Properties

Label 792.2.k.a.683.29
Level $792$
Weight $2$
Character 792.683
Analytic conductor $6.324$
Analytic rank $0$
Dimension $40$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [792,2,Mod(683,792)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("792.683"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(792, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 792 = 2^{3} \cdot 3^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 792.k (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.32415184009\)
Analytic rank: \(0\)
Dimension: \(40\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 683.29
Character \(\chi\) \(=\) 792.683
Dual form 792.2.k.a.683.30

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.885984 - 1.10229i) q^{2} +(-0.430065 - 1.95321i) q^{4} -3.67452 q^{5} -4.28843i q^{7} +(-2.53403 - 1.25646i) q^{8} +(-3.25556 + 4.05037i) q^{10} -1.00000i q^{11} +7.11160i q^{13} +(-4.72707 - 3.79948i) q^{14} +(-3.63009 + 1.68002i) q^{16} +4.85960i q^{17} +0.571401 q^{19} +(1.58028 + 7.17712i) q^{20} +(-1.10229 - 0.885984i) q^{22} -3.61453 q^{23} +8.50209 q^{25} +(7.83901 + 6.30076i) q^{26} +(-8.37621 + 1.84430i) q^{28} -3.99360 q^{29} -7.49755i q^{31} +(-1.36434 + 5.48986i) q^{32} +(5.35667 + 4.30553i) q^{34} +15.7579i q^{35} -5.62197i q^{37} +(0.506252 - 0.629847i) q^{38} +(9.31134 + 4.61689i) q^{40} -4.14379i q^{41} -7.29206 q^{43} +(-1.95321 + 0.430065i) q^{44} +(-3.20241 + 3.98424i) q^{46} -5.48001 q^{47} -11.3906 q^{49} +(7.53272 - 9.37173i) q^{50} +(13.8905 - 3.05845i) q^{52} -6.86693 q^{53} +3.67452i q^{55} +(-5.38824 + 10.8670i) q^{56} +(-3.53826 + 4.40208i) q^{58} +0.106064i q^{59} +4.52167i q^{61} +(-8.26444 - 6.64271i) q^{62} +(4.84261 + 6.36782i) q^{64} -26.1317i q^{65} +4.89107 q^{67} +(9.49184 - 2.08995i) q^{68} +(17.3697 + 13.9612i) q^{70} -0.651184 q^{71} -6.32539 q^{73} +(-6.19701 - 4.98097i) q^{74} +(-0.245740 - 1.11607i) q^{76} -4.28843 q^{77} -13.2255i q^{79} +(13.3388 - 6.17326i) q^{80} +(-4.56764 - 3.67133i) q^{82} -7.98402i q^{83} -17.8567i q^{85} +(-6.46064 + 8.03793i) q^{86} +(-1.25646 + 2.53403i) q^{88} +5.40135i q^{89} +30.4976 q^{91} +(1.55448 + 7.05995i) q^{92} +(-4.85520 + 6.04054i) q^{94} -2.09963 q^{95} -1.44563 q^{97} +(-10.0919 + 12.5557i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q - 8 q^{4} + 8 q^{10} - 8 q^{16} + 32 q^{19} + 40 q^{25} - 32 q^{28} + 32 q^{34} + 16 q^{40} - 24 q^{46} - 8 q^{49} + 40 q^{52} - 8 q^{58} + 16 q^{64} + 72 q^{70} + 32 q^{73} - 8 q^{76} - 64 q^{82}+ \cdots - 32 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/792\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(199\) \(353\) \(397\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.885984 1.10229i 0.626485 0.779433i
\(3\) 0 0
\(4\) −0.430065 1.95321i −0.215033 0.976607i
\(5\) −3.67452 −1.64330 −0.821648 0.569996i \(-0.806945\pi\)
−0.821648 + 0.569996i \(0.806945\pi\)
\(6\) 0 0
\(7\) 4.28843i 1.62087i −0.585827 0.810436i \(-0.699230\pi\)
0.585827 0.810436i \(-0.300770\pi\)
\(8\) −2.53403 1.25646i −0.895915 0.444226i
\(9\) 0 0
\(10\) −3.25556 + 4.05037i −1.02950 + 1.28084i
\(11\) 1.00000i 0.301511i
\(12\) 0 0
\(13\) 7.11160i 1.97240i 0.165550 + 0.986201i \(0.447060\pi\)
−0.165550 + 0.986201i \(0.552940\pi\)
\(14\) −4.72707 3.79948i −1.26336 1.01545i
\(15\) 0 0
\(16\) −3.63009 + 1.68002i −0.907522 + 0.420005i
\(17\) 4.85960i 1.17863i 0.807905 + 0.589313i \(0.200602\pi\)
−0.807905 + 0.589313i \(0.799398\pi\)
\(18\) 0 0
\(19\) 0.571401 0.131088 0.0655442 0.997850i \(-0.479122\pi\)
0.0655442 + 0.997850i \(0.479122\pi\)
\(20\) 1.58028 + 7.17712i 0.353362 + 1.60485i
\(21\) 0 0
\(22\) −1.10229 0.885984i −0.235008 0.188892i
\(23\) −3.61453 −0.753681 −0.376841 0.926278i \(-0.622990\pi\)
−0.376841 + 0.926278i \(0.622990\pi\)
\(24\) 0 0
\(25\) 8.50209 1.70042
\(26\) 7.83901 + 6.30076i 1.53736 + 1.23568i
\(27\) 0 0
\(28\) −8.37621 + 1.84430i −1.58296 + 0.348541i
\(29\) −3.99360 −0.741592 −0.370796 0.928714i \(-0.620915\pi\)
−0.370796 + 0.928714i \(0.620915\pi\)
\(30\) 0 0
\(31\) 7.49755i 1.34660i −0.739369 0.673300i \(-0.764876\pi\)
0.739369 0.673300i \(-0.235124\pi\)
\(32\) −1.36434 + 5.48986i −0.241183 + 0.970480i
\(33\) 0 0
\(34\) 5.35667 + 4.30553i 0.918661 + 0.738392i
\(35\) 15.7579i 2.66357i
\(36\) 0 0
\(37\) 5.62197i 0.924246i −0.886816 0.462123i \(-0.847088\pi\)
0.886816 0.462123i \(-0.152912\pi\)
\(38\) 0.506252 0.629847i 0.0821250 0.102175i
\(39\) 0 0
\(40\) 9.31134 + 4.61689i 1.47225 + 0.729994i
\(41\) 4.14379i 0.647151i −0.946202 0.323575i \(-0.895115\pi\)
0.946202 0.323575i \(-0.104885\pi\)
\(42\) 0 0
\(43\) −7.29206 −1.11203 −0.556014 0.831173i \(-0.687670\pi\)
−0.556014 + 0.831173i \(0.687670\pi\)
\(44\) −1.95321 + 0.430065i −0.294458 + 0.0648348i
\(45\) 0 0
\(46\) −3.20241 + 3.98424i −0.472170 + 0.587444i
\(47\) −5.48001 −0.799342 −0.399671 0.916659i \(-0.630876\pi\)
−0.399671 + 0.916659i \(0.630876\pi\)
\(48\) 0 0
\(49\) −11.3906 −1.62723
\(50\) 7.53272 9.37173i 1.06529 1.32536i
\(51\) 0 0
\(52\) 13.8905 3.05845i 1.92626 0.424131i
\(53\) −6.86693 −0.943246 −0.471623 0.881800i \(-0.656332\pi\)
−0.471623 + 0.881800i \(0.656332\pi\)
\(54\) 0 0
\(55\) 3.67452i 0.495472i
\(56\) −5.38824 + 10.8670i −0.720034 + 1.45216i
\(57\) 0 0
\(58\) −3.53826 + 4.40208i −0.464596 + 0.578022i
\(59\) 0.106064i 0.0138084i 0.999976 + 0.00690418i \(0.00219769\pi\)
−0.999976 + 0.00690418i \(0.997802\pi\)
\(60\) 0 0
\(61\) 4.52167i 0.578941i 0.957187 + 0.289471i \(0.0934792\pi\)
−0.957187 + 0.289471i \(0.906521\pi\)
\(62\) −8.26444 6.64271i −1.04959 0.843625i
