797 0.262996i \(-0.0847105\pi\)
−0.710159 + 0.704041i \(0.751377\pi\)
\(224\) 1.01391e7i 0.902102i
\(225\) 0 0
\(226\) 1.55961e7 1.35111
\(227\) −1.08964e7 + 6.29106e6i −0.931552 + 0.537832i −0.887302 0.461189i \(-0.847423\pi\)
−0.0442496 + 0.999021i \(0.514090\pi\)
\(228\) 0 0
\(229\) 3.25883e6 5.64445e6i 0.271366 0.470019i −0.697846 0.716248i \(-0.745858\pi\)
0.969212 + 0.246229i \(0.0791914\pi\)
\(230\) 1.15735e7 + 6.68196e6i 0.951219 + 0.549187i
\(231\) 0 0
\(232\) −444600. 770070.i −0.0356046 0.0616689i
\(233\) 8.32618e6i 0.658230i −0.944290 0.329115i \(-0.893250\pi\)
0.944290 0.329115i \(-0.106750\pi\)
\(234\) 0 0
\(235\) 3.58596e6 0.276313
\(236\) 2.19636e6 1.26807e6i 0.167096 0.0964731i
\(237\) 0 0
\(238\) −1.83889e7 + 3.18505e7i −1.36403 + 2.36257i
\(239\) −1.80342e7 1.04120e7i −1.32100 0.762679i −0.337110 0.941465i \(-0.609450\pi\)
−0.983888 + 0.178787i \(0.942783\pi\)
\(240\) 0 0
\(241\) −2.31464e6 4.00908e6i −0.165361 0.286414i 0.771422 0.636323i \(-0.219546\pi\)
−0.936783 + 0.349910i \(0.886212\pi\)
\(242\) 4.50813e6i 0.318090i
\(243\) 0 0
\(244\) −7.09797e6 −0.488613
\(245\) 5.14837e6 2.97241e6i 0.350084 0.202121i
\(246\) 0 0
\(247\) 3.85409e6 6.67548e6i 0.255759 0.442988i
\(248\) −1.52523e7 8.80593e6i −0.999955 0.577324i
\(249\) 0 0
\(250\) 8.57430e6 + 1.48511e7i 0.548755 + 0.950472i
\(251\) 1.38242e7i 0.874215i −0.899409 0.437107i \(-0.856003\pi\)
0.899409 0.437107i \(-0.143997\pi\)
\(252\) 0 0
\(253\) 1.58980e7 0.981702
\(254\) 2.54774e7 1.47094e7i 1.55472 0.897620i
\(255\) 0 0
\(256\) −8.76481e6 + 1.51811e7i −0.522423 + 0.904864i
\(257\) −5.94653e6 3.43323e6i −0.350319 0.202257i 0.314507 0.949255i \(-0.398161\pi\)
−0.664826 + 0.746998i \(0.731494\pi\)
\(258\) 0 0
\(259\) 4.86965e6 + 8.43448e6i 0.280284 + 0.485466i
\(260\) 3.31853e6i 0.188810i
\(261\) 0 0
\(262\) 3.04996e7 1.69586
\(263\) 1.21391e7 7.00853e6i 0.667299 0.385265i −0.127754 0.991806i \(-0.540777\pi\)
0.795052 + 0.606541i \(0.207443\pi\)
\(264\) 0 0
\(265\) −9.14004e6 + 1.58310e7i −0.491146 + 0.850690i
\(266\) 2.65574e7 + 1.53329e7i 1.41104 + 0.814667i
\(267\) 0 0
\(268\) −1.11253e6 1.92695e6i −0.0577971 0.100108i
\(269\) 3.86044e6i 0.198326i 0.995071 + 0.0991630i \(0.0316165\pi\)
−0.995071 + 0.0991630i \(0.968383\pi\)
\(270\) 0 0
\(271\) −9.15729e6 −0.460107 −0.230054 0.973178i \(-0.573890\pi\)
−0.230054 + 0.973178i \(0.573890\pi\)
\(272\) −4.23541e7 + 2.44531e7i −2.10469 + 1.21514i
\(273\) 0 0
\(274\) 1.36538e7 2.36491e7i 0.663746 1.14964i
\(275\) −2.61568e6 1.51016e6i −0.125773 0.0726148i
\(276\) 0 0
\(277\) 6.42492e6 + 1.11283e7i 0.302293 + 0.523587i 0.976655 0.214814i \(-0.0689145\pi\)
−0.674362 + 0.738401i \(0.735581\pi\)
\(278\) 1.40084e7i 0.652012i
\(279\) 0 0
\(280\) 1.92956e7 0.878992
\(281\) 2.81343e7 1.62433e7i 1.26799 0.732076i 0.293385 0.955994i \(-0.405218\pi\)
0.974608 + 0.223918i \(0.0718848\pi\)
\(282\) 0 0
\(283\) 1.43908e6 2.49256e6i 0.0634930 0.109973i −0.832532 0.553978i \(-0.813109\pi\)
0.896025 + 0.444005i \(0.146443\pi\)
\(284\) 7.69515e6 + 4.44280e6i 0.335940 + 0.193955i
\(285\) 0 0
\(286\) 6.83271e6 + 1.18346e7i 0.292075 + 0.505889i
\(287\) 2.85210e7i 1.20648i
\(288\) 0 0
\(289\) −6.84001e7 −2.83376
\(290\) 2.69151e6 1.55394e6i 0.110357 0.0637149i
\(291\) 0 0
\(292\) −1.98558e6 + 3.43913e6i −0.0797515 + 0.138134i
\(293\) −3.58268e6 2.06846e6i −0.142431 0.0822327i 0.427091 0.904209i \(-0.359538\pi\)
−0.569522 + 0.821976i \(0.692872\pi\)
\(294\) 0 0
\(295\) −6.47766e6 1.12196e7i −0.252320 0.437031i
\(296\) 8.71220e6i 0.335933i
\(297\) 0 0
\(298\) −5.30136e6 −0.200327
\(299\) −8.82708e6 + 5.09632e6i −0.330220 + 0.190653i
\(300\) 0 0
\(301\) −1.22516e7 + 2.12204e7i −0.449256 + 0.778133i
\(302\) −3.05415e7 1.76331e7i −1.10884 0.640189i
\(303\) 0 0
\(304\) 2.03894e7 + 3.53154e7i 0.725744 + 1.25703i
\(305\) 3.62585e7i 1.27794i
\(306\) 0 0
\(307\) 4.41342e6 0.152532 0.0762659 0.997088i \(-0.475700\pi\)
0.0762659 + 0.997088i \(0.475700\pi\)
\(308\) −1.36015e7 + 7.85284e6i −0.465517 + 0.268766i
\(309\) 0 0
\(310\) 3.07780e7 5.33091e7i 1.03313 1.78944i
\(311\) 1.15733e7 + 6.68183e6i 0.384747 + 0.222134i 0.679882 0.733322i \(-0.262031\pi\)
−0.295135 + 0.955456i \(0.595365\pi\)
\(312\) 0 0
\(313\) −3.00206e7 5.19973e7i −0.979010 1.69569i −0.666013 0.745940i \(-0.732001\pi\)
−0.312996 0.949754i \(-0.601333\pi\)
\(314\) 1.17349e7i 0.379043i
\(315\) 0 0
\(316\) 1.92553e6 0.0610225
