Label |
Level |
Weight |
Char |
Prim |
Char order |
Dim |
Rel. Dim |
$A$ |
Field |
CM |
Self-dual |
Twist minimal |
Largest |
Maximal |
Minimal twist |
Inner twists |
Rank* |
Traces |
Fricke sign |
Coefficient ring index |
Sato-Tate |
$q$-expansion |
$a_{2}$ |
$a_{3}$ |
$a_{5}$ |
$a_{7}$ |
81.2.a.a |
$81$ |
$2$ |
81.a |
1.a |
$1$ |
$2$ |
$2$ |
$0.647$ |
\(\Q(\sqrt{3}) \) |
None |
✓ |
✓ |
✓ |
✓ |
81.2.a.a |
$2$ |
$0$ |
\(0\) |
\(0\) |
\(0\) |
\(4\) |
$-$ |
$1$ |
$\mathrm{SU}(2)$ |
\(q+\beta q^{2}+q^{4}-\beta q^{5}+2q^{7}-\beta q^{8}+\cdots\) |
81.2.c.a |
$81$ |
$2$ |
81.c |
9.c |
$3$ |
$2$ |
$1$ |
$0.647$ |
\(\Q(\sqrt{-3}) \) |
\(\Q(\sqrt{-3}) \) |
|
|
|
|
27.2.a.a |
$4$ |
$0$ |
\(0\) |
\(0\) |
\(0\) |
\(1\) |
|
$1$ |
$\mathrm{U}(1)[D_{3}]$ |
\(q+2\zeta_{6}q^{4}+(1-\zeta_{6})q^{7}-5\zeta_{6}q^{13}+\cdots\) |
81.2.c.b |
$81$ |
$2$ |
81.c |
9.c |
$3$ |
$4$ |
$2$ |
$0.647$ |
\(\Q(\zeta_{12})\) |
None |
|
✓ |
✓ |
|
81.2.a.a |
$4$ |
$0$ |
\(0\) |
\(0\) |
\(0\) |
\(-4\) |
|
$3$ |
$\mathrm{SU}(2)[C_{3}]$ |
\(q-\beta_{2} q^{2}+(\beta_1-1)q^{4}+(\beta_{3}-\beta_{2})q^{5}+\cdots\) |
81.2.e.a |
$81$ |
$2$ |
81.e |
27.e |
$9$ |
$12$ |
$2$ |
$0.647$ |
12.0.\(\cdots\).1 |
None |
|
|
✓ |
✓ |
27.2.e.a |
$2$ |
$0$ |
\(6\) |
\(0\) |
\(3\) |
\(-6\) |
|
$3$ |
$\mathrm{SU}(2)[C_{9}]$ |
\(q+(1+\beta _{3}-\beta _{8})q^{2}+(1+\beta _{1}+\beta _{2}+\beta _{3}+\cdots)q^{4}+\cdots\) |
81.2.g.a |
$81$ |
$2$ |
81.g |
81.g |
$27$ |
$144$ |
$8$ |
$0.647$ |
|
None |
|
✓ |
✓ |
✓ |
81.2.g.a |
$2$ |
$0$ |
\(-18\) |
\(-18\) |
\(-18\) |
\(-18\) |
|
|
$\mathrm{SU}(2)[C_{27}]$ |
|
81.3.b.a |
$81$ |
$3$ |
81.b |
3.b |
$2$ |
$2$ |
$2$ |
$2.207$ |
\(\Q(\sqrt{-3}) \) |
None |
|
|
|
|
9.3.d.a |
$2$ |
$0$ |
\(0\) |
\(0\) |
\(0\) |
\(4\) |
|
$2$ |
$\mathrm{SU}(2)[C_{2}]$ |
\(q-\beta q^{2}+q^{4}-2\beta q^{5}+2 q^{7}-5\beta q^{8}+\cdots\) |
81.3.b.b |
$81$ |
$3$ |
81.b |
3.b |
$2$ |
$4$ |
$4$ |
$2.207$ |
\(\Q(\sqrt{-2}, \sqrt{3})\) |