\(63\) 0 0
\(64\) 4.84261 + 6.36782i 0.605327 + 0.795977i
\(65\) 26.1317i 3.24124i
\(66\) 0 0
\(67\) 4.89107 0.597540 0.298770 0.954325i \(-0.403424\pi\)
0.298770 + 0.954325i \(0.403424\pi\)
\(68\) 9.49184 2.08995i 1.15105 0.253443i
\(69\) 0 0
\(70\) 17.3697 + 13.9612i 2.07608 + 1.66869i
\(71\) −0.651184 −0.0772813 −0.0386407 0.999253i \(-0.512303\pi\)
−0.0386407 + 0.999253i \(0.512303\pi\)
\(72\) 0 0
\(73\) −6.32539 −0.740331 −0.370165 0.928966i \(-0.620699\pi\)
−0.370165 + 0.928966i \(0.620699\pi\)
\(74\) −6.19701 4.98097i −0.720388 0.579026i
\(75\) 0 0
\(76\) −0.245740 1.11607i −0.0281883 0.128022i
\(77\) −4.28843 −0.488711
\(78\) 0 0
\(79\) 13.2255i 1.48799i −0.668187 0.743993i \(-0.732930\pi\)
0.668187 0.743993i \(-0.267070\pi\)
\(80\) 13.3388 6.17326i 1.49133 0.690192i
\(81\) 0 0
\(82\) −4.56764 3.67133i −0.504411 0.405430i
\(83\) 7.98402i 0.876361i −0.898887 0.438180i \(-0.855623\pi\)
0.898887 0.438180i \(-0.144377\pi\)
\(84\) 0 0
\(85\) 17.8567i 1.93683i
\(86\) −6.46064 + 8.03793i −0.696669 + 0.866752i
\(87\) 0 0
\(88\) −1.25646 + 2.53403i −0.133939 + 0.270128i
\(89\) 5.40135i 0.572542i 0.958149 + 0.286271i \(0.0924157\pi\)
−0.958149 + 0.286271i \(0.907584\pi\)
\(90\) 0 0
\(91\) 30.4976 3.19701
\(92\) 1.55448 + 7.05995i 0.162066 + 0.736050i
\(93\) 0 0
\(94\) −4.85520 + 6.04054i −0.500776 + 0.623034i
\(95\) −2.09963 −0.215417
\(96\) 0 0
\(97\) −1.44563 −0.146782 −0.0733908 0.997303i \(-0.523382\pi\)
−0.0733908 + 0.997303i \(0.523382\pi\)
\(98\) −10.0919 + 12.5557i −1.01943 + 1.26832i
\(99\) 0 0
\(100\) −3.65646 16.6064i −0.365646 1.66064i
\(101\) 11.5112 1.14541 0.572705 0.819762i \(-0.305894\pi\)
0.572705 + 0.819762i \(0.305894\pi\)
\(102\) 0 0
\(103\) 5.05511i 0.498095i 0.968491 + 0.249047i \(0.0801175\pi\)
−0.968491 + 0.249047i \(0.919883\pi\)
\(104\) 8.93545 18.0210i 0.876193 1.76710i
\(105\) 0 0
\(106\) −6.08399 + 7.56932i −0.590930 + 0.735197i
\(107\) 1.46547i 0.141673i −0.997488 0.0708363i \(-0.977433\pi\)
0.997488 0.0708363i \(-0.0225668\pi\)
\(108\) 0 0
\(109\) 2.43341i 0.233079i 0.993186 + 0.116539i \(0.0371801\pi\)
−0.993186 + 0.116539i \(0.962820\pi\)
\(110\) 4.05037 + 3.25556i 0.386187 + 0.310406i
\(111\) 0 0
\(112\) 7.20464 + 15.5674i 0.680774 + 1.47098i
\(113\) 9.23698i 0.868942i −0.900686 0.434471i \(-0.856935\pi\)
0.900686 0.434471i \(-0.143065\pi\)
\(114\) 0 0
\(115\) 13.2817 1.23852
\(116\) 1.71751 + 7.80035i 0.159467 + 0.724244i
\(117\) 0 0
\(118\) 0.116913 + 0.0939711i 0.0107627 + 0.00865074i
\(119\) 20.8400 1.91040
\(120\) 0 0
\(121\) −1.00000 −0.0909091
\(122\) 4.98418 + 4.00613i 0.451246 + 0.362698i
\(123\) 0 0
\(124\) −14.6443 + 3.22444i −1.31510 + 0.289563i
\(125\) −12.8685 −1.15099
\(126\) 0 0
\(127\) 1.21275i 0.107614i −0.998551 0.0538071i \(-0.982864\pi\)
0.998551 0.0538071i \(-0.0171356\pi\)
\(128\) 11.3096 + 0.303843i 0.999639 + 0.0268562i
\(129\) 0 0
\(130\) −28.8046 23.1523i −2.52633 2.03059i
\(131\) 9.72206i 0.849420i −0.905329 0.424710i \(-0.860376\pi\)
0.905329 0.424710i \(-0.139624\pi\)
\(132\) 0 0
\(133\) 2.45041i 0.212478i
\(134\) 4.33341 5.39136i 0.374350 0.465742i
\(135\) 0 0
\(136\) 6.10590 12.3144i 0.523576 1.05595i
\(137\) 9.97473i 0.852198i −0.904676 0.426099i \(-0.859887\pi\)
0.904676 0.426099i \(-0.140113\pi\)
\(138\) 0 0
\(139\) −19.0006 −1.61161 −0.805805 0.592181i \(-0.798267\pi\)
−0.805805 + 0.592181i \(0.798267\pi\)
\(140\) 30.7786 6.77693i 2.60126 0.572755i
\(141\) 0 0
\(142\) −0.576938 + 0.717790i −0.0484156 + 0.0602356i
\(143\) 7.11160 0.594702
\(144\) 0 0
\(145\) 14.6745 1.21865
\(146\) −5.60419 + 6.97238i −0.463806 + 0.577039i
\(147\) 0 0
\(148\) −10.9809 + 2.41781i −0.902625 + 0.198743i
\(149\) −22.0567 −1.80696 −0.903480 0.428631i \(-0.858996\pi\)
−0.903480 + 0.428631i \(0.858996\pi\)
\(150\) 0 0
\(151\) 18.2008i 1.48116i 0.671970 + 0.740578i \(0.265448\pi\)
−0.671970 + 0.740578i \(0.734552\pi\)
\(152\) −1.44795 0.717944i −0.117444 0.0582329i
\(153\) 0 0
\(154\) −3.79948 + 4.72707i −0.306170 + 0.380918i
\(155\) 27.5499i 2.21286i
\(156\) 0 0
\(157\) 7.69643i 0.614242i 0.951670 + 0.307121i \(0.0993657\pi\)
−0.951670 + 0.307121i \(0.900634\pi\)
\(158\) −14.5783 11.7176i −1.15979 0.932201i
\(159\) 0 0
\(160\) 5.01329 20.1726i 0.396335 1.59478i
\(161\) 15.5006i 1.22162i
\(162\) 0 0
\(163\) 6.32104 0.495102 0.247551 0.968875i \(-0.420374\pi\)
0.247551 + 0.968875i \(0.420374\pi\)
\(164\) −8.09370 + 1.78210i −0.632012 + 0.139159i
\(165\) 0 0
\(166\) −8.80067 7.07372i −0.683065 0.549027i
\(167\) 13.2831 1.02788 0.513939 0.857827i \(-0.328186\pi\)
0.513939 + 0.857827i \(0.328186\pi\)
\(168\) 0 0
\(169\) −37.5748 −2.89037
\(170\) −19.6832 15.8207i −1.50963 1.21340i
\(171\) 0 0
\(172\) 3.13606 + 14.2429i 0.239122 + 1.08601i
\(173\) −3.07050 −0.233446 −0.116723 0.993165i \(-0.537239\pi\)
−0.116723 + 0.993165i \(0.537239\pi\)
\(174\) 0 0
\(175\) 36.4606i 2.75616i
\(176\) 1.68002 + 3.63009i 0.126636 + 0.273628i
\(177\) 0 0
\(178\) 5.95383 + 4.78551i 0.446258 + 0.358689i
\(179\) 0.702082i 0.0524761i 0.999656 + 0.0262380i \(0.00835279\pi\)
−0.999656 + 0.0262380i \(0.991647\pi\)
\(180\) 0 0
\(181\) 17.3215i 1.28750i −0.765237 0.643749i \(-0.777378\pi\)
0.765237 0.643749i \(-0.222622\pi\)
\(182\) 27.0203 33.6170i 2.00288 2.49186i
\(183\) 0 0
\(184\) 9.15932 + 4.54151i 0.675234 + 0.334805i
\(185\) 20.6580i 1.51881i
\(186\) 0 0
\(187\) 4.85960 0.355369
\(188\) 2.35676 + 10.7036i 0.171885 + 0.780643i
\(189\) 0 0
\(190\) −1.86023 + 2.31439i −0.134956 + 0.167903i
\(191\) −5.73102 −0.414682 −0.207341 0.978269i \(-0.566481\pi\)