\(317\) −5.07484e7 + 2.92996e7i −1.59311 + 0.919780i −0.600336 + 0.799748i \(0.704966\pi\)
−0.992770 + 0.120032i \(0.961700\pi\)
\(318\) 0 0
\(319\) 1.84860e6 3.20187e6i 0.0569470 0.0986351i
\(320\) 9.97192e6 + 5.75729e6i 0.304319 + 0.175699i
\(321\) 0 0
\(322\) −2.02749e7 3.51172e7i −0.607284 1.05185i
\(323\) 7.71592e7i 2.28971i
\(324\) 0 0
\(325\) 1.93642e6 0.0564090
\(326\) 5.64953e7 3.26176e7i 1.63065 0.941454i
\(327\) 0 0
\(328\) 1.27566e7 2.20951e7i 0.361504 0.626144i
\(329\) −9.42306e6 5.44040e6i −0.264609 0.152772i
\(330\) 0 0
\(331\) −5.48803e6 9.50555e6i −0.151333 0.262116i 0.780385 0.625299i \(-0.215023\pi\)
−0.931718 + 0.363183i \(0.881690\pi\)
\(332\) 2.51097e6i 0.0686164i
\(333\) 0 0
\(334\) 1.81946e7 0.488318
\(335\) −9.84345e6 + 5.68312e6i −0.261826 + 0.151165i
\(336\) 0 0
\(337\) −4.25818e6 + 7.37538e6i −0.111259 + 0.192706i −0.916278 0.400543i \(-0.868822\pi\)
0.805019 + 0.593249i \(0.202155\pi\)
\(338\) 3.20688e7 + 1.85149e7i 0.830486 + 0.479481i
\(339\) 0 0
\(340\) −1.66093e7 2.87682e7i −0.422586 0.731940i
\(341\) 7.32282e7i 1.84678i
\(342\) 0 0
\(343\) 2.93743e7 0.727922
\(344\) −1.89825e7 + 1.09595e7i −0.466314 + 0.269226i
\(345\) 0 0
\(346\) −1.81373e7 + 3.14148e7i −0.437870 + 0.758413i
\(347\) 4.57445e7 + 2.64106e7i 1.09484 + 0.632106i 0.934861 0.355014i \(-0.115524\pi\)
0.159979 + 0.987120i \(0.448857\pi\)
\(348\) 0 0
\(349\) −2.49584e7 4.32291e7i −0.587137 1.01695i −0.994605 0.103732i \(-0.966922\pi\)
0.407468 0.913220i \(-0.366412\pi\)
\(350\) 7.70374e6i 0.179679i
\(351\) 0 0
\(352\) −3.77114e7 −0.864660
\(353\) 225903. 130425.i 0.00513567 0.00296508i −0.497430 0.867504i \(-0.665723\pi\)
0.502566 + 0.864539i \(0.332390\pi\)
\(354\) 0 0
\(355\) 2.26951e7 3.93091e7i 0.507280 0.878634i
\(356\) −2.68779e7 1.55180e7i −0.595725 0.343942i
\(357\) 0 0
\(358\) 7.59564e6 + 1.31560e7i 0.165545 + 0.286732i
\(359\) 256884.i 0.00555206i −0.999996 0.00277603i \(-0.999116\pi\)
0.999996 0.00277603i \(-0.000883640\pi\)
\(360\) 0 0
\(361\) 1.72906e7 0.367525
\(362\) 4.68834e6 2.70682e6i 0.0988311 0.0570602i
\(363\) 0 0
\(364\) 5.03468e6 8.72032e6i 0.104392 0.180812i
\(365\) 1.75681e7 + 1.01429e7i 0.361281 + 0.208586i
\(366\) 0 0
\(367\) −1.62845e7 2.82055e7i −0.329439 0.570606i 0.652961 0.757391i \(-0.273526\pi\)
−0.982401 + 0.186786i \(0.940193\pi\)
\(368\) 5.39223e7i 1.08199i
\(369\) 0 0
\(370\) −3.04504e7 −0.601157
\(371\) 4.80357e7 2.77334e7i 0.940682 0.543103i
\(372\) 0 0
\(373\) −4.16734e7 + 7.21804e7i −0.803031 + 1.39089i 0.114582 + 0.993414i \(0.463447\pi\)
−0.917613 + 0.397476i \(0.869886\pi\)
\(374\) −1.18465e8 6.83957e7i −2.26451 1.30742i
\(375\) 0 0
\(376\) −4.86666e6 8.42930e6i −0.0915519 0.158573i
\(377\) 2.37038e6i 0.0442378i
\(378\) 0 0
\(379\) −7.31011e7 −1.34278 −0.671392 0.741103i \(-0.734303\pi\)
−0.671392 + 0.741103i \(0.734303\pi\)
\(380\) −2.39873e7 + 1.38491e7i −0.437151 + 0.252389i
\(381\) 0 0
\(382\) 1.96689e7 3.40675e7i 0.352849 0.611153i
\(383\) −3.41653e7 1.97253e7i −0.608119 0.351098i 0.164110 0.986442i \(-0.447525\pi\)
−0.772229 + 0.635344i \(0.780858\pi\)
\(384\) 0 0
\(385\) 4.01146e7 + 6.94806e7i 0.702944 + 1.21753i
\(386\) 4.24287e7i 0.737731i
\(387\) 0 0
\(388\) 3.11301e7 0.532949
\(389\) 6.50125e7 3.75350e7i 1.10446 0.637658i 0.167068 0.985945i \(-0.446570\pi\)
0.937388 + 0.348288i \(0.113237\pi\)
\(390\) 0 0
\(391\) 5.10143e7 8.83594e7i 0.853418 1.47816i
\(392\) −1.39742e7 8.06798e6i −0.231989 0.133939i
\(393\) 0 0
\(394\) 5.63385e7 + 9.75811e7i 0.921120 + 1.59543i
\(395\) 9.83620e6i 0.159601i
\(396\) 0 0
\(397\) 6.34586e7 1.01419 0.507095 0.861890i \(-0.330719\pi\)
0.507095 + 0.861890i \(0.330719\pi\)
\(398\) 7.41638e6 4.28185e6i 0.117637 0.0679176i
\(399\) 0 0
\(400\) −5.12213e6 + 8.87179e6i −0.0800333 + 0.138622i
\(401\) 6.61911e7 + 3.82155e7i 1.02652 + 0.592661i 0.915985 0.401212i \(-0.131411\pi\)
0.110533 + 0.993872i \(0.464744\pi\)
\(402\) 0 0
\(403\) 2.34743e7 + 4.06588e7i 0.358656 + 0.621211i
\(404\) 2.29845e7i 0.348571i
\(405\) 0 0
\(406\) −9.43020e6 −0.140910
\(407\) −3.13712e7 + 1.81122e7i −0.465317 + 0.268651i
\(408\) 0 0
\(409\) −5.31235e7 + 9.20127e7i −0.776456 + 1.34486i 0.157516 + 0.987516i \(0.449651\pi\)
−0.933972 + 0.357345i \(0.883682\pi\)
\(410\) 7.72256e7 + 4.45862e7i 1.12049 + 0.646918i
\(411\) 0 0
\(412\) 1.52637e7 + 2.64376e7i 0.218257 + 0.378033i
\(413\) 3.93101e7i 0.558025i
\(414\) 0 0
\(415\) −1.28268e7 −0.179463
\(416\) 2.09387e7 1.20889e7i 0.290850 0.167922i
\(417\) 0 0
