Newspace parameters
Level: | \( N \) | \(=\) | \( 792 = 2^{3} \cdot 3^{2} \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 792.k (of order \(2\), degree \(1\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(6.32415184009\) |
Analytic rank: | \(0\) |
Dimension: | \(40\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
683.1 | −1.41385 | − | 0.0321228i | 0 | 1.99794 | + | 0.0908336i | −0.682984 | 0 | 2.58173i | −2.82186 | − | 0.192604i | 0 | 0.965636 | + | 0.0219394i | ||||||||||
683.2 | −1.41385 | + | 0.0321228i | 0 | 1.99794 | − | 0.0908336i | −0.682984 | 0 | − | 2.58173i | −2.82186 | + | 0.192604i | 0 | 0.965636 | − | 0.0219394i | |||||||||
683.3 | −1.34782 | − | 0.428242i | 0 | 1.63322 | + | 1.15438i | 1.96913 | 0 | 1.38646i | −1.70692 | − | 2.25531i | 0 | −2.65403 | − | 0.843265i | ||||||||||
683.4 | −1.34782 | + | 0.428242i | 0 | 1.63322 | − | 1.15438i | 1.96913 | 0 | − | 1.38646i | −1.70692 | + | 2.25531i | 0 | −2.65403 | + | 0.843265i | |||||||||
683.5 | −1.25027 | − | 0.660932i | 0 | 1.12634 | + | 1.65268i | −3.71620 | 0 | 1.27025i | −0.315915 | − | 2.81073i | 0 | 4.64625 | + | 2.45616i | ||||||||||
683.6 | −1.25027 | + | 0.660932i | 0 | 1.12634 | − | 1.65268i | −3.71620 | 0 | − | 1.27025i | −0.315915 | + | 2.81073i | 0 | 4.64625 | − | 2.45616i | |||||||||
683.7 | −1.08198 | − | 0.910674i | 0 | 0.341347 | + | 1.97066i | −2.67216 | 0 | 2.05923i | 1.42529 | − | 2.44306i | 0 | 2.89121 | + | 2.43346i | ||||||||||
683.8 | −1.08198 | + | 0.910674i | 0 | 0.341347 | − | 1.97066i | −2.67216 | 0 | − | 2.05923i | 1.42529 | + | 2.44306i | 0 | 2.89121 | − | 2.43346i | |||||||||
683.9 | −0.906629 | − | 1.08537i | 0 | −0.356048 | + | 1.96805i | 1.01786 | 0 | 2.06769i | 2.45886 | − | 1.39785i | 0 | −0.922818 | − | 1.10475i | ||||||||||
683.10 | −0.906629 | + | 1.08537i | 0 | −0.356048 | − | 1.96805i | 1.01786 | 0 | − | 2.06769i | 2.45886 | + | 1.39785i | 0 | −0.922818 | + | 1.10475i | |||||||||
683.11 | −0.885984 | − | 1.10229i | 0 | −0.430065 | + | 1.95321i | 3.67452 | 0 | 4.28843i | 2.53403 | − | 1.25646i | 0 | −3.25556 | − | 4.05037i | ||||||||||
683.12 | −0.885984 | + | 1.10229i | 0 | −0.430065 | − | 1.95321i | 3.67452 | 0 | − | 4.28843i | 2.53403 | + | 1.25646i | 0 | −3.25556 | + | 4.05037i | |||||||||
683.13 | −0.747372 | − | 1.20060i | 0 | −0.882871 | + | 1.79459i | 1.25912 | 0 | − | 4.96906i | 2.81441 | − | 0.281250i | 0 | −0.941027 | − | 1.51169i | |||||||||
683.14 | −0.747372 | + | 1.20060i | 0 | −0.882871 | − | 1.79459i | 1.25912 | 0 | 4.96906i | 2.81441 | + | 0.281250i | 0 | −0.941027 | + | 1.51169i | ||||||||||
683.15 | −0.401488 | − | 1.35603i | 0 | −1.67761 | + | 1.08886i | −0.138848 | 0 | − | 0.456841i | 2.15006 | + | 1.83773i | 0 | 0.0557460 | + | 0.188282i | |||||||||
683.16 | −0.401488 | + | 1.35603i | 0 | −1.67761 | − | 1.08886i | −0.138848 | 0 | 0.456841i | 2.15006 | − | 1.83773i | 0 | 0.0557460 | − | 0.188282i | ||||||||||
683.17 | −0.313193 | − | 1.37910i | 0 | −1.80382 | + | 0.863848i | −1.89382 | 0 | − | 3.03135i | 1.75627 | + | 2.21709i | 0 | 0.593133 | + | 2.61177i | |||||||||
683.18 | −0.313193 | + | 1.37910i | 0 | −1.80382 | − | 0.863848i | −1.89382 | 0 | 3.03135i | 1.75627 | − | 2.21709i | 0 | 0.593133 | − | 2.61177i | ||||||||||
683.19 | −0.160590 | − | 1.40507i | 0 | −1.94842 | + | 0.451279i | −3.86990 | 0 | − | 0.896188i | 0.946974 | + | 2.66519i | 0 | 0.621467 | + | 5.43747i | |||||||||
683.20 | −0.160590 | + | 1.40507i | 0 | −1.94842 | − | 0.451279i | −3.86990 | 0 | 0.896188i | 0.946974 | − | 2.66519i | 0 | 0.621467 | − | 5.43747i | ||||||||||
See all 40 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
8.d | odd | 2 | 1 | inner |
24.f | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 792.2.k.a | ✓ | 40 |
3.b | odd | 2 | 1 | inner | 792.2.k.a | ✓ | 40 |
4.b | odd | 2 | 1 | 3168.2.k.a | 40 | ||
8.b | even | 2 | 1 | 3168.2.k.a | 40 | ||
8.d | odd | 2 | 1 | inner | 792.2.k.a | ✓ | 40 |
12.b | even | 2 | 1 | 3168.2.k.a | 40 | ||
24.f | even | 2 | 1 | inner | 792.2.k.a | ✓ | 40 |
24.h | odd | 2 | 1 | 3168.2.k.a | 40 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
792.2.k.a | ✓ | 40 | 1.a | even | 1 | 1 | trivial |
792.2.k.a | ✓ | 40 | 3.b | odd | 2 | 1 | inner |
792.2.k.a | ✓ | 40 | 8.d | odd | 2 | 1 | inner |
792.2.k.a | ✓ | 40 | 24.f | even | 2 | 1 | inner |
3168.2.k.a | 40 | 4.b | odd | 2 | 1 | ||
3168.2.k.a | 40 | 8.b | even | 2 | 1 | ||
3168.2.k.a | 40 | 12.b | even | 2 | 1 | ||
3168.2.k.a | 40 | 24.h | odd | 2 | 1 |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(792, [\chi])\).