−0.207341 + 0.978269i \(0.566481\pi\)
\(192\) 0 0
\(193\) −0.934136 −0.0672406 −0.0336203 0.999435i \(-0.510704\pi\)
−0.0336203 + 0.999435i \(0.510704\pi\)
\(194\) −1.28081 + 1.59350i −0.0919565 + 0.114406i
\(195\) 0 0
\(196\) 4.89870 + 22.2483i 0.349907 + 1.58916i
\(197\) 23.0844 1.64469 0.822346 0.568987i \(-0.192665\pi\)
0.822346 + 0.568987i \(0.192665\pi\)
\(198\) 0 0
\(199\) 11.6214i 0.823816i −0.911225 0.411908i \(-0.864863\pi\)
0.911225 0.411908i \(-0.135137\pi\)
\(200\) −21.5446 10.6825i −1.52343 0.755370i
\(201\) 0 0
\(202\) 10.1988 12.6887i 0.717582 0.892771i
\(203\) 17.1262i 1.20203i
\(204\) 0 0
\(205\) 15.2264i 1.06346i
\(206\) 5.57217 + 4.47874i 0.388232 + 0.312049i
\(207\) 0 0
\(208\) −11.9476 25.8157i −0.828419 1.79000i
\(209\) 0.571401i 0.0395247i
\(210\) 0 0
\(211\) −15.3823 −1.05896 −0.529482 0.848321i \(-0.677614\pi\)
−0.529482 + 0.848321i \(0.677614\pi\)
\(212\) 2.95323 + 13.4126i 0.202829 + 0.921180i
\(213\) 0 0
\(214\) −1.61537 1.29839i −0.110424 0.0887558i
\(215\) 26.7948 1.82739
\(216\) 0 0
\(217\) −32.1527 −2.18267
\(218\) 2.68231 + 2.15596i 0.181669 + 0.146020i
\(219\) 0 0
\(220\) 7.17712 1.58028i 0.483881 0.106543i
\(221\) −34.5595 −2.32473
\(222\) 0 0
\(223\) 29.4476i 1.97195i 0.166880 + 0.985977i \(0.446631\pi\)
−0.166880 + 0.985977i \(0.553369\pi\)
\(224\) 23.5429 + 5.85086i 1.57302 + 0.390927i
\(225\) 0 0
\(226\) −10.1818 8.18382i −0.677283 0.544380i
\(227\) 21.0457i 1.39686i 0.715681 + 0.698428i \(0.246117\pi\)
−0.715681 + 0.698428i \(0.753883\pi\)
\(228\) 0 0
\(229\) 8.43517i 0.557412i −0.960377 0.278706i \(-0.910095\pi\)
0.960377 0.278706i \(-0.0899054\pi\)
\(230\) 11.7673 14.6402i 0.775915 0.965344i
\(231\) 0 0
\(232\) 10.1199 + 5.01780i 0.664403 + 0.329435i
\(233\) 16.2145i 1.06224i −0.847295 0.531122i \(-0.821771\pi\)
0.847295 0.531122i \(-0.178229\pi\)
\(234\) 0 0
\(235\) 20.1364 1.31356
\(236\) 0.207166 0.0456145i 0.0134853 0.00296925i
\(237\) 0 0
\(238\) 18.4639 22.9717i 1.19684 1.48903i
\(239\) 10.8146 0.699539 0.349769 0.936836i \(-0.386260\pi\)
0.349769 + 0.936836i \(0.386260\pi\)
\(240\) 0 0
\(241\) 23.5965 1.51998 0.759992 0.649932i \(-0.225203\pi\)
0.759992 + 0.649932i \(0.225203\pi\)
\(242\) −0.885984 + 1.10229i −0.0569532 + 0.0708576i
\(243\) 0 0
\(244\) 8.83180 1.94462i 0.565398 0.124491i
\(245\) 41.8550 2.67402
\(246\) 0 0
\(247\) 4.06358i 0.258559i
\(248\) −9.42038 + 18.9990i −0.598195 + 1.20644i
\(249\) 0 0
\(250\) −11.4013 + 14.1848i −0.721081 + 0.897124i
\(251\) 24.3292i 1.53564i −0.640663 0.767822i \(-0.721341\pi\)
0.640663 0.767822i \(-0.278659\pi\)
\(252\) 0 0
\(253\) 3.61453i 0.227243i
\(254\) −1.33680 1.07448i −0.0838781 0.0674187i
\(255\) 0 0
\(256\) 10.3551 12.1972i 0.647192 0.762327i
\(257\) 15.7882i 0.984844i −0.870357 0.492422i \(-0.836112\pi\)
0.870357 0.492422i \(-0.163888\pi\)
\(258\) 0 0
\(259\) −24.1094 −1.49809
\(260\) −51.0408 + 11.2383i −3.16542 + 0.696973i
\(261\) 0 0
\(262\) −10.7165 8.61359i −0.662067 0.532149i
\(263\) −12.3472 −0.761361 −0.380680 0.924707i \(-0.624310\pi\)
−0.380680 + 0.924707i \(0.624310\pi\)
\(264\) 0 0
\(265\) 25.2327 1.55003
\(266\) −2.70105 2.17103i −0.165612 0.133114i
\(267\) 0 0
\(268\) −2.10348 9.55331i −0.128491 0.583561i
\(269\) −1.99457 −0.121611 −0.0608055 0.998150i \(-0.519367\pi\)
−0.0608055 + 0.998150i \(0.519367\pi\)
\(270\) 0 0
\(271\) 26.0744i 1.58391i −0.610582 0.791953i \(-0.709065\pi\)
0.610582 0.791953i \(-0.290935\pi\)
\(272\) −8.16422 17.6408i −0.495029 1.06963i
\(273\) 0 0
\(274\) −10.9950 8.83745i −0.664232 0.533890i
\(275\) 8.50209i 0.512696i
\(276\) 0 0
\(277\) 13.1113i 0.787780i 0.919158 + 0.393890i \(0.128871\pi\)
−0.919158 + 0.393890i \(0.871129\pi\)
\(278\) −16.8342 + 20.9441i −1.00965 + 1.25614i
\(279\) 0 0
\(280\) 19.7992 39.9310i 1.18323 2.38633i
\(281\) 8.72948i 0.520757i −0.965507 0.260379i \(-0.916153\pi\)
0.965507 0.260379i \(-0.0838474\pi\)
\(282\) 0 0
\(283\) −11.1083 −0.660321 −0.330160 0.943925i \(-0.607103\pi\)
−0.330160 + 0.943925i \(0.607103\pi\)
\(284\) 0.280052 + 1.27190i 0.0166180 + 0.0754735i
\(285\) 0 0
\(286\) 6.30076 7.83901i 0.372572 0.463530i
\(287\) −17.7703 −1.04895
\(288\) 0 0
\(289\) −6.61572 −0.389160
\(290\) 13.0014 16.1755i 0.763469 0.949860i
\(291\) 0 0
\(292\) 2.72033 + 12.3548i 0.159195 + 0.723012i
\(293\) 9.60760 0.561282 0.280641 0.959813i \(-0.409453\pi\)
0.280641 + 0.959813i \(0.409453\pi\)
\(294\) 0 0
\(295\) 0.389735i 0.0226912i
\(296\) −7.06378 + 14.2462i −0.410574 + 0.828046i
\(297\) 0 0
\(298\) −19.5419 + 24.3128i −1.13203 + 1.40840i
\(299\) 25.7051i 1.48656i
\(300\) 0 0
\(301\) 31.2714i 1.80246i
\(302\) 20.0624 + 16.1256i 1.15446 + 0.927923i
\(303\) 0 0
\(304\) −2.07424 + 0.959966i −0.118966 + 0.0550578i
\(305\) 16.6150i 0.951371i
\(306\) 0 0
\(307\) 1.34324 0.0766628 0.0383314 0.999265i \(-0.487796\pi\)
0.0383314 + 0.999265i \(0.487796\pi\)
\(308\) 1.84430 + 8.37621i 0.105089 + 0.477279i
\(309\) 0 0
\(310\) 30.3679 + 24.4088i 1.72478 + 1.38633i
\(311\) 9.54020 0.540975 0.270488 0.962723i \(-0.412815\pi\)
0.270488 + 0.962723i \(0.412815\pi\)
\(312\) 0 0
\(313\) 4.69540 0.265400 0.132700 0.991156i \(-0.457635\pi\)
0.132700 + 0.991156i \(0.457635\pi\)
\(314\) 8.48366 + 6.81892i 0.478761 + 0.384814i
\(315\) 0 0
\(316\) −25.8322 + 5.68784i −1.45318 + 0.319966i
\(317\) −11.1383 −0.625587 −0.312794 0.949821i \(-0.601265\pi\)
−0.312794 + 0.949821i \(0.601265\pi\)
\(318\) 0 0
\(319\) 3.99360i 0.223598i
\(320\) −17.7943 23.3987i −0.994730 1.30803i
\(321\) 0 0
\(322\) 17.0861 + 13.7333i 0.952172 + 0.765328i