\(418\) −5.70293e7 + 9.87777e7i −0.780853 + 1.35248i
\(419\) 3.27247e7 + 1.88936e7i 0.444870 + 0.256846i 0.705661 0.708549i \(-0.250650\pi\)
−0.260791 + 0.965395i \(0.583983\pi\)
\(420\) 0 0
\(421\) 7.87278e6 + 1.36361e7i 0.105507 + 0.182744i 0.913945 0.405837i \(-0.133020\pi\)
−0.808438 + 0.588581i \(0.799687\pi\)
\(422\) 5.38412e7i 0.716435i
\(423\) 0 0
\(424\) 4.96174e7 0.650933
\(425\) −1.67867e7 + 9.69180e6i −0.218674 + 0.126252i
\(426\) 0 0
\(427\) 5.50093e7 9.52789e7i 0.706566 1.22381i
\(428\) 1.31461e7 + 7.58990e6i 0.167674 + 0.0968066i
\(429\) 0 0
\(430\) −3.83053e7 6.63467e7i −0.481785 0.834476i
\(431\) 3.16419e7i 0.395212i 0.980282 + 0.197606i \(0.0633167\pi\)
−0.980282 + 0.197606i \(0.936683\pi\)
\(432\) 0 0
\(433\) −6.50979e7 −0.801868 −0.400934 0.916107i \(-0.631314\pi\)
−0.400934 + 0.916107i \(0.631314\pi\)
\(434\) −1.61755e8 + 9.33892e7i −1.97874 + 1.14242i
\(435\) 0 0
\(436\) 2.45422e6 4.25083e6i 0.0296110 0.0512878i
\(437\) −7.36753e7 4.25365e7i −0.882832 0.509703i
\(438\) 0 0
\(439\) 1.57538e7 + 2.72864e7i 0.186205 + 0.322517i 0.943982 0.329997i \(-0.107048\pi\)
−0.757777 + 0.652514i \(0.773714\pi\)
\(440\) 7.17683e7i 0.842509i
\(441\) 0 0
\(442\) 8.77009e7 1.01563
\(443\) −1.22241e7 + 7.05762e6i −0.140607 + 0.0811796i −0.568653 0.822577i \(-0.692535\pi\)
0.428046 + 0.903757i \(0.359202\pi\)
\(444\) 0 0
\(445\) −7.92704e7 + 1.37300e8i −0.899562 + 1.55809i
\(446\) 4.64001e7 + 2.67891e7i 0.523015 + 0.301963i
\(447\) 0 0
\(448\) −1.74692e7 3.02576e7i −0.194285 0.336512i
\(449\) 4.88403e7i 0.539560i 0.962922 + 0.269780i \(0.0869509\pi\)
−0.962922 + 0.269780i \(0.913049\pi\)
\(450\) 0 0
\(451\) 1.06081e8 1.15640
\(452\) 3.70168e7 2.13717e7i 0.400851 0.231432i
\(453\) 0 0
\(454\) −5.96822e7 + 1.03373e8i −0.637790 + 1.10468i
\(455\) −4.45460e7 2.57186e7i −0.472905 0.273032i
\(456\) 0 0
\(457\) 8.14710e7 + 1.41112e8i 0.853600 + 1.47848i 0.877938 + 0.478775i \(0.158919\pi\)
−0.0243379 + 0.999704i \(0.507748\pi\)
\(458\) 6.18319e7i 0.643600i
\(459\) 0 0
\(460\) 3.66257e7 0.376281
\(461\) 1.04904e8 6.05666e7i 1.07076 0.618202i 0.142369 0.989814i \(-0.454528\pi\)
0.928388 + 0.371612i \(0.121195\pi\)
\(462\) 0 0
\(463\) 5.41193e7 9.37373e7i 0.545267 0.944429i −0.453324 0.891346i \(-0.649762\pi\)
0.998590 0.0530833i \(-0.0169049\pi\)
\(464\) −1.08600e7 6.27004e6i −0.108712 0.0627648i
\(465\) 0 0
\(466\) −3.94945e7 6.84065e7i −0.390283 0.675989i
\(467\) 5.06445e7i 0.497258i 0.968599 + 0.248629i \(0.0799799\pi\)
−0.968599 + 0.248629i \(0.920020\pi\)
\(468\) 0 0
\(469\) 3.44883e7 0.334313
\(470\) 2.94617e7 1.70097e7i 0.283768 0.163834i
\(471\) 0 0
\(472\) −1.75822e7 + 3.04533e7i −0.167204 + 0.289607i
\(473\) −7.89272e7 4.55687e7i −0.745836 0.430609i
\(474\) 0 0
\(475\) 8.08116e6 + 1.39970e7i 0.0754037 + 0.130603i
\(476\) 1.00795e8i 0.934581i
\(477\) 0 0
\(478\) −1.97554e8 −1.80885
\(479\) −1.52392e8 + 8.79833e7i −1.38661 + 0.800560i −0.992932 0.118688i \(-0.962131\pi\)
−0.393679 + 0.919248i \(0.628798\pi\)
\(480\) 0 0
\(481\) 1.16122e7 2.01130e7i 0.104347 0.180735i
\(482\) −3.80335e7 2.19586e7i −0.339645 0.196094i
\(483\) 0 0
\(484\) −6.17759e6 1.06999e7i −0.0544857 0.0943721i
\(485\) 1.59022e8i 1.39390i
\(486\) 0 0
\(487\) 1.32967e8 1.15121 0.575607 0.817726i \(-0.304766\pi\)
0.575607 + 0.817726i \(0.304766\pi\)
\(488\) 8.52308e7 4.92080e7i 0.733394 0.423425i
\(489\) 0 0
\(490\) 2.81988e7 4.88418e7i 0.239686 0.415148i
\(491\) 1.85642e8 + 1.07181e8i 1.56831 + 0.905464i 0.996366 + 0.0851718i \(0.0271439\pi\)
0.571944 + 0.820293i \(0.306189\pi\)
\(492\) 0 0
\(493\) −1.18638e7 2.05487e7i −0.0990109 0.171492i
\(494\) 7.31262e7i 0.606586i
\(495\) 0 0
\(496\) −2.48374e8 −2.03545
\(497\) −1.19275e8 + 6.88634e7i −0.971583 + 0.560943i
\(498\) 0 0
\(499\) 9.10615e7 1.57723e8i 0.732880 1.26939i −0.222767 0.974872i \(-0.571509\pi\)
0.955647 0.294514i \(-0.0951578\pi\)
\(500\) 4.07016e7 + 2.34991e7i 0.325613 + 0.187993i
\(501\) 0 0
\(502\) −6.55738e7 1.13577e8i −0.518346 0.897801i
\(503\) 9.74226e7i 0.765519i −0.923848 0.382759i \(-0.874974\pi\)
0.923848 0.382759i \(-0.125026\pi\)
\(504\) 0 0
\(505\) −1.17412e8 −0.911670
\(506\) 1.30615e8 7.54106e7i 1.00819 0.582078i
\(507\) 0 0
\(508\) 4.03131e7 6.98243e7i 0.307507 0.532618i
\(509\) 2.23945e7 + 1.29295e7i 0.169820 + 0.0980455i 0.582501 0.812830i \(-0.302074\pi\)
−0.412681 + 0.910876i \(0.635408\pi\)
\(510\) 0 0
\(511\) −3.07765e7 5.33065e7i −0.230652 0.399500i
