Properties

Label 756.2.i.b.613.5
Level $756$
Weight $2$
Character 756.613
Analytic conductor $6.037$
Analytic rank $0$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [756,2,Mod(37,756)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(756, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 2, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("756.37"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 756 = 2^{2} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 756.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [14] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.03669039281\)
Analytic rank: \(0\)
Dimension: \(14\)
Relative dimension: \(7\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} - 5x^{12} - 3x^{11} + 7x^{10} + 30x^{9} - 117x^{7} + 270x^{5} + 189x^{4} - 243x^{3} - 1215x^{2} + 2187 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 3^{7} \)
Twist minimal: no (minimal twist has level 252)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 613.5
Root \(-1.73040 + 0.0755709i\) of defining polynomial
Character \(\chi\) \(=\) 756.613
Dual form 756.2.i.b.37.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.483929 - 0.838189i) q^{5} +(-1.52054 + 2.16517i) q^{7} +(0.364122 + 0.630678i) q^{11} +(1.81066 + 3.13615i) q^{13} +(-3.49948 + 6.06128i) q^{17} +(-0.348050 - 0.602841i) q^{19} +(3.21898 - 5.57544i) q^{23} +(2.03163 + 3.51888i) q^{25} +(-3.34727 + 5.79764i) q^{29} +9.16620 q^{31} +(1.07899 + 2.32229i) q^{35} +(0.854506 + 1.48005i) q^{37} +(3.62444 + 6.27771i) q^{41} +(-0.348050 + 0.602841i) q^{43} -7.66240 q^{47} +(-2.37591 - 6.58445i) q^{49} +(-2.05637 + 3.56174i) q^{53} +0.704836 q^{55} +4.77618 q^{59} +4.92574 q^{61} +3.50492 q^{65} -5.82070 q^{67} -0.304424 q^{71} +(5.33879 - 9.24705i) q^{73} +(-1.91919 - 0.170585i) q^{77} -3.23890 q^{79} +(-0.618759 + 1.07172i) q^{83} +(3.38700 + 5.86646i) q^{85} +(5.78679 + 10.0230i) q^{89} +(-9.54349 - 0.848265i) q^{91} -0.673726 q^{95} +(1.32933 - 2.30247i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q + 2 q^{5} + 6 q^{7} - 2 q^{11} + 2 q^{13} - 2 q^{17} + 7 q^{19} - 11 q^{23} - 9 q^{25} - q^{29} + 2 q^{31} + 19 q^{35} + 10 q^{37} + 33 q^{41} + 7 q^{43} - 6 q^{47} - 4 q^{49} + 15 q^{53} - 28 q^{55}+ \cdots - 18 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/756\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(325\) \(379\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0.483929 0.838189i 0.216419 0.374850i −0.737291 0.675575i \(-0.763895\pi\)
0.953711 + 0.300725i \(0.0972288\pi\)
\(6\) 0 0
\(7\) −1.52054 + 2.16517i −0.574710 + 0.818357i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 0.364122 + 0.630678i 0.109787 + 0.190156i 0.915684 0.401899i \(-0.131650\pi\)
−0.805897 + 0.592056i \(0.798317\pi\)
\(12\) 0 0
\(13\) 1.81066 + 3.13615i 0.502187 + 0.869813i 0.999997 + 0.00252677i \(0.000804296\pi\)
−0.497810 + 0.867286i \(0.665862\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −3.49948 + 6.06128i −0.848749 + 1.47008i 0.0335755 + 0.999436i \(0.489311\pi\)
−0.882325 + 0.470641i \(0.844023\pi\)
\(18\) 0 0
\(19\) −0.348050 0.602841i −0.0798483 0.138301i 0.823336 0.567554i \(-0.192110\pi\)
−0.903184 + 0.429253i \(0.858777\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 3.21898 5.57544i 0.671204 1.16256i −0.306359 0.951916i \(-0.599111\pi\)
0.977563 0.210643i \(-0.0675557\pi\)
\(24\) 0 0
\(25\) 2.03163 + 3.51888i 0.406325 + 0.703776i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −3.34727 + 5.79764i −0.621573 + 1.07660i 0.367620 + 0.929976i \(0.380173\pi\)
−0.989193 + 0.146619i \(0.953161\pi\)
\(30\) 0 0
\(31\) 9.16620 1.64630 0.823149 0.567825i \(-0.192215\pi\)