\(323\) 2.77678i 0.154504i
\(324\) 0 0
\(325\) 60.4635i 3.35391i
\(326\) 5.60033 6.96758i 0.310174 0.385899i
\(327\) 0 0
\(328\) −5.20651 + 10.5005i −0.287481 + 0.579792i
\(329\) 23.5006i 1.29563i
\(330\) 0 0
\(331\) −24.2231 −1.33142 −0.665711 0.746210i \(-0.731872\pi\)
−0.665711 + 0.746210i \(0.731872\pi\)
\(332\) −15.5945 + 3.43365i −0.855860 + 0.188446i
\(333\) 0 0
\(334\) 11.7686 14.6418i 0.643951 0.801163i
\(335\) −17.9723 −0.981934
\(336\) 0 0
\(337\) 6.42833 0.350173 0.175087 0.984553i \(-0.443979\pi\)
0.175087 + 0.984553i \(0.443979\pi\)
\(338\) −33.2907 + 41.4182i −1.81078 + 2.25285i
\(339\) 0 0
\(340\) −34.8779 + 7.67955i −1.89152 + 0.416482i
\(341\) −7.49755 −0.406015
\(342\) 0 0
\(343\) 18.8287i 1.01666i
\(344\) 18.4783 + 9.16218i 0.996282 + 0.493992i
\(345\) 0 0
\(346\) −2.72041 + 3.38457i −0.146250 + 0.181956i
\(347\) 22.5860i 1.21248i −0.795282 0.606239i \(-0.792677\pi\)
0.795282 0.606239i \(-0.207323\pi\)
\(348\) 0 0
\(349\) 7.23698i 0.387387i −0.981062 0.193693i \(-0.937953\pi\)
0.981062 0.193693i \(-0.0620467\pi\)
\(350\) −40.1900 32.3035i −2.14824 1.72669i
\(351\) 0 0
\(352\) 5.48986 + 1.36434i 0.292611 + 0.0727195i
\(353\) 6.00677i 0.319708i −0.987141 0.159854i \(-0.948898\pi\)
0.987141 0.159854i \(-0.0511023\pi\)
\(354\) 0 0
\(355\) 2.39279 0.126996
\(356\) 10.5500 2.32293i 0.559148 0.123115i
\(357\) 0 0
\(358\) 0.773895 + 0.622033i 0.0409016 + 0.0328755i
\(359\) 23.2718 1.22824 0.614120 0.789212i \(-0.289511\pi\)
0.614120 + 0.789212i \(0.289511\pi\)
\(360\) 0 0
\(361\) −18.6735 −0.982816
\(362\) −19.0933 15.3466i −1.00352 0.806599i
\(363\) 0 0
\(364\) −13.1160 59.5683i −0.687463 3.12223i
\(365\) 23.2428 1.21658
\(366\) 0 0
\(367\) 18.7836i 0.980495i 0.871583 + 0.490248i \(0.163094\pi\)
−0.871583 + 0.490248i \(0.836906\pi\)
\(368\) 13.1211 6.07248i 0.683982 0.316550i
\(369\) 0 0
\(370\) 22.7710 + 18.3027i 1.18381 + 0.951511i
\(371\) 29.4483i 1.52888i
\(372\) 0 0
\(373\) 6.97688i 0.361249i 0.983552 + 0.180625i \(0.0578119\pi\)
−0.983552 + 0.180625i \(0.942188\pi\)
\(374\) 4.30553 5.35667i 0.222634 0.276987i
\(375\) 0 0
\(376\) 13.8865 + 6.88542i 0.716143 + 0.355089i
\(377\) 28.4009i 1.46272i
\(378\) 0 0
\(379\) −20.4858 −1.05228 −0.526142 0.850396i \(-0.676362\pi\)
−0.526142 + 0.850396i \(0.676362\pi\)
\(380\) 0.902977 + 4.10102i 0.0463217 + 0.210378i
\(381\) 0 0
\(382\) −5.07759 + 6.31722i −0.259792 + 0.323217i
\(383\) 10.3791 0.530347 0.265174 0.964201i \(-0.414571\pi\)
0.265174 + 0.964201i \(0.414571\pi\)
\(384\) 0 0
\(385\) 15.7579 0.803097
\(386\) −0.827629 + 1.02968i −0.0421252 + 0.0524096i
\(387\) 0 0
\(388\) 0.621716 + 2.82363i 0.0315628 + 0.143348i
\(389\) 22.9562 1.16392 0.581962 0.813216i \(-0.302285\pi\)
0.581962 + 0.813216i \(0.302285\pi\)
\(390\) 0 0
\(391\) 17.5652i 0.888308i
\(392\) 28.8641 + 14.3118i 1.45786 + 0.722857i
\(393\) 0 0
\(394\) 20.4524 25.4455i 1.03038 1.28193i
\(395\) 48.5974i 2.44520i
\(396\) 0 0
\(397\) 4.90188i 0.246018i 0.992406 + 0.123009i \(0.0392545\pi\)
−0.992406 + 0.123009i \(0.960746\pi\)
\(398\) −12.8100 10.2963i −0.642110 0.516108i
\(399\) 0 0
\(400\) −30.8633 + 14.2837i −1.54317 + 0.714184i
\(401\) 8.20713i 0.409845i 0.978778 + 0.204922i \(0.0656942\pi\)
−0.978778 + 0.204922i \(0.934306\pi\)
\(402\) 0 0
\(403\) 53.3196 2.65604
\(404\) −4.95058 22.4839i −0.246301 1.11862i
\(405\) 0 0
\(406\) 18.8780 + 15.1736i 0.936900 + 0.753052i
\(407\) −5.62197 −0.278671
\(408\) 0 0
\(409\) 6.42798 0.317843 0.158922 0.987291i \(-0.449198\pi\)
0.158922 + 0.987291i \(0.449198\pi\)
\(410\) 16.7839 + 13.4904i 0.828896 + 0.666242i
\(411\) 0 0
\(412\) 9.87371 2.17403i 0.486443 0.107107i
\(413\) 0.454848 0.0223816
\(414\) 0 0
\(415\) 29.3375i 1.44012i
\(416\) −39.0417 9.70262i −1.91418 0.475710i
\(417\) 0 0
\(418\) −0.629847 0.506252i −0.0308068 0.0247616i
\(419\) 0.627152i 0.0306384i 0.999883 + 0.0153192i \(0.00487644\pi\)
−0.999883 + 0.0153192i \(0.995124\pi\)
\(420\) 0 0
\(421\) 6.92756i 0.337628i −0.985648 0.168814i \(-0.946006\pi\)
0.985648 0.168814i \(-0.0539938\pi\)
\(422\) −13.6285 + 16.9557i −0.663425 + 0.825392i
\(423\) 0 0
\(424\) 17.4010 + 8.62803i 0.845068 + 0.419014i
\(425\) 41.3168i 2.00416i
\(426\) 0 0
\(427\) 19.3909 0.938390
\(428\) −2.86238 + 0.630249i −0.138358 + 0.0304642i
\(429\) 0 0
\(430\) 23.7398 29.5355i 1.14483 1.42433i
\(431\) 32.1099 1.54668 0.773339 0.633992i \(-0.218585\pi\)
0.773339 + 0.633992i \(0.218585\pi\)
\(432\) 0 0
\(433\) 17.0093 0.817416 0.408708 0.912665i \(-0.365979\pi\)
0.408708 + 0.912665i \(0.365979\pi\)
\(434\) −28.4868 + 35.4414i −1.36741 + 1.70124i
\(435\) 0 0
\(436\) 4.75297 1.04653i 0.227626 0.0501195i
\(437\) −2.06535 −0.0987989
\(438\) 0 0
\(439\) 19.9250i 0.950967i 0.879725 + 0.475484i \(0.157727\pi\)
−0.879725 + 0.475484i \(0.842273\pi\)
\(440\) 4.61689 9.31134i 0.220102 0.443901i
\(441\) 0 0
\(442\) −30.6192 + 38.0945i −1.45641 + 1.81197i
\(443\) 21.3533i 1.01453i 0.861791 + 0.507264i \(0.169343\pi\)
−0.861791 + 0.507264i \(0.830657\pi\)
\(444\) 0 0
\(445\) 19.8474i 0.940855i
\(446\) 32.4596 + 26.0901i 1.53701 + 1.23540i
\(447\) 0 0
\(448\) 27.3079 20.7672i 1.29018 0.981157i
\(449\) 12.1619i 0.573957i 0.957937 + 0.286979i \(0.0926508\pi\)
−0.957937 + 0.286979i \(0.907349\pi\)
\(450\) 0 0
\(451\) −4.14379 −0.195123
\(452\) −18.0418 + 3.97251i −0.848615 + 0.186851i
\(453\) 0 0
\(454\) 23.1984 + 18.6462i 1.08876 + 0.875109i
\(455\) −112.064 −5.25364
\(456\) 0 0
\(457\) 29.8125 1.39457 0.697286 0.716793i \(-0.254391\pi\)
0.697286 + 0.716793i \(0.254391\pi\)
\(458\) −9.29796 7.47342i −0.434465 0.349210i