\(512\) 1.06108e7i 0.0790569i
\(513\) 0 0
\(514\) −6.51409e7 −0.479694
\(515\) 1.35051e8 7.79716e7i 0.988725 0.570841i
\(516\) 0 0
\(517\) 2.02351e7 3.50482e7i 0.146431 0.253626i
\(518\) 8.00165e7 + 4.61976e7i 0.575692 + 0.332376i
\(519\) 0 0
\(520\) −2.30063e7 3.98481e7i −0.163620 0.283399i
\(521\) 1.94679e8i 1.37659i −0.725430 0.688296i \(-0.758359\pi\)
0.725430 0.688296i \(-0.241641\pi\)
\(522\) 0 0
\(523\) 6.83930e7 0.478086 0.239043 0.971009i \(-0.423166\pi\)
0.239043 + 0.971009i \(0.423166\pi\)
\(524\) 7.23896e7 4.17942e7i 0.503133 0.290484i
\(525\) 0 0
\(526\) 6.64888e7 1.15162e8i 0.456868 0.791319i
\(527\) −4.06996e8 2.34979e8i −2.78073 1.60545i
\(528\) 0 0
\(529\) −1.77714e7 3.07809e7i −0.120048 0.207929i
\(530\) 1.73420e8i 1.16485i
\(531\) 0 0
\(532\) 8.40440e7 0.558177
\(533\) −5.88998e7 + 3.40058e7i −0.388985 + 0.224580i
\(534\) 0 0
\(535\) 3.87715e7 6.71541e7i 0.253192 0.438542i
\(536\) 2.67179e7 + 1.54256e7i 0.173504 + 0.100172i
\(537\) 0 0
\(538\) 1.83117e7 + 3.17167e7i 0.117593 + 0.203677i
\(539\) 6.70916e7i 0.428452i
\(540\) 0 0
\(541\) 1.37627e8 0.869187 0.434593 0.900627i \(-0.356892\pi\)
0.434593 + 0.900627i \(0.356892\pi\)
\(542\) −7.52348e7 + 4.34368e7i −0.472521 + 0.272810i
\(543\) 0 0
\(544\) −1.21011e8 + 2.09597e8i −0.751670 + 1.30193i
\(545\) −2.17145e7 1.25369e7i −0.134141 0.0774461i
\(546\) 0 0
\(547\) −6.91760e7 1.19816e8i −0.422662 0.732072i 0.573537 0.819180i \(-0.305571\pi\)
−0.996199 + 0.0871077i \(0.972238\pi\)
\(548\) 7.48404e7i 0.454773i
\(549\) 0 0
\(550\) −2.86533e7 −0.172221
\(551\) −1.71338e7 + 9.89221e6i −0.102423 + 0.0591341i
\(552\) 0 0
\(553\) −1.49229e7 + 2.58472e7i −0.0882424 + 0.152840i
\(554\) 1.05572e8 + 6.09521e7i 0.620898 + 0.358476i
\(555\) 0 0
\(556\) −1.91960e7 3.32485e7i −0.111683 0.193441i
\(557\) 2.31331e8i 1.33866i 0.742967 + 0.669328i \(0.233418\pi\)
−0.742967 + 0.669328i \(0.766582\pi\)
\(558\) 0 0
\(559\) 5.84307e7 0.334507
\(560\) 2.35663e8 1.36060e8i 1.34192 0.774758i
\(561\) 0 0
\(562\) 1.54098e8 2.66905e8i 0.868136 1.50365i
\(563\) 1.65417e7 + 9.55034e6i 0.0926945 + 0.0535172i 0.545631 0.838026i \(-0.316290\pi\)
−0.452936 + 0.891543i \(0.649623\pi\)
\(564\) 0 0
\(565\) −1.09173e8 1.89093e8i −0.605297 1.04841i
\(566\) 2.73046e7i 0.150587i
\(567\) 0 0
\(568\) −1.23202e8 −0.672315
\(569\) 4.53306e6 2.61716e6i 0.0246068 0.0142067i −0.487646 0.873041i \(-0.662144\pi\)
0.512253 + 0.858835i \(0.328811\pi\)
\(570\) 0 0
\(571\) −1.47069e8 + 2.54731e8i −0.789975 + 1.36828i 0.136006 + 0.990708i \(0.456573\pi\)
−0.925981 + 0.377569i \(0.876760\pi\)
\(572\) 3.24344e7 + 1.87260e7i 0.173308 + 0.100059i
\(573\) 0 0
\(574\) −1.35287e8 2.34324e8i −0.715354 1.23903i
\(575\) 2.13717e7i 0.112418i
\(576\) 0 0
\(577\) −1.42033e8 −0.739368 −0.369684 0.929158i \(-0.620534\pi\)
−0.369684 + 0.929158i \(0.620534\pi\)
\(578\) −5.61964e8 + 3.24450e8i −2.91021 + 1.68021i
\(579\) 0 0
\(580\) 4.25880e6 7.37646e6i 0.0218275 0.0378063i
\(581\) 3.37058e7 + 1.94601e7i 0.171861 + 0.0992238i
\(582\) 0 0
\(583\) 1.03152e8 + 1.78664e8i 0.520561 + 0.901638i
\(584\) 5.50616e7i 0.276446i
\(585\) 0 0
\(586\) −3.92463e7 −0.195032
\(587\) 9.13958e6 5.27674e6i 0.0451868 0.0260886i −0.477236 0.878775i \(-0.658361\pi\)
0.522423 + 0.852686i \(0.325028\pi\)
\(588\) 0 0
\(589\) −1.95929e8 + 3.39359e8i −0.958855 + 1.66078i
\(590\) −1.06439e8 6.14525e7i −0.518256 0.299215i
\(591\) 0 0
\(592\) 6.14325e7 + 1.06404e8i 0.296096 + 0.512854i
\(593\) 3.33771e8i 1.60061i 0.599596 + 0.800303i \(0.295328\pi\)
−0.599596 + 0.800303i \(0.704672\pi\)
\(594\) 0 0
\(595\) 5.14889e8 2.44435
\(596\) −1.25826e7 + 7.26456e6i −0.0594335 + 0.0343139i
\(597\) 0 0
\(598\) −4.83479e7 + 8.37410e7i −0.226086 + 0.391593i
\(599\) 3.05735e8 + 1.76516e8i 1.42254 + 0.821305i 0.996516 0.0834057i \(-0.0265797\pi\)
0.426026 + 0.904711i \(0.359913\pi\)
\(600\) 0 0
\(601\) 1.70638e8 + 2.95554e8i 0.786055 + 1.36149i 0.928367 + 0.371665i \(0.121213\pi\)
−0.142312 + 0.989822i \(0.545454\pi\)
\(602\) 2.32458e8i 1.06550i
\(603\) 0 0
\(604\) −9.66521e7 −0.438632
\(605\) −5.46582e7 + 3.15569e7i −0.246825 + 0.142505i
\(606\) 0 0
\(607\) 1.14781e8 1.98806e8i 0.513220 0.888922i −0.486663 0.873590i \(-0.661786\pi\)
0.999882 0.0153325i \(-0.00488067\pi\)
\(608\) 1.74765e8 + 1.00900e8i 0.777577 + 0.448934i
\(609\) 0 0
\(610\) 1.71989e8 + 2.97894e8i 0.757726 + 1.31242i
\(611\) 2.59465e7i 0.113751i
\(612\) 0 0
\(613\) −3.31047e8 −1.43717 −0.718586 0.695438i \(-0.755210\pi\)
