L(s) = 1 | + (−0.906 − 1.08i)2-s + (−0.356 + 1.96i)4-s + 1.01·5-s + 2.06i·7-s + (2.45 − 1.39i)8-s + (−0.922 − 1.10i)10-s + i·11-s + 4.15i·13-s + (2.24 − 1.87i)14-s + (−3.74 − 1.40i)16-s + 0.276i·17-s − 4.36·19-s + (−0.362 + 2.00i)20-s + (1.08 − 0.906i)22-s − 2.68·23-s + ⋯ |
L(s) = 1 | + (−0.641 − 0.767i)2-s + (−0.178 + 0.984i)4-s + 0.455·5-s + 0.781i·7-s + (0.869 − 0.494i)8-s + (−0.291 − 0.349i)10-s + 0.301i·11-s + 1.15i·13-s + (0.599 − 0.501i)14-s + (−0.936 − 0.350i)16-s + 0.0669i·17-s − 1.00·19-s + (−0.0810 + 0.447i)20-s + (0.231 − 0.193i)22-s − 0.559·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 792 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.424 - 0.905i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 792 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.424 - 0.905i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.726719 + 0.461922i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.726719 + 0.461922i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.906 + 1.08i)T \) |
| 3 | \( 1 \) |
| 11 | \( 1 - iT \) |
good | 5 | \( 1 - 1.01T + 5T^{2} \) |
| 7 | \( 1 - 2.06iT - 7T^{2} \) |
| 13 | \( 1 - 4.15iT - 13T^{2} \) |
| 17 | \( 1 - 0.276iT - 17T^{2} \) |
| 19 | \( 1 + 4.36T + 19T^{2} \) |
| 23 | \( 1 + 2.68T + 23T^{2} \) |
| 29 | \( 1 - 2.66T + 29T^{2} \) |
| 31 | \( 1 - 3.59iT - 31T^{2} \) |
| 37 | \( 1 - 5.90iT - 37T^{2} \) |
| 41 | \( 1 - 0.0318iT - 41T^{2} \) |
| 43 | \( 1 + 5.51T + 43T^{2} \) |
| 47 | \( 1 + 6.55T + 47T^{2} \) |
| 53 | \( 1 - 4.13T + 53T^{2} \) |
| 59 | \( 1 - 3.22iT - 59T^{2} \) |
| 61 | \( 1 - 8.96iT - 61T^{2} \) |
| 67 | \( 1 - 12.5T + 67T^{2} \) |
| 71 | \( 1 + 3.80T + 71T^{2} \) |
| 73 | \( 1 - 9.10T + 73T^{2} \) |
| 79 | \( 1 - 11.0iT - 79T^{2} \) |
| 83 | \( 1 - 11.9iT - 83T^{2} \) |
| 89 | \( 1 + 18.3iT - 89T^{2} \) |
| 97 | \( 1 - 16.5T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.22826849972841987676199218853, −9.705096696349516236061871453494, −8.799461346943209668273574181965, −8.273513171249951194365844643500, −7.03001716090303110995736445155, −6.19956425669072786232914806243, −4.87184717233565733277223174113, −3.86791371588694268359152825869, −2.50040170550034991999409656951, −1.70495761150449415055478666803,
0.52298767776249816479197471814, 2.08997726057505039277928513698, 3.78718829611716720268266258853, 4.98863424617964267416838964029, 5.92725755652695518901181128876, 6.63356570226466889570389254081, 7.71721916878763040814771684699, 8.230620006533585093760461232370, 9.266764764908458190223154956374, 10.14274166764763326028390879132