L(s) = 1 | + (0.401 + 1.35i)2-s + (−1.67 + 1.08i)4-s + 0.138·5-s − 0.456i·7-s + (−2.15 − 1.83i)8-s + (0.0557 + 0.188i)10-s + i·11-s + 5.11i·13-s + (0.619 − 0.183i)14-s + (1.62 − 3.65i)16-s + 6.17i·17-s + 3.15·19-s + (−0.232 + 0.151i)20-s + (−1.35 + 0.401i)22-s − 9.41·23-s + ⋯ |
L(s) = 1 | + (0.283 + 0.958i)2-s + (−0.838 + 0.544i)4-s + 0.0620·5-s − 0.172i·7-s + (−0.760 − 0.649i)8-s + (0.0176 + 0.0595i)10-s + 0.301i·11-s + 1.41i·13-s + (0.165 − 0.0490i)14-s + (0.407 − 0.913i)16-s + 1.49i·17-s + 0.722·19-s + (−0.0520 + 0.0338i)20-s + (−0.289 + 0.0855i)22-s − 1.96·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 792 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.995 - 0.0916i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 792 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.995 - 0.0916i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0512727 + 1.11681i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0512727 + 1.11681i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.401 - 1.35i)T \) |
| 3 | \( 1 \) |
| 11 | \( 1 - iT \) |
good | 5 | \( 1 - 0.138T + 5T^{2} \) |
| 7 | \( 1 + 0.456iT - 7T^{2} \) |
| 13 | \( 1 - 5.11iT - 13T^{2} \) |
| 17 | \( 1 - 6.17iT - 17T^{2} \) |
| 19 | \( 1 - 3.15T + 19T^{2} \) |
| 23 | \( 1 + 9.41T + 23T^{2} \) |
| 29 | \( 1 + 7.67T + 29T^{2} \) |
| 31 | \( 1 - 5.61iT - 31T^{2} \) |
| 37 | \( 1 + 10.0iT - 37T^{2} \) |
| 41 | \( 1 - 7.57iT - 41T^{2} \) |
| 43 | \( 1 - 6.96T + 43T^{2} \) |
| 47 | \( 1 - 8.10T + 47T^{2} \) |
| 53 | \( 1 + 6.90T + 53T^{2} \) |
| 59 | \( 1 - 4.46iT - 59T^{2} \) |
| 61 | \( 1 - 1.62iT - 61T^{2} \) |
| 67 | \( 1 - 4.15T + 67T^{2} \) |
| 71 | \( 1 - 1.36T + 71T^{2} \) |
| 73 | \( 1 + 5.99T + 73T^{2} \) |
| 79 | \( 1 + 8.79iT - 79T^{2} \) |
| 83 | \( 1 + 7.24iT - 83T^{2} \) |
| 89 | \( 1 - 14.4iT - 89T^{2} \) |
| 97 | \( 1 - 2.90T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.54897378857526897166807670736, −9.576010034967988321309345230131, −8.959399630439567373633537986308, −7.890814886550001766093555172727, −7.30035268223572300075197497830, −6.21717682737580065162162562035, −5.65177033392756607288818412853, −4.25325592229422426924643339947, −3.81171393635372396576135632542, −1.92780875454666044782247596510,
0.50037756576627639836712829980, 2.17462441781128983018867521762, 3.19549754940971919020886273782, 4.17981786178064307059880764336, 5.46805509418303441984427777402, 5.84661584883493814918344967741, 7.49605694257419820430247597764, 8.230897215446302756521761011577, 9.412973632416095914269680998724, 9.858506795791971824733739837281