−0.718586 + 0.695438i \(0.755210\pi\)
\(614\) 3.62600e7 2.09347e7i 0.156647 0.0904402i
\(615\) 0 0
\(616\) 1.08883e8 1.88590e8i 0.465818 0.806820i
\(617\) 3.10951e8 + 1.79528e8i 1.32384 + 0.764321i 0.984340 0.176283i \(-0.0564074\pi\)
0.339504 + 0.940605i \(0.389741\pi\)
\(618\) 0 0
\(619\) 7.55653e6 + 1.30883e7i 0.0318603 + 0.0551837i 0.881516 0.472154i \(-0.156523\pi\)
−0.849656 + 0.527338i \(0.823190\pi\)
\(620\) 1.68703e8i 0.707861i
\(621\) 0 0
\(622\) 1.26779e8 0.526836
\(623\) 4.16608e8 2.40529e8i 1.72291 0.994724i
\(624\) 0 0
\(625\) 1.35782e8 2.35182e8i 0.556165 0.963305i
\(626\) −4.93289e8 2.84801e8i −2.01085 1.16096i
\(627\) 0 0
\(628\) 1.60805e7 + 2.78523e7i 0.0649263 + 0.112456i
\(629\) 2.32478e8i 0.934179i
\(630\) 0 0
\(631\) −1.91510e7 −0.0762259 −0.0381129 0.999273i \(-0.512135\pi\)
−0.0381129 + 0.999273i \(0.512135\pi\)
\(632\) −2.31214e7 + 1.33491e7i −0.0915930 + 0.0528812i
\(633\) 0 0
\(634\) −2.77960e8 + 4.81442e8i −1.09073 + 1.88919i
\(635\) −3.56683e8 2.05931e8i −1.39303 0.804268i
\(636\) 0 0
\(637\) 2.15072e7 + 3.72515e7i 0.0832080 + 0.144121i
\(638\) 3.50747e7i 0.135062i
\(639\) 0 0
\(640\) 3.23094e8 1.23251
\(641\) −6.51610e7 + 3.76207e7i −0.247408 + 0.142841i −0.618577 0.785724i \(-0.712290\pi\)
0.371169 + 0.928565i \(0.378957\pi\)
\(642\) 0 0
\(643\) 1.10786e8 1.91887e8i 0.416728 0.721795i −0.578880 0.815413i \(-0.696510\pi\)
0.995608 + 0.0936182i \(0.0298433\pi\)
\(644\) −9.62436e7 5.55663e7i −0.360342 0.208043i
\(645\) 0 0
\(646\) 3.65998e8 + 6.33928e8i 1.35763 + 2.35148i
\(647\) 3.67765e8i 1.35787i −0.734199 0.678934i \(-0.762442\pi\)
0.734199 0.678934i \(-0.237558\pi\)
\(648\) 0 0
\(649\) −1.46210e8 −0.534864
\(650\) 1.59093e7 9.18522e6i 0.0579309 0.0334464i
\(651\) 0 0
\(652\) 8.93931e7 1.54833e8i 0.322523 0.558627i
\(653\) −1.19246e8 6.88468e7i −0.428258 0.247255i 0.270346 0.962763i \(-0.412862\pi\)
−0.698604 + 0.715508i \(0.746195\pi\)
\(654\) 0 0
\(655\) −2.13497e8 3.69788e8i −0.759745 1.31592i
\(656\) 3.59804e8i 1.27454i
\(657\) 0 0
\(658\) −1.03224e8 −0.362330
\(659\) −4.70292e7 + 2.71523e7i −0.164328 + 0.0948748i −0.579909 0.814682i \(-0.696912\pi\)
0.415581 + 0.909556i \(0.363578\pi\)
\(660\) 0 0
\(661\) −2.21501e8 + 3.83651e8i −0.766958 + 1.32841i 0.172248 + 0.985054i \(0.444897\pi\)
−0.939205 + 0.343356i \(0.888436\pi\)
\(662\) −9.01776e7 5.20641e7i −0.310831 0.179459i
\(663\) 0 0
\(664\) 1.74078e7 + 3.01512e7i 0.0594620 + 0.102991i
\(665\) 4.29322e8i 1.45988i
\(666\) 0 0
\(667\) 2.61612e7 0.0881617
\(668\) 4.31842e7 2.49324e7i 0.144876 0.0836440i
\(669\) 0 0
\(670\) −5.39148e7 + 9.33831e7i −0.179260 + 0.310487i
\(671\) 3.54381e8 + 2.04602e8i 1.17301 + 0.677239i
\(672\) 0 0
\(673\) 2.62660e8 + 4.54940e8i 0.861685 + 1.49248i 0.870301 + 0.492520i \(0.163924\pi\)
−0.00861562 + 0.999963i \(0.502742\pi\)
\(674\) 8.07932e7i 0.263873i
\(675\) 0 0
\(676\) 1.01485e8 0.328522
\(677\) −8.79164e7 + 5.07586e7i −0.283337 + 0.163585i −0.634933 0.772567i \(-0.718972\pi\)
0.351596 + 0.936152i \(0.385639\pi\)
\(678\) 0 0
\(679\) −2.41259e8 + 4.17872e8i −0.770679 + 1.33485i
\(680\) 3.98882e8 + 2.30294e8i 1.26858 + 0.732414i
\(681\) 0 0
\(682\) −3.47352e8 6.01631e8i −1.09501 1.89661i
\(683\) 5.87819e7i 0.184494i 0.995736 + 0.0922468i \(0.0294049\pi\)
−0.995736 + 0.0922468i \(0.970595\pi\)
\(684\) 0 0
\(685\) −3.82307e8 −1.18943
\(686\) 2.41334e8 1.39334e8i 0.747561 0.431604i
\(687\) 0 0
\(688\) −1.54559e8 + 2.67703e8i −0.474600 + 0.822032i
\(689\) −1.14547e8 6.61336e7i −0.350207 0.202192i
\(690\) 0 0
\(691\) −1.02888e8 1.78206e8i −0.311838 0.540119i 0.666922 0.745127i \(-0.267611\pi\)
−0.978760 + 0.205008i \(0.934278\pi\)
\(692\) 9.94159e7i 0.300011i
\(693\) 0 0
\(694\) 5.01106e8 1.49917
\(695\) −1.69843e8 + 9.80591e7i −0.505934 + 0.292101i
\(696\) 0 0
\(697\) 3.40400e8 5.89590e8i 1.00529 1.74121i
\(698\) −4.10108e8 2.36776e8i −1.20596 0.696259i
\(699\) 0 0
\(700\) 1.05566e7 + 1.82845e7i 0.0307772 + 0.0533077i
\(701\) 1.77405e8i 0.515005i 0.966278 + 0.257502i \(0.0828995\pi\)
−0.966278 + 0.257502i \(0.917100\pi\)
\(702\) 0 0
\(703\) 1.93844e8 0.557937
\(704\) 1.12540e8 6.49752e7i 0.322545 0.186221i
\(705\) 0 0
\(706\) 1.23732e6 2.14310e6i 0.00351615 0.00609016i
\(707\) 3.08531e8 + 1.78130e8i 0.873052 + 0.504057i
\(708\) 0 0
\(709\) −2.02058e7 3.49975e7i −0.0566941 0.0981970i 0.836285 0.548294i \(-0.184723\pi\)
−0.892980 + 0.450097i \(0.851389\pi\)