0.823149 + 0.567825i \(0.192215\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 1.07899 + 2.32229i 0.182382 + 0.392538i
\(36\) 0 0
\(37\) 0.854506 + 1.48005i 0.140480 + 0.243318i 0.927677 0.373383i \(-0.121802\pi\)
−0.787197 + 0.616701i \(0.788469\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 3.62444 + 6.27771i 0.566042 + 0.980413i 0.996952 + 0.0780185i \(0.0248593\pi\)
−0.430910 + 0.902395i \(0.641807\pi\)
\(42\) 0 0
\(43\) −0.348050 + 0.602841i −0.0530772 + 0.0919324i −0.891343 0.453329i \(-0.850236\pi\)
0.838266 + 0.545261i \(0.183570\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −7.66240 −1.11768 −0.558838 0.829277i \(-0.688753\pi\)
−0.558838 + 0.829277i \(0.688753\pi\)
\(48\) 0 0
\(49\) −2.37591 6.58445i −0.339416 0.940636i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −2.05637 + 3.56174i −0.282465 + 0.489243i −0.971991 0.235017i \(-0.924485\pi\)
0.689527 + 0.724260i \(0.257819\pi\)
\(54\) 0 0
\(55\) 0.704836 0.0950401
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 4.77618 0.621806 0.310903 0.950442i \(-0.399369\pi\)
0.310903 + 0.950442i \(0.399369\pi\)
\(60\) 0 0
\(61\) 4.92574 0.630677 0.315338 0.948979i \(-0.397882\pi\)
0.315338 + 0.948979i \(0.397882\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 3.50492 0.434732
\(66\) 0 0
\(67\) −5.82070 −0.711111 −0.355556 0.934655i \(-0.615708\pi\)
−0.355556 + 0.934655i \(0.615708\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −0.304424 −0.0361285 −0.0180642 0.999837i \(-0.505750\pi\)
−0.0180642 + 0.999837i \(0.505750\pi\)
\(72\) 0 0
\(73\) 5.33879 9.24705i 0.624858 1.08229i −0.363711 0.931512i \(-0.618490\pi\)
0.988568 0.150773i \(-0.0481763\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −1.91919 0.170585i −0.218711 0.0194400i
\(78\) 0 0
\(79\) −3.23890 −0.364405 −0.182203 0.983261i \(-0.558323\pi\)
−0.182203 + 0.983261i \(0.558323\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −0.618759 + 1.07172i −0.0679176 + 0.117637i −0.897985 0.440027i \(-0.854969\pi\)
0.830067 + 0.557664i \(0.188302\pi\)
\(84\) 0 0
\(85\) 3.38700 + 5.86646i 0.367372 + 0.636307i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 5.78679 + 10.0230i 0.613399 + 1.06244i 0.990663 + 0.136333i \(0.0435316\pi\)
−0.377264 + 0.926106i \(0.623135\pi\)
\(90\) 0 0
\(91\) −9.54349 0.848265i −1.00043 0.0889223i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −0.673726 −0.0691229
\(96\) 0 0
\(97\) 1.32933 2.30247i 0.134973 0.233780i −0.790614 0.612315i \(-0.790238\pi\)
0.925587 + 0.378534i \(0.123572\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 0.806969 + 1.39771i 0.0802964 + 0.139077i 0.903377 0.428847i \(-0.141080\pi\)
−0.823081 + 0.567924i \(0.807747\pi\)
\(102\) 0 0
\(103\) −5.42007 + 9.38783i −0.534055 + 0.925010i 0.465153 + 0.885230i \(0.345999\pi\)
−0.999208 + 0.0397803i \(0.987334\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −4.97630 8.61920i −0.481077 0.833249i 0.518688 0.854964i \(-0.326421\pi\)
−0.999764 + 0.0217146i \(0.993087\pi\)
\(108\) 0 0
\(109\) −9.27835 + 16.0706i −0.888705 + 1.53928i −0.0472974 + 0.998881i \(0.515061\pi\)
−0.841407 + 0.540401i \(0.818272\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −5.75824 9.97356i −0.541689 0.938234i −0.998807 0.0488275i \(-0.984452\pi\)
0.457118 0.889406i \(-0.348882\pi\)
\(114\) 0 0
\(115\) −3.11551 5.39623i −0.290523 0.503201i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −7.80260 16.7934i −0.715263 1.53945i
\(120\) 0 0
\(121\) 5.23483 9.06699i 0.475894 0.824272i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 8.77193 0.784586
\(126\) 0 0
\(127\) 9.06977 0.804812 0.402406 0.915461i \(-0.368174\pi\)