None |
|
✓ |
✓ |
|
81.3.b.b |
$2$ |
$0$ |
\(0\) |
\(0\) |
\(0\) |
\(-4\) |
|
$3^{3}$ |
$\mathrm{SU}(2)[C_{2}]$ |
\(q+\beta _{1}q^{2}+(-2+\beta _{3})q^{4}+(\beta _{1}-\beta _{2}+\cdots)q^{5}+\cdots\) |
81.3.d.a |
$81$ |
$3$ |
81.d |
9.d |
$6$ |
$2$ |
$1$ |
$2.207$ |
\(\Q(\sqrt{-3}) \) |
\(\Q(\sqrt{-3}) \) |
|
|
|
|
27.3.b.a |
$4$ |
$0$ |
\(0\) |
\(0\) |
\(0\) |
\(13\) |
|
$1$ |
$\mathrm{U}(1)[D_{6}]$ |
\(q-4\zeta_{6}q^{4}+(13-13\zeta_{6})q^{7}+\zeta_{6}q^{13}+\cdots\) |
81.3.d.b |
$81$ |
$3$ |
81.d |
9.d |
$6$ |
$4$ |
$2$ |
$2.207$ |
\(\Q(\zeta_{12})\) |
None |
|
|
|
|
27.3.b.b |
$4$ |
$0$ |
\(0\) |
\(0\) |
\(0\) |
\(-10\) |
|
$3^{2}$ |
$\mathrm{SU}(2)[C_{6}]$ |
\(q+\beta_1 q^{2}+5\beta_{2} q^{4}+(-\beta_{3}+\beta_1)q^{5}+\cdots\) |
81.3.d.c |
$81$ |
$3$ |
81.d |
9.d |
$6$ |
$8$ |
$4$ |
$2.207$ |
\(\Q(\zeta_{24})\) |
None |
|
✓ |
✓ |
|
81.3.b.b |
$4$ |
$0$ |
\(0\) |
\(0\) |
\(0\) |
\(4\) |
|
$3^{8}$ |
$\mathrm{SU}(2)[C_{6}]$ |
\(q+\beta_{4} q^{2}+(-\beta_{3}+\beta_{2}-2\beta_1+2)q^{4}+\cdots\) |
81.3.f.a |
$81$ |
$3$ |
81.f |
27.f |
$18$ |
$30$ |
$5$ |
$2.207$ |
|
None |
|
|
✓ |
✓ |
27.3.f.a |
$2$ |
$0$ |
\(6\) |
\(0\) |
\(15\) |
\(-6\) |
|
|
$\mathrm{SU}(2)[C_{18}]$ |
|
81.3.h.a |
$81$ |
$3$ |
81.h |
81.h |
$54$ |
$306$ |
$17$ |
$2.207$ |
|
None |
|
✓ |
✓ |
✓ |
81.3.h.a |
$2$ |
$0$ |
\(-18\) |
\(-18\) |
\(-18\) |
\(-18\) |
|
|
$\mathrm{SU}(2)[C_{54}]$ |
|
81.4.a.a |
$81$ |
$4$ |
81.a |
1.a |
$1$ |
$2$ |
$2$ |
$4.779$ |
\(\Q(\sqrt{33}) \) |
None |
✓ |
|
|
|
9.4.c.a |
$1$ |
$1$ |
\(-3\) |
\(0\) |
\(-15\) |
\(7\) |
$-$ |
$1$ |
$\mathrm{SU}(2)$ |
\(q+(-1-\beta )q^{2}+(1+3\beta )q^{4}+(-8+\beta )q^{5}+\cdots\) |
81.4.a.b |
$81$ |
$4$ |
81.a |
1.a |
$1$ |
$2$ |
$2$ |
$4.779$ |
\(\Q(\sqrt{57}) \) |
None |
✓ |
✓ |
|
|
81.4.a.b |
$1$ |
$0$ |
\(-3\) |
\(0\) |
\(12\) |
\(10\) |
$+$ |
$1$ |
$\mathrm{SU}(2)$ |
\(q+(-1-\beta )q^{2}+(7+3\beta )q^{4}+(7-2\beta )q^{5}+\cdots\) |
81.4.a.c |
$81$ |