\(710\) 4.30610e8i 1.20312i
\(711\) 0 0
\(712\) 4.30325e8 1.19222
\(713\) 4.48739e8 2.59080e8i 1.23801 0.714767i
\(714\) 0 0
\(715\) 9.56579e7 1.65684e8i 0.261700 0.453277i
\(716\) 3.60560e7 + 2.08169e7i 0.0982286 + 0.0567123i
\(717\) 0 0
\(718\) −1.21851e6 2.11052e6i −0.00329197 0.00570186i
\(719\) 3.24675e8i 0.873498i 0.899583 + 0.436749i \(0.143870\pi\)
−0.899583 + 0.436749i \(0.856130\pi\)
\(720\) 0 0
\(721\) −4.73176e8 −1.26246
\(722\) 1.42056e8 8.20163e7i 0.377441 0.217916i
\(723\) 0 0
\(724\) 7.41841e6 1.28491e7i 0.0195477 0.0338576i
\(725\) −4.30428e6 2.48508e6i −0.0112950 0.00652117i
\(726\) 0 0
\(727\) −2.71558e8 4.70353e8i −0.706740 1.22411i −0.966060 0.258318i \(-0.916832\pi\)
0.259320 0.965791i \(-0.416502\pi\)
\(728\) 1.39615e8i 0.361859i
\(729\) 0 0
\(730\) 1.92449e8 0.494705
\(731\) −5.06533e8 + 2.92447e8i −1.29675 + 0.748678i
\(732\) 0 0
\(733\) −1.76244e8 + 3.05264e8i −0.447510 + 0.775109i −0.998223 0.0595849i \(-0.981022\pi\)
0.550714 + 0.834694i \(0.314356\pi\)
\(734\) −2.67581e8 1.54488e8i −0.676655 0.390667i
\(735\) 0 0
\(736\) −1.33422e8 2.31094e8i −0.334653 0.579636i
\(737\) 1.28276e8i 0.320437i
\(738\) 0 0
\(739\) −6.08455e8 −1.50763 −0.753816 0.657086i \(-0.771789\pi\)
−0.753816 + 0.657086i \(0.771789\pi\)
\(740\) −7.22730e7 + 4.17268e7i −0.178353 + 0.102972i
\(741\) 0 0
\(742\) 2.63103e8 4.55707e8i 0.644041 1.11551i
\(743\) 2.09444e8 + 1.20923e8i 0.510625 + 0.294809i 0.733090 0.680131i \(-0.238077\pi\)
−0.222466 + 0.974941i \(0.571411\pi\)
\(744\) 0 0
\(745\) 3.71095e7 + 6.42756e7i 0.0897463 + 0.155445i
\(746\) 7.90697e8i 1.90455i
\(747\) 0 0
\(748\) −3.74896e8 −0.895790
\(749\) −2.03765e8 + 1.17643e8i −0.484935 + 0.279977i
\(750\) 0 0
\(751\) 2.49236e8 4.31690e8i 0.588425 1.01918i −0.406013 0.913867i \(-0.633081\pi\)
0.994439 0.105316i \(-0.0335853\pi\)
\(752\) −1.18875e8 6.86328e7i −0.279537 0.161391i
\(753\) 0 0
\(754\) 1.12437e7 + 1.94747e7i 0.0262298 + 0.0454314i
\(755\) 4.93727e8i 1.14722i
\(756\) 0 0
\(757\) 1.14551e8 0.264064 0.132032 0.991245i \(-0.457850\pi\)
0.132032 + 0.991245i \(0.457850\pi\)
\(758\) −6.00587e8 + 3.46749e8i −1.37901 + 0.796173i
\(759\) 0 0
\(760\) 1.92023e8 3.32593e8i 0.437433 0.757657i
\(761\) −3.39399e8 1.95952e8i −0.770118 0.444628i 0.0627990 0.998026i \(-0.479997\pi\)
−0.832917 + 0.553399i \(0.813331\pi\)
\(762\) 0 0
\(763\) 3.80404e7 + 6.58879e7i 0.0856389 + 0.148331i
\(764\) 1.07811e8i 0.241758i
\(765\) 0 0
\(766\) −3.74262e8 −0.832701
\(767\) 8.11807e7 4.68697e7i 0.179915 0.103874i
\(768\) 0 0
\(769\) −4.07192e7 + 7.05277e7i −0.0895406 + 0.155089i −0.907317 0.420447i \(-0.861873\pi\)
0.817776 + 0.575536i \(0.195207\pi\)
\(770\) 6.59150e8 + 3.80561e8i 1.44382 + 0.833589i
\(771\) 0 0
\(772\) −5.81409e7 1.00703e8i −0.126366 0.218872i
\(773\) 7.23925e8i 1.56731i −0.621196 0.783655i \(-0.713353\pi\)
0.621196 0.783655i \(-0.286647\pi\)
\(774\) 0 0
\(775\) −9.84408e7 −0.211480
\(776\) −3.73803e8 + 2.15815e8i −0.799941 + 0.461846i
\(777\) 0 0
\(778\) 3.56088e8 6.16763e8i 0.756169 1.30972i
\(779\) −4.91608e8 2.83830e8i −1.03994 0.600408i
\(780\) 0 0
\(781\) −2.56131e8 4.43631e8i −0.537661 0.931256i
\(782\) 9.67929e8i 2.02406i
\(783\) 0 0
\(784\) −2.27560e8 −0.472223
\(785\) 1.42278e8 8.21440e7i 0.294122 0.169811i
\(786\) 0 0
\(787\) 4.40642e6 7.63215e6i 0.00903986 0.0156575i −0.861470 0.507808i \(-0.830456\pi\)
0.870510 + 0.492151i \(0.163789\pi\)
\(788\) 2.67435e8 + 1.54404e8i 0.546562 + 0.315557i
\(789\) 0 0
\(790\) −4.66572e7 8.08126e7i −0.0946318 0.163907i
\(791\) 6.62521e8i 1.33866i
\(792\) 0 0
\(793\) −2.62352e8 −0.526096
\(794\) 5.21366e8 3.01011e8i 1.04155 0.601341i
\(795\) 0 0
\(796\) 1.17350e7 2.03256e7i 0.0232672 0.0403000i
\(797\) 7.85361e8 + 4.53428e8i 1.55129 + 0.895640i 0.998037 + 0.0626303i \(0.0199489\pi\)
0.553258 + 0.833010i \(0.313384\pi\)
\(798\) 0 0
\(799\) −1.29863e8 2.24929e8i −0.254592 0.440967i
\(800\) 5.06955e7i 0.0990147i
\(801\) 0 0
\(802\) 7.25088e8 1.40562
\(803\) 1.98268e8 1.14470e8i 0.382919 0.221078i
\(804\) 0 0
\(805\) −2.83849e8 + 4.91641e8i −0.544126 + 0.942454i
\(806\) 3.85723e8 + 2.22697e8i 0.736665 + 0.425314i
\(807\) 0 0
\(808\) 1.59345e8 + 2.75993e8i 0.302067 + 0.523196i
\(809\) 2.56667e8i 0.484757i 0.970182 + 0.242379i \(0.0779277\pi\)
−0.970182 + 0.242379i \(0.922072\pi\)
\(810\) 0 0
\(811\) 1.04558e8 0.196017 0.0980087 0.995186i \(-0.468753\pi\)
0.0980087 + 0.995186i \(0.468753\pi\)
\(812\) −2.23822e7 + 1.29224e7i −0.0418057 + 0.0241365i