\(459\) 0 0
\(460\) −5.71198 25.9419i −0.266322 1.20955i
\(461\) −3.21399 −0.149691 −0.0748453 0.997195i \(-0.523846\pi\)
−0.0748453 + 0.997195i \(0.523846\pi\)
\(462\) 0 0
\(463\) 31.0571i 1.44335i 0.692234 + 0.721673i \(0.256626\pi\)
−0.692234 + 0.721673i \(0.743374\pi\)
\(464\) 14.4971 6.70932i 0.673011 0.311472i
\(465\) 0 0
\(466\) −17.8730 14.3657i −0.827949 0.665480i
\(467\) 13.1669i 0.609293i −0.952466 0.304646i \(-0.901462\pi\)
0.952466 0.304646i \(-0.0985383\pi\)
\(468\) 0 0
\(469\) 20.9750i 0.968535i
\(470\) 17.8405 22.1961i 0.822923 1.02383i
\(471\) 0 0
\(472\) 0.133265 0.268770i 0.00613404 0.0123711i
\(473\) 7.29206i 0.335289i
\(474\) 0 0
\(475\) 4.85811 0.222905
\(476\) −8.96258 40.7050i −0.410799 1.86571i
\(477\) 0 0
\(478\) 9.58156 11.9208i 0.438251 0.545244i
\(479\) −29.5905 −1.35202 −0.676012 0.736890i \(-0.736293\pi\)
−0.676012 + 0.736890i \(0.736293\pi\)
\(480\) 0 0
\(481\) 39.9812 1.82299
\(482\) 20.9061 26.0101i 0.952248 1.18473i
\(483\) 0 0
\(484\) 0.430065 + 1.95321i 0.0195484 + 0.0887824i
\(485\) 5.31200 0.241205
\(486\) 0 0
\(487\) 1.62676i 0.0737154i −0.999321 0.0368577i \(-0.988265\pi\)
0.999321 0.0368577i \(-0.0117348\pi\)
\(488\) 5.68131 11.4581i 0.257181 0.518682i
\(489\) 0 0
\(490\) 37.0828 46.1361i 1.67523 2.08422i
\(491\) 24.9289i 1.12503i −0.826788 0.562514i \(-0.809834\pi\)
0.826788 0.562514i \(-0.190166\pi\)
\(492\) 0 0
\(493\) 19.4073i 0.874060i
\(494\) 4.47922 + 3.60026i 0.201530 + 0.161984i
\(495\) 0 0
\(496\) 12.5960 + 27.2168i 0.565579 + 1.22207i
\(497\) 2.79255i 0.125263i
\(498\) 0 0
\(499\) −15.3573 −0.687485 −0.343743 0.939064i \(-0.611695\pi\)
−0.343743 + 0.939064i \(0.611695\pi\)
\(500\) 5.53430 + 25.1350i 0.247502 + 1.12407i
\(501\) 0 0
\(502\) −26.8177 21.5553i −1.19693 0.962058i
\(503\) 5.70197 0.254238 0.127119 0.991887i \(-0.459427\pi\)
0.127119 + 0.991887i \(0.459427\pi\)
\(504\) 0 0
\(505\) −42.2982 −1.88225
\(506\) 3.98424 + 3.20241i 0.177121 + 0.142365i
\(507\) 0 0
\(508\) −2.36876 + 0.521562i −0.105097 + 0.0231406i
\(509\) −7.37472 −0.326879 −0.163439 0.986553i \(-0.552259\pi\)
−0.163439 + 0.986553i \(0.552259\pi\)
\(510\) 0 0
\(511\) 27.1260i 1.19998i
\(512\) −4.27041 22.2208i −0.188727 0.982030i
\(513\) 0 0
\(514\) −17.4031 13.9881i −0.767620 0.616990i
\(515\) 18.5751i 0.818516i
\(516\) 0 0
\(517\) 5.48001i 0.241011i
\(518\) −21.3605 + 26.5754i −0.938528 + 1.16766i
\(519\) 0 0
\(520\) −32.8335 + 66.2185i −1.43984 + 2.90387i
\(521\) 43.8704i 1.92200i 0.276555 + 0.960998i \(0.410807\pi\)
−0.276555 + 0.960998i \(0.589193\pi\)
\(522\) 0 0
\(523\) −2.76514 −0.120911 −0.0604556 0.998171i \(-0.519255\pi\)
−0.0604556 + 0.998171i \(0.519255\pi\)
\(524\) −18.9893 + 4.18112i −0.829550 + 0.182653i
\(525\) 0 0
\(526\) −10.9394 + 13.6101i −0.476981 + 0.593430i
\(527\) 36.4351 1.58714
\(528\) 0 0
\(529\) −9.93519 −0.431965
\(530\) 22.3557 27.8136i 0.971072 1.20815i
\(531\) 0 0
\(532\) −4.78618 + 1.05384i −0.207507 + 0.0456897i
\(533\) 29.4690 1.27644
\(534\) 0 0
\(535\) 5.38491i 0.232810i
\(536\) −12.3941 6.14544i −0.535344 0.265443i
\(537\) 0 0
\(538\) −1.76716 + 2.19858i −0.0761875 + 0.0947877i
\(539\) 11.3906i 0.490628i
\(540\) 0 0
\(541\) 22.6593i 0.974200i −0.873346 0.487100i \(-0.838055\pi\)
0.873346 0.487100i \(-0.161945\pi\)
\(542\) −28.7414 23.1015i −1.23455 0.992293i
\(543\) 0 0
\(544\) −26.6785 6.63014i −1.14383 0.284265i
\(545\) 8.94162i 0.383017i
\(546\) 0 0
\(547\) 16.2215 0.693582 0.346791 0.937942i \(-0.387271\pi\)
0.346791 + 0.937942i \(0.387271\pi\)
\(548\) −19.4828 + 4.28979i −0.832263 + 0.183251i
\(549\) 0 0
\(550\) −9.37173 7.53272i −0.399612 0.321196i
\(551\) −2.28195 −0.0972142
\(552\) 0 0
\(553\) −56.7166 −2.41184
\(554\) 14.4524 + 11.6164i 0.614022 + 0.493532i
\(555\) 0 0
\(556\) 8.17150 + 37.1122i 0.346549 + 1.57391i
\(557\) 6.52782 0.276593 0.138296 0.990391i \(-0.455837\pi\)
0.138296 + 0.990391i \(0.455837\pi\)
\(558\) 0 0
\(559\) 51.8582i 2.19337i
\(560\) −26.4736 57.2026i −1.11871 2.41725i
\(561\) 0 0
\(562\) −9.62238 7.73418i −0.405896 0.326247i
\(563\) 8.89921i 0.375057i 0.982259 + 0.187529i \(0.0600477\pi\)
−0.982259 + 0.187529i \(0.939952\pi\)
\(564\) 0 0
\(565\) 33.9415i 1.42793i
\(566\) −9.84179 + 12.2445i −0.413681 + 0.514676i
\(567\) 0 0
\(568\) 1.65012 + 0.818187i 0.0692375 + 0.0343304i
\(569\) 2.33296i 0.0978026i 0.998804 + 0.0489013i \(0.0155720\pi\)
−0.998804 + 0.0489013i \(0.984428\pi\)
\(570\) 0 0
\(571\) 9.91834 0.415070 0.207535 0.978228i \(-0.433456\pi\)
0.207535 + 0.978228i \(0.433456\pi\)
\(572\) −3.05845 13.8905i −0.127880 0.580790i
\(573\) 0 0
\(574\) −15.7442 + 19.5880i −0.657151 + 0.817586i
\(575\) −30.7311 −1.28157
\(576\) 0 0
\(577\) −29.7042 −1.23660 −0.618301 0.785941i \(-0.712179\pi\)
−0.618301 + 0.785941i \(0.712179\pi\)
\(578\) −5.86142 + 7.29241i −0.243803 + 0.303324i
\(579\) 0 0
\(580\) −6.31102 28.6625i −0.262051 1.19015i
\(581\) −34.2389 −1.42047
\(582\) 0 0
\(583\) 6.86693i 0.284399i
\(584\) 16.0287 + 7.94760i 0.663273 + 0.328874i
\(585\) 0 0
\(586\) 8.51218 10.5903i 0.351635 0.437482i
\(587\) 24.6424i 1.01710i −0.861033 0.508549i \(-0.830182\pi\)
0.861033 0.508549i \(-0.169818\pi\)
\(588\) 0 0
\(589\) 4.28411i 0.176524i
\(590\) −0.429599 0.345299i −0.0176863 0.0142157i
\(591\) 0 0
\(592\) 9.44502 + 20.4082i 0.388188 + 0.838773i
\(593\) 27.4755i 1.12828i 0.825678 + 0.564142i \(0.190793\pi\)
−0.825678 + 0.564142i \(0.809207\pi\)
\(594\) 0 0
\(595\) −76.5771 −3.13936
\(596\) 9.48585 + 43.0815i 0.388555 + 1.76469i
\(597\) 0 0
\(598\) −28.3343 22.7743i −1.15868 0.931310i
