Properties

Label 81.7.d
Level $81$
Weight $7$
Character orbit 81.d
Rep. character $\chi_{81}(26,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $46$
Newform subspaces $6$
Sturm bound $63$
Trace bound $4$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 81 = 3^{4} \)
Weight: \( k \) \(=\) \( 7 \)
Character orbit: \([\chi]\) \(=\) 81.d (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 9 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 6 \)
Sturm bound: \(63\)
Trace bound: \(4\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{7}(81, [\chi])\).

Total New Old
Modular forms 120 50 70
Cusp forms 96 46 50
Eisenstein series 24 4 20

Trace form

\( 46 q + 706 q^{4} + 602 q^{7} + 252 q^{10} + 4202 q^{13} - 20606 q^{16} - 2284 q^{19} - 7326 q^{22} + 48721 q^{25} + 137468 q^{28} + 104642 q^{31} + 45144 q^{34} + 29900 q^{37} - 236934 q^{40} + 317582 q^{43}+ \cdots + 1460006 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{7}^{\mathrm{new}}(81, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
81.7.d.a 81.d 9.d $2$ $18.634$ \(\Q(\sqrt{-3}) \) \(\Q(\sqrt{-3}) \) 3.7.b.a \(0\) \(0\) \(0\) \(286\) $\mathrm{U}(1)[D_{6}]$ \(q-2^{6}\zeta_{6}q^{4}+(286-286\zeta_{6})q^{7}-506\zeta_{6}q^{13}+\cdots\)
81.7.d.b 81.d 9.d $4$ $18.634$ \(\Q(\zeta_{12})\) None 27.7.b.b \(0\) \(0\) \(0\) \(-598\) $\mathrm{SU}(2)[C_{6}]$ \(q+\beta_1 q^{2}-28\beta_{2} q^{4}+(-40\beta_{3}+40\beta_1)q^{5}+\cdots\)
81.7.d.c 81.d 9.d $4$ $18.634$ \(\Q(\sqrt{-3}, \sqrt{-10})\) None 27.7.b.a \(0\) \(0\) \(0\) \(806\) $\mathrm{SU}(2)[C_{6}]$ \(q+\beta _{1}q^{2}+26\beta _{2}q^{4}+(-14\beta _{1}+14\beta _{3})q^{5}+\cdots\)
81.7.d.d 81.d 9.d $4$ $18.634$ \(\Q(\sqrt{-2}, \sqrt{-3})\) None 9.7.b.a \(0\) \(0\) \(0\) \(-1048\) $\mathrm{SU}(2)[C_{6}]$ \(q+\beta _{1}q^{2}+98\beta _{2}q^{4}+(-5\beta _{1}+5\beta _{3})q^{5}+\cdots\)
81.7.d.e 81.d 9.d $8$ $18.634$ 8.0.\(\cdots\).3 None 27.7.b.c \(0\) \(0\) \(0\) \(676\) $\mathrm{SU}(2)[C_{6}]$ \(q-\beta _{3}q^{2}+(7^{2}+7^{2}\beta _{1}+\beta _{4}+\beta _{5})q^{4}+\cdots\)
81.7.d.f 81.d 9.d $24$ $18.634$ None 81.7.b.b \(0\) \(0\) \(0\) \(480\) $\mathrm{SU}(2)[C_{6}]$

Decomposition of \(S_{7}^{\mathrm{old}}(81, [\chi])\) into lower level spaces

\( S_{7}^{\mathrm{old}}(81, [\chi]) \simeq \) \(S_{7}^{\mathrm{new}}(9, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{7}^{\mathrm{new}}(27, [\chi])\)\(^{\oplus 2}\)