L(s) = 1 | + (1.08 + 0.910i)2-s + (0.341 + 1.97i)4-s + 2.67·5-s + 2.05i·7-s + (−1.42 + 2.44i)8-s + (2.89 + 2.43i)10-s − i·11-s − 0.0834i·13-s + (−1.87 + 2.22i)14-s + (−3.76 + 1.34i)16-s + 2.66i·17-s + 1.44·19-s + (0.912 + 5.26i)20-s + (0.910 − 1.08i)22-s − 2.02·23-s + ⋯ |
L(s) = 1 | + (0.765 + 0.643i)2-s + (0.170 + 0.985i)4-s + 1.19·5-s + 0.778i·7-s + (−0.503 + 0.863i)8-s + (0.914 + 0.769i)10-s − 0.301i·11-s − 0.0231i·13-s + (−0.501 + 0.595i)14-s + (−0.941 + 0.336i)16-s + 0.646i·17-s + 0.330·19-s + (0.203 + 1.17i)20-s + (0.194 − 0.230i)22-s − 0.422·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 792 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0872 - 0.996i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 792 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.0872 - 0.996i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.86567 + 2.03620i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.86567 + 2.03620i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.08 - 0.910i)T \) |
| 3 | \( 1 \) |
| 11 | \( 1 + iT \) |
good | 5 | \( 1 - 2.67T + 5T^{2} \) |
| 7 | \( 1 - 2.05iT - 7T^{2} \) |
| 13 | \( 1 + 0.0834iT - 13T^{2} \) |
| 17 | \( 1 - 2.66iT - 17T^{2} \) |
| 19 | \( 1 - 1.44T + 19T^{2} \) |
| 23 | \( 1 + 2.02T + 23T^{2} \) |
| 29 | \( 1 - 8.40T + 29T^{2} \) |
| 31 | \( 1 + 8.49iT - 31T^{2} \) |
| 37 | \( 1 + 3.12iT - 37T^{2} \) |
| 41 | \( 1 - 5.03iT - 41T^{2} \) |
| 43 | \( 1 + 12.0T + 43T^{2} \) |
| 47 | \( 1 - 1.86T + 47T^{2} \) |
| 53 | \( 1 - 5.28T + 53T^{2} \) |
| 59 | \( 1 - 10.1iT - 59T^{2} \) |
| 61 | \( 1 + 5.80iT - 61T^{2} \) |
| 67 | \( 1 + 2.55T + 67T^{2} \) |
| 71 | \( 1 + 0.947T + 71T^{2} \) |
| 73 | \( 1 - 7.14T + 73T^{2} \) |
| 79 | \( 1 + 6.37iT - 79T^{2} \) |
| 83 | \( 1 + 2.22iT - 83T^{2} \) |
| 89 | \( 1 + 11.3iT - 89T^{2} \) |
| 97 | \( 1 + 18.0T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.43780356106407112438917148659, −9.553280638776264456749949736927, −8.673881599226927369350754454273, −7.941289838395771880481814856860, −6.69470657826529048262492281210, −5.96533807795878584547530086329, −5.45841861867774342045304486744, −4.33111205852245635543954488960, −3.00434848122055057468461634508, −2.02188448000900602990613455989,
1.19255129428878598155753393930, 2.35918160852014552198323226973, 3.47544978864858331337602946641, 4.69633922135267379963890959279, 5.38618610692442107533301122984, 6.46773565517070573733425602104, 7.08114625785998477274895411078, 8.559857027283828593326487703233, 9.663350380743487090913330887553, 10.12126242680631363695290667312