\(599\) −0.332844 −0.0135996 −0.00679982 0.999977i \(-0.502164\pi\)
−0.00679982 + 0.999977i \(0.502164\pi\)
\(600\) 0 0
\(601\) −6.25727 −0.255239 −0.127620 0.991823i \(-0.540734\pi\)
−0.127620 + 0.991823i \(0.540734\pi\)
\(602\) 34.4700 + 27.7060i 1.40489 + 1.12921i
\(603\) 0 0
\(604\) 35.5500 7.82752i 1.44651 0.318497i
\(605\) 3.67452 0.149390
\(606\) 0 0
\(607\) 16.5948i 0.673563i 0.941583 + 0.336781i \(0.109338\pi\)
−0.941583 + 0.336781i \(0.890662\pi\)
\(608\) −0.779585 + 3.13692i −0.0316163 + 0.127219i
\(609\) 0 0
\(610\) −18.3144 14.7206i −0.741530 0.596020i
\(611\) 38.9717i 1.57662i
\(612\) 0 0
\(613\) 20.9637i 0.846716i −0.905963 0.423358i \(-0.860851\pi\)
0.905963 0.423358i \(-0.139149\pi\)
\(614\) 1.19009 1.48064i 0.0480281 0.0597536i
\(615\) 0 0
\(616\) 10.8670 + 5.38824i 0.437844 + 0.217098i
\(617\) 34.3728i 1.38380i −0.721995 0.691898i \(-0.756775\pi\)
0.721995 0.691898i \(-0.243225\pi\)
\(618\) 0 0
\(619\) −2.33014 −0.0936563 −0.0468282 0.998903i \(-0.514911\pi\)
−0.0468282 + 0.998903i \(0.514911\pi\)
\(620\) 53.8109 11.8483i 2.16110 0.475838i
\(621\) 0 0
\(622\) 8.45246 10.5160i 0.338913 0.421654i
\(623\) 23.1633 0.928017
\(624\) 0 0
\(625\) 4.77513 0.191005
\(626\) 4.16005 5.17567i 0.166269 0.206861i
\(627\) 0 0
\(628\) 15.0328 3.30997i 0.599873 0.132082i
\(629\) 27.3205 1.08934
\(630\) 0 0
\(631\) 21.2012i 0.844008i −0.906594 0.422004i \(-0.861327\pi\)
0.906594 0.422004i \(-0.138673\pi\)
\(632\) −16.6173 + 33.5138i −0.661002 + 1.33311i
\(633\) 0 0
\(634\) −9.86832 + 12.2775i −0.391921 + 0.487604i
\(635\) 4.45627i 0.176842i
\(636\) 0 0
\(637\) 81.0054i 3.20955i
\(638\) 4.40208 + 3.53826i 0.174280 + 0.140081i
\(639\) 0 0
\(640\) −41.5574 1.11648i −1.64270 0.0441327i
\(641\) 47.0298i 1.85756i 0.370627 + 0.928782i \(0.379143\pi\)
−0.370627 + 0.928782i \(0.620857\pi\)
\(642\) 0 0
\(643\) −5.74124 −0.226413 −0.113206 0.993572i \(-0.536112\pi\)
−0.113206 + 0.993572i \(0.536112\pi\)
\(644\) 30.2761 6.66629i 1.19304 0.262689i
\(645\) 0 0
\(646\) 3.06081 + 2.46018i 0.120426 + 0.0967947i
\(647\) 6.61961 0.260244 0.130122 0.991498i \(-0.458463\pi\)
0.130122 + 0.991498i \(0.458463\pi\)
\(648\) 0 0
\(649\) 0.106064 0.00416338
\(650\) 66.6480 + 53.5697i 2.61415 + 2.10118i
\(651\) 0 0
\(652\) −2.71846 12.3463i −0.106463 0.483520i
\(653\) −5.07600 −0.198639 −0.0993195 0.995056i \(-0.531667\pi\)
−0.0993195 + 0.995056i \(0.531667\pi\)
\(654\) 0 0
\(655\) 35.7239i 1.39585i
\(656\) 6.96164 + 15.0423i 0.271807 + 0.587304i
\(657\) 0 0
\(658\) 25.9044 + 20.8212i 1.00986 + 0.811694i
\(659\) 10.0947i 0.393233i −0.980480 0.196617i \(-0.937005\pi\)
0.980480 0.196617i \(-0.0629955\pi\)
\(660\) 0 0
\(661\) 37.9561i 1.47632i −0.674625 0.738161i \(-0.735695\pi\)
0.674625 0.738161i \(-0.264305\pi\)
\(662\) −21.4613 + 26.7008i −0.834116 + 1.03775i
\(663\) 0 0
\(664\) −10.0316 + 20.2318i −0.389302 + 0.785144i
\(665\) 9.00409i 0.349164i
\(666\) 0 0
\(667\) 14.4350 0.558924
\(668\) −5.71261 25.9448i −0.221028 1.00383i
\(669\) 0 0
\(670\) −15.9232 + 19.8106i −0.615167 + 0.765352i
\(671\) 4.52167 0.174557
\(672\) 0 0
\(673\) 32.7833 1.26370 0.631851 0.775090i \(-0.282295\pi\)
0.631851 + 0.775090i \(0.282295\pi\)
\(674\) 5.69540 7.08585i 0.219378 0.272937i
\(675\) 0 0
\(676\) 16.1596 + 73.3917i 0.621525 + 2.82276i
\(677\) −43.6949 −1.67933 −0.839666 0.543103i \(-0.817249\pi\)
−0.839666 + 0.543103i \(0.817249\pi\)
\(678\) 0 0
\(679\) 6.19948i 0.237914i
\(680\) −22.4362 + 45.2494i −0.860391 + 1.73524i
\(681\) 0 0
\(682\) −6.64271 + 8.26444i −0.254363 + 0.316462i
\(683\) 37.2123i 1.42389i −0.702236 0.711945i \(-0.747815\pi\)
0.702236 0.711945i \(-0.252185\pi\)
\(684\) 0 0
\(685\) 36.6523i 1.40041i
\(686\) 20.7546 + 16.6820i 0.792416 + 0.636920i
\(687\) 0 0
\(688\) 26.4708 12.2508i 1.00919 0.467057i
\(689\) 48.8349i 1.86046i
\(690\) 0 0
\(691\) −43.3062 −1.64744 −0.823722 0.566994i \(-0.808106\pi\)
−0.823722 + 0.566994i \(0.808106\pi\)
\(692\) 1.32052 + 5.99735i 0.0501985 + 0.227985i
\(693\) 0 0
\(694\) −24.8962 20.0108i −0.945046 0.759600i
\(695\) 69.8181 2.64835
\(696\) 0 0
\(697\) 20.1372 0.762749
\(698\) −7.97722 6.41185i −0.301942 0.242692i
\(699\) 0 0
\(700\) −71.2153 + 15.6804i −2.69169 + 0.592665i
\(701\) −8.83383 −0.333649 −0.166825 0.985987i \(-0.553351\pi\)
−0.166825 + 0.985987i \(0.553351\pi\)
\(702\) 0 0
\(703\) 3.21240i 0.121158i
\(704\) 6.36782 4.84261i 0.239996 0.182513i
\(705\) 0 0
\(706\) −6.62117 5.32190i −0.249191 0.200292i
\(707\) 49.3651i 1.85656i
\(708\) 0 0
\(709\) 0.293822i 0.0110347i −0.999985 0.00551736i \(-0.998244\pi\)
0.999985 0.00551736i \(-0.00175624\pi\)
\(710\) 2.11997 2.63753i 0.0795611 0.0989849i
\(711\) 0 0
\(712\) 6.78658 13.6872i 0.254338 0.512949i
\(713\) 27.1001i 1.01491i
\(714\) 0 0
\(715\) −26.1317 −0.977271
\(716\) 1.37132 0.301941i 0.0512485 0.0112841i
\(717\) 0 0
\(718\) 20.6185 25.6522i 0.769474 0.957332i
\(719\) 46.7215 1.74242 0.871210 0.490911i \(-0.163336\pi\)
0.871210 + 0.490911i \(0.163336\pi\)
\(720\) 0 0
\(721\) 21.6785 0.807348
\(722\) −16.5444 + 20.5835i −0.615720 + 0.766039i
\(723\) 0 0
\(724\) −33.8326 + 7.44939i −1.25738 + 0.276854i
\(725\) −33.9539 −1.26102
\(726\) 0 0
\(727\) 37.4050i 1.38727i −0.720325 0.693637i \(-0.756007\pi\)
0.720325 0.693637i \(-0.243993\pi\)
\(728\) −77.2817 38.3190i −2.86425 1.42020i
\(729\) 0 0
\(730\) 20.5927 25.6202i 0.762171 0.948245i
\(731\) 35.4365i 1.31067i
\(732\) 0 0
\(733\) 29.3800i 1.08518i −0.839999 0.542588i \(-0.817444\pi\)
0.839999 0.542588i \(-0.182556\pi\)
\(734\) 20.7049 + 16.6420i 0.764231 + 0.614266i