$4$ |
81.a |
1.a |
$1$ |
$2$ |
$2$ |
$4.779$ |
\(\Q(\sqrt{3}) \) |
None |
✓ |
✓ |
|
|
81.4.a.c |
$2$ |
$1$ |
\(0\) |
\(0\) |
\(0\) |
\(-44\) |
$-$ |
$1$ |
$\mathrm{SU}(2)$ |
\(q+\beta q^{2}-5q^{4}-7\beta q^{5}-22q^{7}-13\beta q^{8}+\cdots\) |
81.4.a.d |
$81$ |
$4$ |
81.a |
1.a |
$1$ |
$2$ |
$2$ |
$4.779$ |
\(\Q(\sqrt{33}) \) |
None |
✓ |
|
|
|
9.4.c.a |
$1$ |
$0$ |
\(3\) |
\(0\) |
\(15\) |
\(7\) |
$+$ |
$1$ |
$\mathrm{SU}(2)$ |
\(q+(1+\beta )q^{2}+(1+3\beta )q^{4}+(8-\beta )q^{5}+\cdots\) |
81.4.a.e |
$81$ |
$4$ |
81.a |
1.a |
$1$ |
$2$ |
$2$ |
$4.779$ |
\(\Q(\sqrt{57}) \) |
None |
✓ |
✓ |
|
|
81.4.a.b |
$1$ |
$0$ |
\(3\) |
\(0\) |
\(-12\) |
\(10\) |
$+$ |
$1$ |
$\mathrm{SU}(2)$ |
\(q+(1+\beta )q^{2}+(7+3\beta )q^{4}+(-7+2\beta )q^{5}+\cdots\) |
81.4.c.a |
$81$ |
$4$ |
81.c |
9.c |
$3$ |
$2$ |
$1$ |
$4.779$ |
\(\Q(\sqrt{-3}) \) |
None |
|
|
|
|
27.4.a.a |
$2$ |
$0$ |
\(-3\) |
\(0\) |
\(-15\) |
\(25\) |
|
$1$ |
$\mathrm{SU}(2)[C_{3}]$ |
\(q+(-3+3\zeta_{6})q^{2}-\zeta_{6}q^{4}-15\zeta_{6}q^{5}+\cdots\) |
81.4.c.b |
$81$ |
$4$ |
81.c |
9.c |
$3$ |
$2$ |
$1$ |
$4.779$ |
\(\Q(\sqrt{-3}) \) |
\(\Q(\sqrt{-3}) \) |
|
|
|
|
9.4.a.a |
$4$ |
$0$ |
\(0\) |
\(0\) |
\(0\) |
\(-20\) |
|
$1$ |
$\mathrm{U}(1)[D_{3}]$ |
\(q+8\zeta_{6}q^{4}+(-20+20\zeta_{6})q^{7}+70\zeta_{6}q^{13}+\cdots\) |
81.4.c.c |
$81$ |
$4$ |
81.c |
9.c |
$3$ |
$2$ |
$1$ |
$4.779$ |
\(\Q(\sqrt{-3}) \) |
None |
|
|
|
|
27.4.a.a |
$2$ |
$0$ |
\(3\) |
\(0\) |
\(15\) |
\(25\) |
|
$1$ |
$\mathrm{SU}(2)[C_{3}]$ |
\(q+(3-3\zeta_{6})q^{2}-\zeta_{6}q^{4}+15\zeta_{6}q^{5}+\cdots\) |
81.4.c.d |
$81$ |
$4$ |
81.c |
9.c |
$3$ |
$4$ |
$2$ |
$4.779$ |
\(\Q(\sqrt{-3}, \sqrt{-19})\) |
None |
|
✓ |
|
|
81.4.a.b |
$2$ |
$0$ |
\(-3\) |
\(0\) |
\(12\) |
\(-10\) |
|
$3$ |
$\mathrm{SU}(2)[C_{3}]$ |
\(q+(-1-\beta _{1}-\beta _{3})q^{2}+(7\beta _{1}-3\beta _{2}+\cdots)q^{4}+\cdots\) |
81.4.c.e |
$81$ |
$4$ |
81.c |
9.c |
$3$ |
$4$ |
$2$ |
$4.779$ |