0.402406 + 0.915461i \(0.368174\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 6.54255 11.3320i 0.571625 0.990084i −0.424774 0.905299i \(-0.639646\pi\)
0.996399 0.0847847i \(-0.0270202\pi\)
\(132\) 0 0
\(133\) 1.83448 + 0.163056i 0.159069 + 0.0141388i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −10.0382 17.3867i −0.857623 1.48545i −0.874190 0.485584i \(-0.838607\pi\)
0.0165668 0.999863i \(-0.494726\pi\)
\(138\) 0 0
\(139\) 0.337832 + 0.585143i 0.0286546 + 0.0496312i 0.879997 0.474979i \(-0.157544\pi\)
−0.851343 + 0.524610i \(0.824211\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −1.31860 + 2.28388i −0.110267 + 0.190988i
\(144\) 0 0
\(145\) 3.23968 + 5.61129i 0.269041 + 0.465992i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 10.7544 18.6271i 0.881034 1.52599i 0.0308402 0.999524i \(-0.490182\pi\)
0.850193 0.526471i \(-0.176485\pi\)
\(150\) 0 0
\(151\) −7.08523 12.2720i −0.576588 0.998680i −0.995867 0.0908223i \(-0.971050\pi\)
0.419279 0.907857i \(-0.362283\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 4.43579 7.68301i 0.356291 0.617114i
\(156\) 0 0
\(157\) −15.9969 −1.27669 −0.638346 0.769750i \(-0.720381\pi\)
−0.638346 + 0.769750i \(0.720381\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 7.17717 + 15.4473i 0.565641 + 1.21742i
\(162\) 0 0
\(163\) −10.0904 17.4771i −0.790340 1.36891i −0.925757 0.378120i \(-0.876571\pi\)
0.135417 0.990789i \(-0.456763\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 12.2299 + 21.1828i 0.946378 + 1.63917i 0.752968 + 0.658057i \(0.228621\pi\)
0.193410 + 0.981118i \(0.438045\pi\)
\(168\) 0 0
\(169\) −0.0569772 + 0.0986874i −0.00438286 + 0.00759134i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −19.7560 −1.50202 −0.751010 0.660290i \(-0.770433\pi\)
−0.751010 + 0.660290i \(0.770433\pi\)
\(174\) 0 0
\(175\) −10.7081 0.951784i −0.809459 0.0719481i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 6.32439 10.9542i 0.472707 0.818753i −0.526805 0.849986i \(-0.676610\pi\)
0.999512 + 0.0312332i \(0.00994346\pi\)
\(180\) 0 0
\(181\) 12.5654 0.933975 0.466988 0.884264i \(-0.345339\pi\)
0.466988 + 0.884264i \(0.345339\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 1.65408 0.121610
\(186\) 0 0
\(187\) −5.09695 −0.372726
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 7.40632 0.535903 0.267951 0.963432i \(-0.413653\pi\)
0.267951 + 0.963432i \(0.413653\pi\)
\(192\) 0 0
\(193\) −1.62787 −0.117177 −0.0585885 0.998282i \(-0.518660\pi\)
−0.0585885 + 0.998282i \(0.518660\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 8.27125 0.589302 0.294651 0.955605i \(-0.404797\pi\)
0.294651 + 0.955605i \(0.404797\pi\)
\(198\) 0 0
\(199\) 5.34411 9.25627i 0.378834 0.656159i −0.612059 0.790812i \(-0.709659\pi\)
0.990893 + 0.134653i \(0.0429919\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −7.46322 16.0630i −0.523815 1.12740i
\(204\) 0 0
\(205\) 7.01587 0.490010
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0.253466 0.439015i 0.0175326 0.0303673i
\(210\) 0 0
\(211\) −11.2725 19.5246i −0.776034 1.34413i −0.934211 0.356720i \(-0.883895\pi\)
0.158178 0.987411i \(-0.449438\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0.336863 + 0.583464i 0.0229739 + 0.0397919i
\(216\) 0 0
\(217\) −13.9376 + 19.8464i −0.946145 + 1.34726i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −25.3455 −1.70492
\(222\) 0 0
\(223\) 3.70093 6.41020i 0.247832 0.429258i −0.715092 0.699031i \(-0.753615\pi\)
0.962924 + 0.269772i \(0.0869484\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −0.299086 0.518033i −0.0198511 0.0343831i 0.855929 0.517093i \(-0.172986\pi\)
−0.875780 + 0.482710i \(0.839653\pi\)
\(228\) 0 0