\(735\) 0 0
\(736\) 4.93144 19.8433i 0.181775 0.731432i
\(737\) 4.89107i 0.180165i
\(738\) 0 0
\(739\) 51.1151 1.88030 0.940149 0.340764i \(-0.110686\pi\)
0.940149 + 0.340764i \(0.110686\pi\)
\(740\) 40.3496 8.88431i 1.48328 0.326594i
\(741\) 0 0
\(742\) 32.4605 + 26.0907i 1.19166 + 0.957821i
\(743\) −52.0471 −1.90942 −0.954712 0.297531i \(-0.903837\pi\)
−0.954712 + 0.297531i \(0.903837\pi\)
\(744\) 0 0
\(745\) 81.0479 2.96937
\(746\) 7.69051 + 6.18140i 0.281570 + 0.226317i
\(747\) 0 0
\(748\) −2.08995 9.49184i −0.0764160 0.347056i
\(749\) −6.28457 −0.229633
\(750\) 0 0
\(751\) 19.4603i 0.710115i −0.934844 0.355058i \(-0.884461\pi\)
0.934844 0.355058i \(-0.115539\pi\)
\(752\) 19.8929 9.20653i 0.725421 0.335728i
\(753\) 0 0
\(754\) −31.3058 25.1627i −1.14009 0.916371i
\(755\) 66.8790i 2.43398i
\(756\) 0 0
\(757\) 14.6495i 0.532445i 0.963912 + 0.266223i \(0.0857756\pi\)
−0.963912 + 0.266223i \(0.914224\pi\)
\(758\) −18.1501 + 22.5812i −0.659241 + 0.820186i
\(759\) 0 0
\(760\) 5.32051 + 2.63810i 0.192995 + 0.0956939i
\(761\) 44.5007i 1.61315i 0.591133 + 0.806574i \(0.298681\pi\)
−0.591133 + 0.806574i \(0.701319\pi\)
\(762\) 0 0
\(763\) 10.4355 0.377791
\(764\) 2.46472 + 11.1939i 0.0891703 + 0.404982i
\(765\) 0 0
\(766\) 9.19571 11.4407i 0.332255 0.413370i
\(767\) −0.754285 −0.0272357
\(768\) 0 0
\(769\) 36.5828 1.31921 0.659605 0.751613i \(-0.270724\pi\)
0.659605 + 0.751613i \(0.270724\pi\)
\(770\) 13.9612 17.3697i 0.503128 0.625961i
\(771\) 0 0
\(772\) 0.401740 + 1.82457i 0.0144589 + 0.0656676i
\(773\) 44.3519 1.59523 0.797614 0.603169i \(-0.206095\pi\)
0.797614 + 0.603169i \(0.206095\pi\)
\(774\) 0 0
\(775\) 63.7449i 2.28978i
\(776\) 3.66327 + 1.81638i 0.131504 + 0.0652042i
\(777\) 0 0
\(778\) 20.3388 25.3043i 0.729181 0.907201i
\(779\) 2.36777i 0.0848340i
\(780\) 0 0
\(781\) 0.651184i 0.0233012i
\(782\) −19.3618 15.5624i −0.692377 0.556512i
\(783\) 0 0
\(784\) 41.3489 19.1364i 1.47674 0.683444i
\(785\) 28.2807i 1.00938i
\(786\) 0 0
\(787\) 28.9136 1.03066 0.515330 0.856992i \(-0.327669\pi\)
0.515330 + 0.856992i \(0.327669\pi\)
\(788\) −9.92779 45.0887i −0.353663 1.60622i
\(789\) 0 0
\(790\) 53.5682 + 43.0565i 1.90587 + 1.53188i
\(791\) −39.6121 −1.40844
\(792\) 0 0
\(793\) −32.1563 −1.14191
\(794\) 5.40327 + 4.34299i 0.191755 + 0.154127i
\(795\) 0 0
\(796\) −22.6990 + 4.99794i −0.804544 + 0.177147i
\(797\) −10.1073 −0.358020 −0.179010 0.983847i \(-0.557290\pi\)
−0.179010 + 0.983847i \(0.557290\pi\)
\(798\) 0 0
\(799\) 26.6307i 0.942126i
\(800\) −11.5997 + 46.6753i −0.410112 + 1.65022i
\(801\) 0 0
\(802\) 9.04660 + 7.27139i 0.319447 + 0.256762i
\(803\) 6.32539i 0.223218i
\(804\) 0 0
\(805\) 56.9574i 2.00748i
\(806\) 47.2403 58.7734i 1.66397 2.07020i
\(807\) 0 0
\(808\) −29.1698 14.4634i −1.02619 0.508821i
\(809\) 26.4520i 0.930003i 0.885310 + 0.465001i \(0.153946\pi\)
−0.885310 + 0.465001i \(0.846054\pi\)
\(810\) 0 0
\(811\) −44.1060 −1.54877 −0.774386 0.632714i \(-0.781941\pi\)
−0.774386 + 0.632714i \(0.781941\pi\)
\(812\) 33.4512 7.36540i 1.17391 0.258475i
\(813\) 0 0
\(814\) −4.98097 + 6.19701i −0.174583 + 0.217205i
\(815\) −23.2268 −0.813598
\(816\) 0 0
\(817\) −4.16669 −0.145774
\(818\) 5.69509 7.08547i 0.199124 0.247738i
\(819\) 0 0
\(820\) 29.7405 6.54836i 1.03858 0.228679i
\(821\) 3.46327 0.120869 0.0604344 0.998172i \(-0.480751\pi\)
0.0604344 + 0.998172i \(0.480751\pi\)
\(822\) 0 0
\(823\) 9.66899i 0.337040i −0.985698 0.168520i \(-0.946101\pi\)
0.985698 0.168520i \(-0.0538988\pi\)
\(824\) 6.35155 12.8098i 0.221267 0.446250i
\(825\) 0 0
\(826\) 0.402988 0.501372i 0.0140217 0.0174450i
\(827\) 19.6246i 0.682413i 0.939988 + 0.341207i \(0.110836\pi\)
−0.939988 + 0.341207i \(0.889164\pi\)
\(828\) 0 0
\(829\) 31.9771i 1.11061i 0.831646 + 0.555306i \(0.187399\pi\)
−0.831646 + 0.555306i \(0.812601\pi\)
\(830\) 32.3382 + 25.9925i 1.12248 + 0.902213i
\(831\) 0 0
\(832\) −45.2854 + 34.4387i −1.56999 + 1.19395i
\(833\) 55.3537i 1.91789i
\(834\) 0 0
\(835\) −48.8091 −1.68911
\(836\) −1.11607 + 0.245740i −0.0386001 + 0.00849910i
\(837\) 0 0
\(838\) 0.691300 + 0.555646i 0.0238806 + 0.0191945i
\(839\) 1.41283 0.0487761 0.0243881 0.999703i \(-0.492236\pi\)
0.0243881 + 0.999703i \(0.492236\pi\)
\(840\) 0 0
\(841\) −13.0512 −0.450041
\(842\) −7.63614 6.13770i −0.263159 0.211519i
\(843\) 0 0
\(844\) 6.61541 + 30.0450i 0.227712 + 1.03419i
\(845\) 138.070 4.74974
\(846\) 0 0
\(847\) 4.28843i 0.147352i
\(848\) 24.9276 11.5366i 0.856016 0.396168i
\(849\) 0 0
\(850\) 45.5429 + 36.6060i 1.56211 + 1.25558i
\(851\) 20.3208i 0.696587i
\(852\) 0 0
\(853\) 21.3955i 0.732567i 0.930503 + 0.366283i \(0.119370\pi\)
−0.930503 + 0.366283i \(0.880630\pi\)
\(854\) 17.1800 21.3743i 0.587887 0.731412i
\(855\) 0 0
\(856\) −1.84131 + 3.71355i −0.0629347 + 0.126927i
\(857\) 26.8542i 0.917323i 0.888611 + 0.458662i \(0.151671\pi\)
−0.888611 + 0.458662i \(0.848329\pi\)
\(858\) 0 0
\(859\) 38.2539 1.30521 0.652603 0.757700i \(-0.273677\pi\)
0.652603 + 0.757700i \(0.273677\pi\)
\(860\) −11.5235 52.3360i −0.392949 1.78464i
\(861\) 0 0
\(862\) 28.4488 35.3943i 0.968971 1.20553i
\(863\) −49.3934 −1.68137 −0.840686 0.541523i \(-0.817848\pi\)
−0.840686 + 0.541523i \(0.817848\pi\)
\(864\) 0 0
\(865\) 11.2826 0.383620
\(866\) 15.0700 18.7491i 0.512099 0.637122i
\(867\) 0 0
\(868\) 13.8278 + 62.8011i 0.469345 + 2.13161i
\(869\) −13.2255 −0.448645
\(870\) 0 0
\(871\) 34.7833i 1.17859i
\(872\) 3.05749 6.16634i 0.103540 0.208819i
\(873\) 0 0
\(874\) −1.82986 + 2.27660i −0.0618961 + 0.0770072i
\(875\) 55.1857i 1.86562i
\(876\) 0 0