\(\Q(\sqrt{2}, \sqrt{-3})\) |
None |
|
|
|
|
27.4.a.c |
$4$ |
$0$ |
\(0\) |
\(0\) |
\(0\) |
\(-22\) |
|
$3^{2}$ |
$\mathrm{SU}(2)[C_{3}]$ |
\(q+\beta _{1}q^{2}+10\beta _{2}q^{4}+(4\beta _{1}+4\beta _{3})q^{5}+\cdots\) |
81.4.c.f |
$81$ |
$4$ |
81.c |
9.c |
$3$ |
$4$ |
$2$ |
$4.779$ |
\(\Q(\zeta_{12})\) |
None |
|
✓ |
|
|
81.4.a.c |
$4$ |
$0$ |
\(0\) |
\(0\) |
\(0\) |
\(44\) |
|
$3$ |
$\mathrm{SU}(2)[C_{3}]$ |
\(q-\beta_{2} q^{2}+(-5\beta_1+5)q^{4}+(7\beta_{3}-7\beta_{2})q^{5}+\cdots\) |
81.4.c.g |
$81$ |
$4$ |
81.c |
9.c |
$3$ |
$4$ |
$2$ |
$4.779$ |
\(\Q(\sqrt{-3}, \sqrt{-19})\) |
None |
|
✓ |
|
|
81.4.a.b |
$2$ |
$0$ |
\(3\) |
\(0\) |
\(-12\) |
\(-10\) |
|
$3$ |
$\mathrm{SU}(2)[C_{3}]$ |
\(q+(1+\beta _{1}+\beta _{3})q^{2}+(7\beta _{1}-3\beta _{2}+3\beta _{3})q^{4}+\cdots\) |
81.4.e.a |
$81$ |
$4$ |
81.e |
27.e |
$9$ |
$48$ |
$8$ |
$4.779$ |
|
None |
|
|
✓ |
✓ |
27.4.e.a |
$2$ |
$0$ |
\(6\) |
\(0\) |
\(-6\) |
\(-6\) |
|
|
$\mathrm{SU}(2)[C_{9}]$ |
|
81.4.g.a |
$81$ |
$4$ |
81.g |
81.g |
$27$ |
$468$ |
$26$ |
$4.779$ |
|
None |
|
✓ |
✓ |
✓ |
81.4.g.a |
$2$ |
$0$ |
\(-18\) |
\(-18\) |
\(-18\) |
\(-18\) |
|
|
$\mathrm{SU}(2)[C_{27}]$ |
|
81.5.b.a |
$81$ |
$5$ |
81.b |
3.b |
$2$ |
$6$ |
$6$ |
$8.373$ |
6.0.39400128.1 |
None |
|
|
|
|
9.5.d.a |
$2$ |
$0$ |
\(0\) |
\(0\) |
\(0\) |
\(-24\) |
|
$2^{3}\cdot 3^{9}$ |
$\mathrm{SU}(2)[C_{2}]$ |
\(q+\beta _{1}q^{2}+(-5+\beta _{2})q^{4}+\beta _{4}q^{5}+(-4+\cdots)q^{7}+\cdots\) |
81.5.b.b |
$81$ |
$5$ |
81.b |
3.b |
$2$ |
$8$ |
$8$ |
$8.373$ |
\(\mathbb{Q}[x]/(x^{8} + \cdots)\) |
None |
|
✓ |
✓ |
|
81.5.b.b |
$2$ |
$0$ |
\(0\) |
\(0\) |
\(0\) |
\(52\) |
|
$3^{18}$ |
$\mathrm{SU}(2)[C_{2}]$ |
\(q-\beta _{1}q^{2}+(-8+\beta _{5})q^{4}+(\beta _{1}-\beta _{4}+\cdots)q^{5}+\cdots\) |
81.5.d.a |
$81$ |
$5$ |
81.d |
9.d |
$6$ |
$2$ |
$1$ |
$8.373$ |
\(\Q(\sqrt{-3}) \) |
\(\Q(\sqrt{-3}) \) |
|
|
|
|
27.5.b.a |
$4$ |
$0$ |
\(0\) |
\(0\) |
\(0\) |
\(-71\) |
|
$1$ |
