L(s) = 1 | + (0.885 − 1.10i)2-s + (−0.430 − 1.95i)4-s − 3.67·5-s − 4.28i·7-s + (−2.53 − 1.25i)8-s + (−3.25 + 4.05i)10-s − i·11-s + 7.11i·13-s + (−4.72 − 3.79i)14-s + (−3.63 + 1.68i)16-s + 4.85i·17-s + 0.571·19-s + (1.58 + 7.17i)20-s + (−1.10 − 0.885i)22-s − 3.61·23-s + ⋯ |
L(s) = 1 | + (0.626 − 0.779i)2-s + (−0.215 − 0.976i)4-s − 1.64·5-s − 1.62i·7-s + (−0.895 − 0.444i)8-s + (−1.02 + 1.28i)10-s − 0.301i·11-s + 1.97i·13-s + (−1.26 − 1.01i)14-s + (−0.907 + 0.420i)16-s + 1.17i·17-s + 0.131·19-s + (0.353 + 1.60i)20-s + (−0.235 − 0.188i)22-s − 0.753·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 792 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.475 - 0.879i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 792 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.475 - 0.879i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.199862 + 0.335018i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.199862 + 0.335018i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.885 + 1.10i)T \) |
| 3 | \( 1 \) |
| 11 | \( 1 + iT \) |
good | 5 | \( 1 + 3.67T + 5T^{2} \) |
| 7 | \( 1 + 4.28iT - 7T^{2} \) |
| 13 | \( 1 - 7.11iT - 13T^{2} \) |
| 17 | \( 1 - 4.85iT - 17T^{2} \) |
| 19 | \( 1 - 0.571T + 19T^{2} \) |
| 23 | \( 1 + 3.61T + 23T^{2} \) |
| 29 | \( 1 + 3.99T + 29T^{2} \) |
| 31 | \( 1 + 7.49iT - 31T^{2} \) |
| 37 | \( 1 + 5.62iT - 37T^{2} \) |
| 41 | \( 1 + 4.14iT - 41T^{2} \) |
| 43 | \( 1 + 7.29T + 43T^{2} \) |
| 47 | \( 1 + 5.48T + 47T^{2} \) |
| 53 | \( 1 + 6.86T + 53T^{2} \) |
| 59 | \( 1 - 0.106iT - 59T^{2} \) |
| 61 | \( 1 - 4.52iT - 61T^{2} \) |
| 67 | \( 1 - 4.89T + 67T^{2} \) |
| 71 | \( 1 + 0.651T + 71T^{2} \) |
| 73 | \( 1 + 6.32T + 73T^{2} \) |
| 79 | \( 1 + 13.2iT - 79T^{2} \) |
| 83 | \( 1 + 7.98iT - 83T^{2} \) |
| 89 | \( 1 - 5.40iT - 89T^{2} \) |
| 97 | \( 1 + 1.44T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.996097028831753366405860670356, −8.962372961678032014846881396914, −7.895820496269387796971901224541, −7.10296610292484044983173698529, −6.22934684685605864339462030301, −4.59943661405064457455450246253, −3.97747072758986344176236606329, −3.63605781403530837490951476696, −1.71391918378225071756830800401, −0.15692596049690615449013949234,
2.85205139677255222444583203605, 3.43431161146910875084109413811, 4.86074009984457667445216653715, 5.34534172947988452433870942343, 6.48932824634056948037243207959, 7.55626288895217950521190280401, 8.130968092015955294320170907066, 8.696658534694992795048288025114, 9.845268748419023476120963027638, 11.29479742299331846518099840767