\(813\) 0 0
\(814\) −1.71827e8 + 2.97614e8i −0.318580 + 0.551798i
\(815\) −7.90934e8 4.56646e8i −1.46106 0.843542i
\(816\) 0 0
\(817\) 2.43846e8 + 4.22354e8i 0.447147 + 0.774481i
\(818\) 1.00795e9i 1.84153i
\(819\) 0 0
\(820\) 2.44390e8 0.443242
\(821\) 1.71744e8 9.91564e7i 0.310350 0.179181i −0.336733 0.941600i \(-0.609322\pi\)
0.647083 + 0.762419i \(0.275989\pi\)
\(822\) 0 0
\(823\) −4.42543e7 + 7.66507e7i −0.0793882 + 0.137504i −0.902986 0.429670i \(-0.858630\pi\)
0.823598 + 0.567174i \(0.191963\pi\)
\(824\) −3.66567e8 2.11637e8i −0.655196 0.378278i
\(825\) 0 0
\(826\) 1.86464e8 + 3.22965e8i 0.330868 + 0.573081i
\(827\) 9.40582e8i 1.66295i −0.555560 0.831476i \(-0.687496\pi\)
0.555560 0.831476i \(-0.312504\pi\)
\(828\) 0 0
\(829\) −4.25518e7 −0.0746886 −0.0373443 0.999302i \(-0.511890\pi\)
−0.0373443 + 0.999302i \(0.511890\pi\)
\(830\) −1.05383e8 + 6.08429e7i −0.184304 + 0.106408i
\(831\) 0 0
\(832\) −4.16574e7 + 7.21528e7i −0.0723307 + 0.125280i
\(833\) −3.72889e8 2.15288e8i −0.645127 0.372464i
\(834\) 0 0
\(835\) −1.27362e8 2.20598e8i −0.218766 0.378915i
\(836\) 3.12594e8i 0.535009i
\(837\) 0 0
\(838\) 3.58481e8 0.609164
\(839\) 3.13806e8 1.81176e8i 0.531343 0.306771i −0.210220 0.977654i \(-0.567418\pi\)
0.741563 + 0.670883i \(0.234085\pi\)
\(840\) 0 0
\(841\) −2.94370e8 + 5.09863e8i −0.494886 + 0.857167i
\(842\) 1.29363e8 + 7.46878e7i 0.216707 + 0.125116i
\(843\) 0 0
\(844\) 7.37796e7 + 1.27790e8i 0.122718 + 0.212554i
\(845\) 5.18418e8i 0.859231i
\(846\) 0 0
\(847\) 1.91505e8 0.315159
\(848\) 6.05989e8 3.49868e8i 0.993751 0.573742i
\(849\) 0 0
\(850\) −9.19444e7 + 1.59252e8i −0.149716 + 0.259316i
\(851\) −2.21981e8 1.28161e8i −0.360187 0.207954i
\(852\) 0 0
\(853\) −5.71326e8 9.89566e8i −0.920528 1.59440i −0.798599 0.601863i \(-0.794425\pi\)
−0.121929 0.992539i \(-0.538908\pi\)
\(854\) 1.04373e9i 1.67577i
\(855\) 0 0
\(856\) −2.10474e8 −0.335565
\(857\) 2.71854e8 1.56955e8i 0.431911 0.249364i −0.268250 0.963349i \(-0.586445\pi\)
0.700160 + 0.713986i \(0.253112\pi\)
\(858\) 0 0
\(859\) −2.06304e8 + 3.57329e8i −0.325483 + 0.563753i −0.981610 0.190897i \(-0.938860\pi\)
0.656127 + 0.754651i \(0.272194\pi\)
\(860\) −1.81832e8 1.04981e8i −0.285875 0.165050i
\(861\) 0 0
\(862\) 1.50091e8 + 2.59964e8i 0.234332 + 0.405875i
\(863\) 7.45960e8i 1.16060i −0.814402 0.580301i \(-0.802935\pi\)
0.814402 0.580301i \(-0.197065\pi\)
\(864\) 0 0
\(865\) 5.07846e8 0.784663
\(866\) −5.34834e8 + 3.08786e8i −0.823503 + 0.475449i
\(867\) 0 0
\(868\) −2.55946e8 + 4.43312e8i −0.391372 + 0.677876i
\(869\) −9.61362e7 5.55042e7i −0.146497 0.0845798i
\(870\) 0 0
\(871\) −4.11207e7 7.12232e7i −0.0622309 0.107787i
\(872\) 6.80573e7i 0.102642i
\(873\) 0 0
\(874\) −8.07073e8 −1.20887
\(875\) −6.30875e8 + 3.64236e8i −0.941714 + 0.543699i
\(876\) 0 0
\(877\) 4.09687e8 7.09598e8i 0.607370 1.05200i −0.384302 0.923207i \(-0.625558\pi\)
0.991672 0.128788i \(-0.0411087\pi\)
\(878\) 2.58861e8 + 1.49454e8i 0.382458 + 0.220812i
\(879\) 0 0
\(880\) 5.06061e8 + 8.76524e8i 0.742600 + 1.28622i
\(881\) 1.15485e9i 1.68888i −0.535653 0.844438i \(-0.679935\pi\)
0.535653 0.844438i \(-0.320065\pi\)
\(882\) 0 0
\(883\) 3.95346e8 0.574242 0.287121 0.957894i \(-0.407302\pi\)
0.287121 + 0.957894i \(0.407302\pi\)
\(884\) 2.08155e8 1.20178e8i 0.301321 0.173968i
\(885\) 0 0
\(886\) −6.69544e7 + 1.15968e8i −0.0962671 + 0.166740i
\(887\) 6.43033e8 + 3.71255e8i 0.921430 + 0.531988i 0.884091 0.467315i \(-0.154779\pi\)
0.0373387 + 0.999303i \(0.488112\pi\)
\(888\) 0 0
\(889\) 6.24853e8 + 1.08228e9i 0.889349 + 1.54040i
\(890\) 1.50405e9i 2.13350i
\(891\) 0 0
\(892\) 1.46839e8 0.206893
\(893\) −1.87549e8 + 1.08282e8i −0.263367 + 0.152055i
\(894\) 0 0
\(895\) 1.06339e8 1.84184e8i 0.148328 0.256912i
\(896\) −8.49015e8 4.90179e8i −1.18030 0.681445i
\(897\) 0 0
\(898\) 2.31670e8 + 4.01264e8i 0.319920 + 0.554117i
\(899\) 1.20502e8i 0.165850i
\(900\) 0 0
\(901\) 1.32400e9 1.81015
\(902\) 8.71546e8 5.03187e8i 1.18760 0.685662i
\(903\) 0 0
\(904\) −2.96326e8 + 5.13252e8i −0.401111 + 0.694744i
\(905\) −6.56368e7 3.78954e7i −0.0885527 0.0511259i
\(906\) 0 0
\(907\) 6.11885e8 + 1.05982e9i 0.820064 + 1.42039i 0.905634 + 0.424061i \(0.139396\pi\)
−0.0855693 + 0.996332i \(0.527271\pi\)
\(908\) 3.27135e8i 0.436988i
\(909\) 0 0
\(910\) −4.87977e8 −0.647552
\(911\) −6.80021e8 + 3.92610e8i −0.899429 + 0.519286i −0.877015 0.480463i \(-0.840469\pi\)