$\mathrm{U}(1)[D_{6}]$ |
\(q-2^{4}\zeta_{6}q^{4}+(-71+71\zeta_{6})q^{7}+337\zeta_{6}q^{13}+\cdots\) |
81.5.d.b |
$81$ |
$5$ |
81.d |
9.d |
$6$ |
$4$ |
$2$ |
$8.373$ |
\(\Q(\zeta_{12})\) |
None |
|
|
|
|
27.5.b.c |
$4$ |
$0$ |
\(0\) |
\(0\) |
\(0\) |
\(38\) |
|
$3^{2}$ |
$\mathrm{SU}(2)[C_{6}]$ |
\(q+\beta_1 q^{2}-7\beta_{2} q^{4}+(11\beta_{3}-11\beta_1)q^{5}+\cdots\) |
81.5.d.c |
$81$ |
$5$ |
81.d |
9.d |
$6$ |
$4$ |
$2$ |
$8.373$ |
\(\Q(\sqrt{-2}, \sqrt{-3})\) |
None |
|
|
|
|
9.5.b.a |
$4$ |
$0$ |
\(0\) |
\(0\) |
\(0\) |
\(56\) |
|
$3^{2}$ |
$\mathrm{SU}(2)[C_{6}]$ |
\(q+\beta _{1}q^{2}+2\beta _{2}q^{4}+(7\beta _{1}-7\beta _{3})q^{5}+\cdots\) |
81.5.d.d |
$81$ |
$5$ |
81.d |
9.d |
$6$ |
$4$ |
$2$ |
$8.373$ |
\(\Q(\sqrt{2}, \sqrt{-3})\) |
None |
|
|
|
|
27.5.b.b |
$4$ |
$0$ |
\(0\) |
\(0\) |
\(0\) |
\(-34\) |
|
$3^{3}$ |
$\mathrm{SU}(2)[C_{6}]$ |
\(q+\beta _{3}q^{2}+(38+38\beta _{1})q^{4}+(2\beta _{2}-2\beta _{3})q^{5}+\cdots\) |
81.5.d.e |
$81$ |
$5$ |
81.d |
9.d |
$6$ |
$16$ |
$8$ |
$8.373$ |
\(\mathbb{Q}[x]/(x^{16} - \cdots)\) |
None |
|
✓ |
✓ |
|
81.5.b.b |
$4$ |
$0$ |
\(0\) |
\(0\) |
\(0\) |
\(-52\) |
|
$3^{40}$ |
$\mathrm{SU}(2)[C_{6}]$ |
\(q-\beta _{7}q^{2}+(8-8\beta _{1}-\beta _{4}-\beta _{9})q^{4}+\cdots\) |
81.5.f.a |
$81$ |
$5$ |
81.f |
27.f |
$18$ |
$66$ |
$11$ |
$8.373$ |
|
None |
|
|
✓ |
✓ |
27.5.f.a |
$2$ |
$0$ |
\(6\) |
\(0\) |
\(-3\) |
\(-6\) |
|
|
$\mathrm{SU}(2)[C_{18}]$ |
|
81.5.h.a |
$81$ |
$5$ |
81.h |
81.h |
$54$ |
$630$ |
$35$ |
$8.373$ |
|
None |
|
✓ |
✓ |
✓ |
81.5.h.a |
$2$ |
$0$ |
\(-18\) |
\(-18\) |
\(-18\) |
\(-18\) |
|
|
$\mathrm{SU}(2)[C_{54}]$ |
|
81.6.a.a |
$81$ |
$6$ |
81.a |
1.a |
$1$ |
$2$ |
$2$ |
$12.991$ |
\(\Q(\sqrt{129}) \) |
None |
✓ |
✓ |
|
|
81.6.a.a |
$1$ |
$1$ |
\(-3\) |
\(0\) |
\(30\) |
\(-128\) |
$+$ |
$1$ |
$\mathrm{SU}(2)$ |
\(q+(-1-\beta )q^{2}+(1+3\beta )q^{4}+(13+4\beta )q^{5}+\cdots\) |
81.6.a.b |
$81$ |
$6$ |
81.a |
1.a |
$1$ |
