Properties

Label 81.7.d.c
Level $81$
Weight $7$
Character orbit 81.d
Analytic conductor $18.634$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [81,7,Mod(26,81)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(81, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([1])) N = Newforms(chi, 7, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("81.26"); S:= CuspForms(chi, 7); N := Newforms(S);
 
Level: \( N \) \(=\) \( 81 = 3^{4} \)
Weight: \( k \) \(=\) \( 7 \)
Character orbit: \([\chi]\) \(=\) 81.d (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,52] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.6343807732\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{-10})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 10x^{2} + 100 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: no (minimal twist has level 27)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} + 26 \beta_{2} q^{4} + (14 \beta_{3} - 14 \beta_1) q^{5} + ( - 403 \beta_{2} + 403) q^{7} - 38 \beta_{3} q^{8} - 1260 q^{10} - 158 \beta_1 q^{11} + 961 \beta_{2} q^{13} + ( - 403 \beta_{3} + 403 \beta_1) q^{14}+ \cdots - 44760 \beta_{3} q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 52 q^{4} + 806 q^{7} - 5040 q^{10} + 1922 q^{13} + 10168 q^{16} + 32084 q^{19} - 28440 q^{22} + 4030 q^{25} + 41912 q^{28} - 97708 q^{31} + 182520 q^{34} + 96668 q^{37} + 95760 q^{40} + 121604 q^{43}+ \cdots + 2394626 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 10x^{2} + 100 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( 3\nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{2} ) / 10 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 3\nu^{3} ) / 10 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_1 ) / 3 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( 10\beta_{2} \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 10\beta_{3} ) / 3 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/81\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(\beta_{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
26.1
−2.73861 1.58114i
2.73861 + 1.58114i
−2.73861 + 1.58114i
2.73861 1.58114i
−8.21584 4.74342i 0 13.0000 + 22.5167i 115.022 66.4078i 0 201.500 349.008i 360.500i 0 −1260.00
26.2 8.21584 + 4.74342i 0 13.0000 + 22.5167i −115.022 + 66.4078i 0 201.500 349.008i 360.500i 0 −1260.00
53.1 −8.21584 + 4.74342i 0 13.0000 22.5167i 115.022 + 66.4078i 0 201.500 + 349.008i 360.500i 0 −1260.00
53.2 8.21584 4.74342i 0 13.0000 22.5167i −115.022 66.4078i 0 201.500 + 349.008i 360.500i 0 −1260.00
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
9.c even 3 1 inner
9.d odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 81.7.d.c 4
3.b odd 2 1 inner 81.7.d.c 4
9.c even 3 1 27.7.b.a 2
9.c even 3 1 inner 81.7.d.c 4
9.d odd 6 1 27.7.b.a 2
9.d odd 6 1 inner 81.7.d.c 4
36.f odd 6 1 432.7.e.g 2
36.h even 6 1 432.7.e.g 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
27.7.b.a 2 9.c even 3 1
27.7.b.a 2 9.d odd 6 1
81.7.d.c 4 1.a even 1 1 trivial
81.7.d.c 4 3.b odd 2 1 inner
81.7.d.c 4 9.c even 3 1 inner
81.7.d.c 4 9.d odd 6 1 inner
432.7.e.g 2 36.f odd 6 1
432.7.e.g 2 36.h even 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{4} - 90T_{2}^{2} + 8100 \) acting on \(S_{7}^{\mathrm{new}}(81, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} - 90T^{2} + 8100 \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} - 17640 T^{2} + 311169600 \) Copy content Toggle raw display
$7$ \( (T^{2} - 403 T + 162409)^{2} \) Copy content Toggle raw display
$11$ \( T^{4} + \cdots + 5047930497600 \) Copy content Toggle raw display
$13$ \( (T^{2} - 961 T + 923521)^{2} \) Copy content Toggle raw display
$17$ \( (T^{2} + 92537640)^{2} \) Copy content Toggle raw display
$19$ \( (T - 8021)^{4} \) Copy content Toggle raw display
$23$ \( T^{4} + \cdots + 12\!\cdots\!00 \) Copy content Toggle raw display
$29$ \( T^{4} + \cdots + 37015056000000 \) Copy content Toggle raw display
$31$ \( (T^{2} + 48854 T + 2386713316)^{2} \) Copy content Toggle raw display
$37$ \( (T - 24167)^{4} \) Copy content Toggle raw display
$41$ \( T^{4} + \cdots + 25\!\cdots\!00 \) Copy content Toggle raw display
$43$ \( (T^{2} - 60802 T + 3696883204)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots + 53\!\cdots\!00 \) Copy content Toggle raw display
$53$ \( (T^{2} + 18943385760)^{2} \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots + 90\!\cdots\!00 \) Copy content Toggle raw display
$61$ \( (T^{2} + 272999 T + 74528454001)^{2} \) Copy content Toggle raw display
$67$ \( (T^{2} - 85579 T + 7323765241)^{2} \) Copy content Toggle raw display
$71$ \( (T^{2} + 116795571840)^{2} \) Copy content Toggle raw display
$73$ \( (T + 152737)^{4} \) Copy content Toggle raw display
$79$ \( (T^{2} - 74059 T + 5484735481)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots + 86\!\cdots\!00 \) Copy content Toggle raw display
$89$ \( (T^{2} + 1424896404840)^{2} \) Copy content Toggle raw display
$97$ \( (T^{2} + \cdots + 1433558419969)^{2} \) Copy content Toggle raw display
show more
show less