\(877\) 5.68043i 0.191815i 0.995390 + 0.0959073i \(0.0305752\pi\)
−0.995390 + 0.0959073i \(0.969425\pi\)
\(878\) 21.9630 + 17.6532i 0.741215 + 0.595767i
\(879\) 0 0
\(880\) −6.17326 13.3388i −0.208101 0.449652i
\(881\) 30.5177i 1.02817i −0.857740 0.514084i \(-0.828132\pi\)
0.857740 0.514084i \(-0.171868\pi\)
\(882\) 0 0
\(883\) −1.35939 −0.0457470 −0.0228735 0.999738i \(-0.507281\pi\)
−0.0228735 + 0.999738i \(0.507281\pi\)
\(884\) 14.8629 + 67.5021i 0.499892 + 2.27034i
\(885\) 0 0
\(886\) 23.5375 + 18.9187i 0.790757 + 0.635587i
\(887\) −13.7129 −0.460434 −0.230217 0.973139i \(-0.573944\pi\)
−0.230217 + 0.973139i \(0.573944\pi\)
\(888\) 0 0
\(889\) −5.20079 −0.174429
\(890\) −21.8775 17.5844i −0.733334 0.589432i
\(891\) 0 0
\(892\) 57.5174 12.6644i 1.92582 0.424035i
\(893\) −3.13129 −0.104785
\(894\) 0 0
\(895\) 2.57981i 0.0862337i
\(896\) 1.30301 48.5005i 0.0435305 1.62029i
\(897\) 0 0
\(898\) 13.4059 + 10.7753i 0.447361 + 0.359576i
\(899\) 29.9422i 0.998628i
\(900\) 0 0
\(901\) 33.3706i 1.11173i
\(902\) −3.67133 + 4.56764i −0.122242 + 0.152086i
\(903\) 0 0
\(904\) −11.6059 + 23.4068i −0.386007 + 0.778498i
\(905\) 63.6483i 2.11574i
\(906\) 0 0
\(907\) −26.2452 −0.871456 −0.435728 0.900078i \(-0.643509\pi\)
−0.435728 + 0.900078i \(0.643509\pi\)
\(908\) 41.1068 9.05105i 1.36418 0.300370i
\(909\) 0 0
\(910\) −99.2868 + 123.526i −3.29133 + 4.09486i
\(911\) −21.5261 −0.713191 −0.356595 0.934259i \(-0.616062\pi\)
−0.356595 + 0.934259i \(0.616062\pi\)
\(912\) 0 0
\(913\) −7.98402 −0.264233
\(914\) 26.4134 32.8619i 0.873679 1.08698i
\(915\) 0 0
\(916\) −16.4757 + 3.62767i −0.544372 + 0.119862i
\(917\) −41.6923 −1.37680
\(918\) 0 0
\(919\) 31.2694i 1.03148i −0.856745 0.515741i \(-0.827517\pi\)
0.856745 0.515741i \(-0.172483\pi\)
\(920\) −33.6561 16.6879i −1.10961 0.550183i
\(921\) 0 0
\(922\) −2.84754 + 3.54274i −0.0937789 + 0.116674i
\(923\) 4.63096i 0.152430i
\(924\) 0 0
\(925\) 47.7985i 1.57161i
\(926\) 34.2338 + 27.5161i 1.12499 + 0.904234i
\(927\) 0 0
\(928\) 5.44861 21.9243i 0.178860 0.719700i
\(929\) 45.9181i 1.50652i −0.657721 0.753261i \(-0.728480\pi\)
0.657721 0.753261i \(-0.271520\pi\)
\(930\) 0 0
\(931\) −6.50860 −0.213311
\(932\) −31.6703 + 6.97328i −1.03739 + 0.228417i
\(933\) 0 0
\(934\) −14.5137 11.6657i −0.474903 0.381713i
\(935\) −17.8567 −0.583976
\(936\) 0 0
\(937\) 13.0922 0.427704 0.213852 0.976866i \(-0.431399\pi\)
0.213852 + 0.976866i \(0.431399\pi\)
\(938\) −23.1204 18.5835i −0.754909 0.606773i
\(939\) 0 0
\(940\) −8.65998 39.3307i −0.282457 1.28283i
\(941\) 39.4853 1.28718 0.643592 0.765368i \(-0.277443\pi\)
0.643592 + 0.765368i \(0.277443\pi\)
\(942\) 0 0
\(943\) 14.9778i 0.487745i
\(944\) −0.178190 0.385022i −0.00579958 0.0125314i
\(945\) 0 0
\(946\) 8.03793 + 6.46064i 0.261336 + 0.210054i
\(947\) 29.7163i 0.965651i 0.875717 + 0.482825i \(0.160389\pi\)
−0.875717 + 0.482825i \(0.839611\pi\)
\(948\) 0 0
\(949\) 44.9836i 1.46023i
\(950\) 4.30421 5.35502i 0.139647 0.173740i
\(951\) 0 0
\(952\) −52.8093 26.1847i −1.71156 0.848651i
\(953\) 7.56384i 0.245017i −0.992467 0.122508i \(-0.960906\pi\)
0.992467 0.122508i \(-0.0390938\pi\)
\(954\) 0 0
\(955\) 21.0588 0.681445
\(956\) −4.65099 21.1232i −0.150424 0.683174i
\(957\) 0 0
\(958\) −26.2167 + 32.6172i −0.847023 + 1.05381i
\(959\) −42.7759 −1.38130
\(960\) 0 0
\(961\) −25.2133 −0.813333
\(962\) 35.4227 44.0707i 1.14207 1.42090i
\(963\) 0 0
\(964\) −10.1480 46.0890i −0.326846 1.48443i
\(965\) 3.43250 0.110496
\(966\) 0 0
\(967\) 29.2517i 0.940672i 0.882487 + 0.470336i \(0.155867\pi\)
−0.882487 + 0.470336i \(0.844133\pi\)
\(968\) 2.53403 + 1.25646i 0.0814468 + 0.0403842i
\(969\) 0 0
\(970\) 4.70634 5.85534i 0.151112 0.188004i
\(971\) 9.27409i 0.297620i 0.988866 + 0.148810i \(0.0475442\pi\)
−0.988866 + 0.148810i \(0.952456\pi\)
\(972\) 0 0
\(973\) 81.4826i 2.61221i
\(974\) −1.79315 1.44128i −0.0574562 0.0461816i
\(975\) 0 0
\(976\) −7.59650 16.4141i −0.243158 0.525402i
\(977\) 25.0267i 0.800676i 0.916368 + 0.400338i \(0.131107\pi\)
−0.916368 + 0.400338i \(0.868893\pi\)
\(978\) 0 0
\(979\) 5.40135 0.172628
\(980\) −18.0004 81.7517i −0.575001 2.61146i
\(981\) 0 0
\(982\) −27.4788 22.0866i −0.876884 0.704813i
\(983\) −60.7052 −1.93619 −0.968097 0.250575i \(-0.919380\pi\)
−0.968097 + 0.250575i \(0.919380\pi\)
\(984\) 0 0
\(985\) −84.8239 −2.70271
\(986\) −21.3924 17.1945i −0.681272 0.547586i
\(987\) 0 0
\(988\) 7.93704 1.74760i 0.252511 0.0555987i
\(989\) 26.3573 0.838115
\(990\) 0 0
\(991\) 55.0032i 1.74723i 0.486615 + 0.873617i \(0.338232\pi\)
−0.486615 + 0.873617i \(0.661768\pi\)
\(992\) 41.1605 + 10.2292i 1.30685 + 0.324777i
\(993\) 0 0
\(994\) 3.07819 + 2.47416i 0.0976343 + 0.0784755i
\(995\) 42.7029i 1.35377i
\(996\) 0 0
\(997\) 57.3394i 1.81596i 0.419015 + 0.907979i \(0.362375\pi\)
−0.419015 + 0.907979i \(0.637625\pi\)
\(998\) −13.6063 + 16.9281i −0.430699 + 0.535849i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 792.2.k.a.683.29 yes 40
3.2 odd 2 inner 792.2.k.a.683.12 yes 40
4.3 odd 2 3168.2.k.a.1871.6 40
8.3 odd 2 inner 792.2.k.a.683.11 40
8.5 even 2 3168.2.k.a.1871.35 40
12.11 even 2 3168.2.k.a.1871.36 40
24.5 odd 2 3168.2.k.a.1871.5 40
24.11 even 2 inner 792.2.k.a.683.30 yes 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
792.2.k.a.683.11 40 8.3 odd 2 inner
792.2.k.a.683.12 yes 40 3.2 odd 2 inner
792.2.k.a.683.29 yes 40 1.1 even 1 trivial
792.2.k.a.683.30 yes 40 24.11 even 2 inner
3168.2.k.a.1871.5 40 24.5 odd 2
3168.2.k.a.1871.6 40 4.3 odd 2
3168.2.k.a.1871.35 40 8.5 even 2
3168.2.k.a.1871.36 40 12.11 even 2