$2$ |
$2$ |
$12.991$ |
\(\Q(\sqrt{129}) \) |
None |
✓ |
✓ |
|
|
81.6.a.a |
$1$ |
$1$ |
\(3\) |
\(0\) |
\(-30\) |
\(-128\) |
$+$ |
$1$ |
$\mathrm{SU}(2)$ |
\(q+(1+\beta )q^{2}+(1+3\beta )q^{4}+(-13-4\beta )q^{5}+\cdots\) |
81.6.a.c |
$81$ |
$6$ |
81.a |
1.a |
$1$ |
$4$ |
$4$ |
$12.991$ |
4.4.4875021.1 |
None |
✓ |
|
✓ |
|
9.6.c.a |
$1$ |
$1$ |
\(-3\) |
\(0\) |
\(-78\) |
\(-28\) |
$+$ |
$2\cdot 3^{3}$ |
$\mathrm{SU}(2)$ |
\(q+(-1+\beta _{1})q^{2}+(13-2\beta _{1}+\beta _{3})q^{4}+\cdots\) |
81.6.a.d |
$81$ |
$6$ |
81.a |
1.a |
$1$ |
$4$ |
$4$ |
$12.991$ |
4.4.4875021.1 |
None |
✓ |
|
|
|
9.6.c.a |
$1$ |
$0$ |
\(3\) |
\(0\) |
\(78\) |
\(-28\) |
$-$ |
$2\cdot 3^{3}$ |
$\mathrm{SU}(2)$ |
\(q+(1-\beta _{1})q^{2}+(13-2\beta _{1}+\beta _{3})q^{4}+\cdots\) |
81.6.a.e |
$81$ |
$6$ |
81.a |
1.a |
$1$ |
$6$ |
$6$ |
$12.991$ |
6.6.6100947648.1 |
None |
✓ |
✓ |
✓ |
|
81.6.a.e |
$2$ |
$0$ |
\(0\) |
\(0\) |
\(0\) |
\(372\) |
$-$ |
$2^{4}\cdot 3^{9}$ |
$\mathrm{SU}(2)$ |
\(q+\beta _{1}q^{2}+(5^{2}-\beta _{3})q^{4}+(2\beta _{1}+\beta _{2}+\cdots)q^{5}+\cdots\) |
81.6.c.a |
$81$ |
$6$ |
81.c |
9.c |
$3$ |
$2$ |
$1$ |
$12.991$ |
\(\Q(\sqrt{-3}) \) |
None |
|
|
|
|
3.6.a.a |
$2$ |
$1$ |
\(-6\) |
\(0\) |
\(6\) |
\(40\) |
|
$1$ |
$\mathrm{SU}(2)[C_{3}]$ |
\(q+(-6+6\zeta_{6})q^{2}-4\zeta_{6}q^{4}+6\zeta_{6}q^{5}+\cdots\) |
81.6.c.b |
$81$ |
$6$ |
81.c |
9.c |
$3$ |
$2$ |
$1$ |
$12.991$ |
\(\Q(\sqrt{-3}) \) |
\(\Q(\sqrt{-3}) \) |
|
|
|
|
27.6.a.a |
$4$ |
$0$ |
\(0\) |
\(0\) |
\(0\) |
\(211\) |
|
$1$ |
$\mathrm{U}(1)[D_{3}]$ |
\(q+2^{5}\zeta_{6}q^{4}+(211-211\zeta_{6})q^{7}+775\zeta_{6}q^{13}+\cdots\) |
81.6.c.c |
$81$ |
$6$ |
81.c |
9.c |
$3$ |
$2$ |
$1$ |
$12.991$ |
\(\Q(\sqrt{-3}) \) |
None |
|
|
|
|
3.6.a.a |
$2$ |
$0$ |
\(6\) |
\(0\) |
\(-6\) |
\(40\) |
|
$1$ |
$\mathrm{SU}(2)[C_{3}]$ |
\(q+(6-6\zeta_{6})q^{2}-4\zeta_{6}q^{4}-6\zeta_{6}q^{5}+\cdots\) |
81.6.c.d |
$81$ |
$6$ |
81.c |
9.c |
$3$ |
$4$ |
$2$ |