−0.0224143 + 0.999749i \(0.507135\pi\)
\(912\) 0 0
\(913\) −7.23798e7 + 1.25365e8i −0.0951054 + 0.164727i
\(914\) 1.33870e9 + 7.72902e8i 1.75326 + 1.01225i
\(915\) 0 0
\(916\) −8.47295e7 1.46756e8i −0.110242 0.190945i
\(917\) 1.29562e9i 1.68023i
\(918\) 0 0
\(919\) −5.58148e8 −0.719122 −0.359561 0.933121i \(-0.617074\pi\)
−0.359561 + 0.933121i \(0.617074\pi\)
\(920\) −4.39793e8 + 2.53914e8i −0.564787 + 0.326080i
\(921\) 0 0
\(922\) 5.74585e8 9.95211e8i 0.733098 1.26976i
\(923\) 2.84425e8 + 1.64213e8i 0.361711 + 0.208834i
\(924\) 0 0
\(925\) 2.43483e7 + 4.21724e7i 0.0307640 + 0.0532848i
\(926\) 1.02684e9i 1.29321i
\(927\) 0 0
\(928\) −6.20568e7 −0.0776507
\(929\) −5.81254e8 + 3.35587e8i −0.724968 + 0.418560i −0.816578 0.577235i \(-0.804132\pi\)
0.0916107 + 0.995795i \(0.470798\pi\)
\(930\) 0 0
\(931\) −1.79510e8 + 3.10920e8i −0.222454 + 0.385301i
\(932\) −1.87478e8 1.08240e8i −0.231580 0.133703i
\(933\) 0 0
\(934\) 2.40228e8 + 4.16087e8i 0.294838 + 0.510674i
\(935\) 1.91508e9i 2.34289i
\(936\) 0 0
\(937\) −4.07277e8 −0.495076 −0.247538 0.968878i \(-0.579621\pi\)
−0.247538 + 0.968878i \(0.579621\pi\)
\(938\) 2.83351e8 1.63593e8i 0.343333 0.198223i
\(939\) 0 0
\(940\) 4.66175e7 8.07438e7i 0.0561261 0.0972133i
\(941\) −1.27501e9 7.36127e8i −1.53019 0.883454i −0.999353 0.0359779i \(-0.988545\pi\)
−0.530834 0.847476i \(-0.678121\pi\)
\(942\) 0 0
\(943\) 3.75313e8 + 6.50060e8i 0.447567 + 0.775209i
\(944\) 4.95912e8i 0.589506i
\(945\) 0 0
\(946\) −8.64604e8 −1.02128
\(947\) 7.96395e8 4.59799e8i 0.937732 0.541400i 0.0484834 0.998824i \(-0.484561\pi\)
0.889249 + 0.457424i \(0.151228\pi\)
\(948\) 0 0
\(949\) −7.33901e7 + 1.27115e8i −0.0858695 + 0.148730i
\(950\) 1.32787e8 + 7.66646e7i 0.154876 + 0.0894178i
\(951\) 0 0
\(952\) −6.98778e8 1.21032e9i −0.809894 1.40278i
\(953\) 9.44943e8i 1.09176i 0.837863 + 0.545880i \(0.183804\pi\)
−0.837863 + 0.545880i \(0.816196\pi\)
\(954\) 0 0
\(955\) −5.50728e8 −0.632306
\(956\) −4.68888e8 + 2.70713e8i −0.536655 + 0.309838i
\(957\) 0 0
\(958\) −8.34683e8 + 1.44571e9i −0.949347 + 1.64432i
\(959\) 1.00461e9 + 5.80013e8i 1.13905 + 0.657630i
\(960\) 0 0
\(961\) −7.49605e8 1.29835e9i −0.844622 1.46293i
\(962\) 2.20327e8i 0.247481i
\(963\) 0 0
\(964\) −1.20361e8 −0.134356
\(965\) −5.14421e8 + 2.97001e8i −0.572448 + 0.330503i
\(966\) 0 0
\(967\) 4.47995e7 7.75950e7i 0.0495443 0.0858133i −0.840190 0.542293i \(-0.817556\pi\)
0.889734 + 0.456479i \(0.150890\pi\)
\(968\) 1.48358e8 + 8.56545e7i 0.163563 + 0.0944331i
\(969\) 0 0
\(970\) −7.54307e8 1.30650e9i −0.826481 1.43151i
\(971\) 3.70582e8i 0.404787i −0.979304 0.202394i \(-0.935128\pi\)
0.979304 0.202394i \(-0.0648720\pi\)
\(972\) 0 0
\(973\) 5.95077e8 0.646004
\(974\) 1.09243e9 6.30717e8i 1.18227 0.682586i
\(975\) 0 0
\(976\) 6.93963e8 1.20198e9i 0.746427 1.29285i
\(977\) 1.24942e8 + 7.21351e7i 0.133975 + 0.0773505i 0.565489 0.824756i \(-0.308687\pi\)
−0.431515 + 0.902106i \(0.642021\pi\)
\(978\) 0 0
\(979\) 8.94623e8 + 1.54953e9i 0.953437 + 1.65140i
\(980\) 1.54566e8i 0.164223i
\(981\) 0 0
\(982\) 2.03361e9 2.14750
\(983\) −3.79146e8 + 2.18900e8i −0.399159 + 0.230455i −0.686121 0.727487i \(-0.740688\pi\)
0.286962 + 0.957942i \(0.407355\pi\)
\(984\) 0 0
\(985\) 7.88739e8 1.36614e9i 0.825324 1.42950i
\(986\) −1.94942e8 1.12550e8i −0.203364 0.117412i
\(987\) 0 0
\(988\) −1.00206e8 1.73562e8i −0.103902 0.179964i
\(989\) 6.44883e8i 0.666641i
\(990\) 0 0
\(991\) −4.48947e8 −0.461290 −0.230645 0.973038i \(-0.574084\pi\)
−0.230645 + 0.973038i \(0.574084\pi\)
\(992\) −1.06445e9 + 6.14561e8i −1.09041 + 0.629550i
\(993\) 0 0
\(994\) −6.53295e8 + 1.13154e9i −0.665197 + 1.15216i
\(995\) −1.03829e8 5.99459e7i −0.105402 0.0608541i
\(996\) 0 0
\(997\) −5.22164e8 9.04415e8i −0.526892 0.912604i −0.999509 0.0313358i \(-0.990024\pi\)
0.472617 0.881268i \(-0.343309\pi\)
\(998\) 1.72777e9i 1.73818i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 81.7.d.c.53.2 4
3.2 odd 2 inner 81.7.d.c.53.1 4
9.2 odd 6 inner 81.7.d.c.26.2 4
9.4 even 3 27.7.b.a.26.2 yes 2
9.5 odd 6 27.7.b.a.26.1 2
9.7 even 3 inner 81.7.d.c.26.1 4
36.23 even 6 432.7.e.g.161.1 2
36.31 odd 6 432.7.e.g.161.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
27.7.b.a.26.1 2 9.5 odd 6
27.7.b.a.26.2 yes 2 9.4 even 3
81.7.d.c.26.1 4 9.7 even 3 inner
81.7.d.c.26.2 4 9.2 odd 6 inner
81.7.d.c.53.1 4 3.2 odd 2 inner
81.7.d.c.53.2 4 1.1 even 1 trivial
432.7.e.g.161.1 2 36.23 even 6
432.7.e.g.161.2 2 36.31 odd 6