Defining parameters
Level: | \( N \) | \(=\) | \( 81 = 3^{4} \) |
Weight: | \( k \) | \(=\) | \( 7 \) |
Character orbit: | \([\chi]\) | \(=\) | 81.d (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 9 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Newform subspaces: | \( 6 \) | ||
Sturm bound: | \(63\) | ||
Trace bound: | \(4\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{7}(81, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 120 | 50 | 70 |
Cusp forms | 96 | 46 | 50 |
Eisenstein series | 24 | 4 | 20 |
Trace form
Decomposition of \(S_{7}^{\mathrm{new}}(81, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
81.7.d.a | $2$ | $18.634$ | \(\Q(\sqrt{-3}) \) | \(\Q(\sqrt{-3}) \) | \(0\) | \(0\) | \(0\) | \(286\) | \(q-2^{6}\zeta_{6}q^{4}+(286-286\zeta_{6})q^{7}-506\zeta_{6}q^{13}+\cdots\) |
81.7.d.b | $4$ | $18.634$ | \(\Q(\zeta_{12})\) | None | \(0\) | \(0\) | \(0\) | \(-598\) | \(q+\zeta_{12}q^{2}-28\zeta_{12}^{2}q^{4}+(40\zeta_{12}-40\zeta_{12}^{3})q^{5}+\cdots\) |
81.7.d.c | $4$ | $18.634$ | \(\Q(\sqrt{-3}, \sqrt{-10})\) | None | \(0\) | \(0\) | \(0\) | \(806\) | \(q+\beta _{1}q^{2}+26\beta _{2}q^{4}+(-14\beta _{1}+14\beta _{3})q^{5}+\cdots\) |
81.7.d.d | $4$ | $18.634$ | \(\Q(\sqrt{-2}, \sqrt{-3})\) | None | \(0\) | \(0\) | \(0\) | \(-1048\) | \(q+\beta _{1}q^{2}+98\beta _{2}q^{4}+(-5\beta _{1}+5\beta _{3})q^{5}+\cdots\) |
81.7.d.e | $8$ | $18.634$ | 8.0.\(\cdots\).3 | None | \(0\) | \(0\) | \(0\) | \(676\) | \(q-\beta _{3}q^{2}+(7^{2}+7^{2}\beta _{1}+\beta _{4}+\beta _{5})q^{4}+\cdots\) |
81.7.d.f | $24$ | $18.634$ | None | \(0\) | \(0\) | \(0\) | \(480\) |
Decomposition of \(S_{7}^{\mathrm{old}}(81, [\chi])\) into lower level spaces
\( S_{7}^{\mathrm{old}}(81, [\chi]) \cong \) \(S_{7}^{\mathrm{new}}(9, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{7}^{\mathrm{new}}(27, [\chi])\)\(^{\oplus 2}\)