$12.991$ |
\(\Q(\sqrt{-3}, \sqrt{17})\) |
None |
|
|
|
|
27.6.a.b |
$2$ |
$0$ |
\(-9\) |
\(0\) |
\(-72\) |
\(8\) |
|
$3^{2}$ |
$\mathrm{SU}(2)[C_{3}]$ |
\(q+(-4\beta _{1}-\beta _{2})q^{2}+(-31+22\beta _{1}+\cdots)q^{4}+\cdots\) |
81.6.c.e |
$81$ |
$6$ |
81.c |
9.c |
$3$ |
$4$ |
$2$ |
$12.991$ |
\(\Q(\sqrt{-3}, \sqrt{-43})\) |
None |
|
✓ |
|
|
81.6.a.a |
$2$ |
$0$ |
\(-3\) |
\(0\) |
\(30\) |
\(128\) |
|
$3$ |
$\mathrm{SU}(2)[C_{3}]$ |
\(q+(-2-2\beta _{1}-\beta _{3})q^{2}+(4\beta _{1}-3\beta _{2}+\cdots)q^{4}+\cdots\) |
81.6.c.f |
$81$ |
$6$ |
81.c |
9.c |
$3$ |
$4$ |
$2$ |
$12.991$ |
\(\Q(\sqrt{-2}, \sqrt{-3})\) |
None |
|
|
|
|
27.6.a.c |
$4$ |
$0$ |
\(0\) |
\(0\) |
\(0\) |
\(-334\) |
|
$3^{3}$ |
$\mathrm{SU}(2)[C_{3}]$ |
\(q-\beta _{2}q^{2}+(-22+22\beta _{1})q^{4}+(8\beta _{2}+\cdots)q^{5}+\cdots\) |
81.6.c.g |
$81$ |
$6$ |
81.c |
9.c |
$3$ |
$4$ |
$2$ |
$12.991$ |
\(\Q(\sqrt{-3}, \sqrt{-43})\) |
None |
|
✓ |
|
|
81.6.a.a |
$2$ |
$0$ |
\(3\) |
\(0\) |
\(-30\) |
\(128\) |
|
$3$ |
$\mathrm{SU}(2)[C_{3}]$ |
\(q+(1+\beta _{1}-\beta _{3})q^{2}+(\beta _{1}+3\beta _{2}-3\beta _{3})q^{4}+\cdots\) |
81.6.c.h |
$81$ |
$6$ |
81.c |
9.c |
$3$ |
$4$ |
$2$ |
$12.991$ |
\(\Q(\sqrt{-3}, \sqrt{17})\) |
None |
|
|
|
|
27.6.a.b |
$2$ |
$0$ |
\(9\) |
\(0\) |
\(72\) |
\(8\) |
|
$3^{2}$ |
$\mathrm{SU}(2)[C_{3}]$ |
\(q+(4\beta _{1}+\beta _{2})q^{2}+(-31+22\beta _{1}+9\beta _{2}+\cdots)q^{4}+\cdots\) |
81.6.c.i |
$81$ |
$6$ |
81.c |
9.c |
$3$ |
$12$ |
$6$ |
$12.991$ |
\(\mathbb{Q}[x]/(x^{12} - \cdots)\) |
None |
|
✓ |
✓ |
|
81.6.a.e |
$4$ |
$0$ |
\(0\) |
\(0\) |
\(0\) |
\(-372\) |
|
$2^{8}\cdot 3^{21}$ |
$\mathrm{SU}(2)[C_{3}]$ |
\(q+\beta _{5}q^{2}+(\beta _{1}-5^{2}\beta _{2}-\beta _{8})q^{4}+(2\beta _{4}+\cdots)q^{5}+\cdots\) |
81.6.e.a |
$81$ |
$6$ |
81.e |
27.e |
$9$ |
$84$ |
$14$ |
$12.991$ |
|
None |
|
|
✓ |
✓ |
27.6.e.a |
$2$ |
$0$ |
\(6\) |
\(0\) |
\(93\) |
\(-6\) |
|
|
$\mathrm{SU}(2)[C_{9}]$ |
|