Defining parameters
Level: | \( N \) | = | \( 81 = 3^{4} \) |
Weight: | \( k \) | = | \( 7 \) |
Nonzero newspaces: | \( 4 \) | ||
Newform subspaces: | \( 10 \) | ||
Sturm bound: | \(3402\) | ||
Trace bound: | \(1\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{7}(\Gamma_1(81))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 1512 | 1180 | 332 |
Cusp forms | 1404 | 1124 | 280 |
Eisenstein series | 108 | 56 | 52 |
Trace form
Decomposition of \(S_{7}^{\mathrm{new}}(\Gamma_1(81))\)
We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Decomposition of \(S_{7}^{\mathrm{old}}(\Gamma_1(81))\) into lower level spaces
\( S_{7}^{\mathrm{old}}(\Gamma_1(81)) \cong \) \(S_{7}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 5}\)\(\oplus\)\(S_{7}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 4}\)\(\oplus\)\(S_{7}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 3}\)\(\oplus\)\(S_{7}^{\mathrm{new}}(\Gamma_1(27))\)\(^{\oplus 2}\)\(\oplus\)\(S_{7}^{\mathrm{new}}(\Gamma_1(81))\)\(^{\oplus 1}\)