L(s) = 1 | + (0.747 − 1.20i)2-s + (−0.882 − 1.79i)4-s − 1.25·5-s + 4.96i·7-s + (−2.81 − 0.281i)8-s + (−0.941 + 1.51i)10-s − i·11-s + 1.75i·13-s + (5.96 + 3.71i)14-s + (−2.44 + 3.16i)16-s + 5.31i·17-s + 5.49·19-s + (1.11 + 2.25i)20-s + (−1.20 − 0.747i)22-s + 0.569·23-s + ⋯ |
L(s) = 1 | + (0.528 − 0.848i)2-s + (−0.441 − 0.897i)4-s − 0.563·5-s + 1.87i·7-s + (−0.995 − 0.0994i)8-s + (−0.297 + 0.478i)10-s − 0.301i·11-s + 0.485i·13-s + (1.59 + 0.992i)14-s + (−0.610 + 0.792i)16-s + 1.28i·17-s + 1.26·19-s + (0.248 + 0.505i)20-s + (−0.255 − 0.159i)22-s + 0.118·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 792 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.869 - 0.493i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 792 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.869 - 0.493i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.33788 + 0.352954i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.33788 + 0.352954i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.747 + 1.20i)T \) |
| 3 | \( 1 \) |
| 11 | \( 1 + iT \) |
good | 5 | \( 1 + 1.25T + 5T^{2} \) |
| 7 | \( 1 - 4.96iT - 7T^{2} \) |
| 13 | \( 1 - 1.75iT - 13T^{2} \) |
| 17 | \( 1 - 5.31iT - 17T^{2} \) |
| 19 | \( 1 - 5.49T + 19T^{2} \) |
| 23 | \( 1 - 0.569T + 23T^{2} \) |
| 29 | \( 1 - 2.14T + 29T^{2} \) |
| 31 | \( 1 - 6.43iT - 31T^{2} \) |
| 37 | \( 1 - 6.33iT - 37T^{2} \) |
| 41 | \( 1 + 4.24iT - 41T^{2} \) |
| 43 | \( 1 + 0.0868T + 43T^{2} \) |
| 47 | \( 1 - 2.17T + 47T^{2} \) |
| 53 | \( 1 - 2.52T + 53T^{2} \) |
| 59 | \( 1 + 15.1iT - 59T^{2} \) |
| 61 | \( 1 - 8.15iT - 61T^{2} \) |
| 67 | \( 1 + 3.41T + 67T^{2} \) |
| 71 | \( 1 + 11.5T + 71T^{2} \) |
| 73 | \( 1 - 9.33T + 73T^{2} \) |
| 79 | \( 1 + 12.8iT - 79T^{2} \) |
| 83 | \( 1 - 12.6iT - 83T^{2} \) |
| 89 | \( 1 - 7.79iT - 89T^{2} \) |
| 97 | \( 1 + 5.97T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.49667671685256410059696639784, −9.511280124176535987521640777471, −8.812144073307112220901039393524, −8.101109041989022575884063633960, −6.54714119466601243118284539861, −5.70451633458220284778203352175, −4.97684766455163468718061255429, −3.72692865301623495592092370888, −2.82557126199069557312928722526, −1.66160214814526680770693176549,
0.60262518391625913942254344529, 3.06271899812404792657971878786, 4.00435745723603034706195404806, 4.68759249200171022464231005186, 5.78013243893447043358473647712, 7.09287604653471711690951654628, 7.39800233421042074439115759561, 8.038544970866169766342513194412, 9.364097947234605651999039360626, 10.08527436845836950063174581072