\(229\) 2.01858 3.49629i 0.133392 0.231041i −0.791590 0.611052i \(-0.790747\pi\)
0.924982 + 0.380011i \(0.124080\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 5.59754 + 9.69523i 0.366707 + 0.635155i 0.989049 0.147591i \(-0.0471518\pi\)
−0.622341 + 0.782746i \(0.713818\pi\)
\(234\) 0 0
\(235\) −3.70805 + 6.42254i −0.241887 + 0.418960i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 12.8171 + 22.1999i 0.829069 + 1.43599i 0.898769 + 0.438421i \(0.144462\pi\)
−0.0697006 + 0.997568i \(0.522204\pi\)
\(240\) 0 0
\(241\) 3.29590 + 5.70866i 0.212307 + 0.367727i 0.952436 0.304738i \(-0.0985688\pi\)
−0.740129 + 0.672465i \(0.765236\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −6.66879 1.19494i −0.426053 0.0763419i
\(246\) 0 0
\(247\) 1.26040 2.18308i 0.0801975 0.138906i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −25.0438 −1.58075 −0.790374 0.612624i \(-0.790114\pi\)
−0.790374 + 0.612624i \(0.790114\pi\)
\(252\) 0 0
\(253\) 4.68840 0.294757
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −9.07036 + 15.7103i −0.565794 + 0.979984i 0.431182 + 0.902265i \(0.358097\pi\)
−0.996975 + 0.0777184i \(0.975236\pi\)
\(258\) 0 0
\(259\) −4.50387 0.400322i −0.279857 0.0248748i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 6.40438 + 11.0927i 0.394911 + 0.684006i 0.993090 0.117357i \(-0.0374421\pi\)
−0.598179 + 0.801363i \(0.704109\pi\)
\(264\) 0 0
\(265\) 1.99028 + 3.44726i 0.122262 + 0.211763i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 14.4412 25.0129i 0.880497 1.52507i 0.0297079 0.999559i \(-0.490542\pi\)
0.850789 0.525507i \(-0.176124\pi\)
\(270\) 0 0
\(271\) 4.59579 + 7.96015i 0.279175 + 0.483544i 0.971180 0.238348i \(-0.0766059\pi\)
−0.692005 + 0.721892i \(0.743273\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −1.47952 + 2.56260i −0.0892183 + 0.154531i
\(276\) 0 0
\(277\) 1.95778 + 3.39098i 0.117632 + 0.203744i 0.918829 0.394656i \(-0.129136\pi\)
−0.801197 + 0.598401i \(0.795803\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −7.64654 + 13.2442i −0.456154 + 0.790082i −0.998754 0.0499093i \(-0.984107\pi\)
0.542600 + 0.839991i \(0.317440\pi\)
\(282\) 0 0
\(283\) 24.9779 1.48478 0.742392 0.669966i \(-0.233691\pi\)
0.742392 + 0.669966i \(0.233691\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −19.1034 1.69799i −1.12764 0.100229i
\(288\) 0 0
\(289\) −15.9928 27.7003i −0.940751 1.62943i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 4.08092 + 7.06835i 0.238410 + 0.412938i 0.960258 0.279114i \(-0.0900406\pi\)
−0.721848 + 0.692051i \(0.756707\pi\)
\(294\) 0 0
\(295\) 2.31133 4.00334i 0.134571 0.233084i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 23.3139 1.34828
\(300\) 0 0
\(301\) −0.776028 1.67023i −0.0447295 0.0962706i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 2.38371 4.12870i 0.136491 0.236409i
\(306\) 0 0
\(307\) 18.0692 1.03126 0.515631 0.856811i \(-0.327558\pi\)
0.515631 + 0.856811i \(0.327558\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 10.0077 0.567484 0.283742 0.958901i \(-0.408424\pi\)
0.283742 + 0.958901i \(0.408424\pi\)
\(312\) 0 0
\(313\) 2.99065 0.169041 0.0845207 0.996422i \(-0.473064\pi\)
0.0845207 + 0.996422i \(0.473064\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 23.8492 1.33951 0.669754 0.742583i \(-0.266400\pi\)
0.669754 + 0.742583i \(0.266400\pi\)
\(318\) 0 0
\(319\) −4.87526 −0.272962
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 4.87199 0.271085
\(324\) 0 0
\(325\) −7.35717 + 12.7430i −0.408102 + 0.706854i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 11.6510 16.5904i 0.642340 0.914658i
\(330\) 0 0
\(331\) −16.0377 −0.881513 −0.440757 0.897627i \(-0.645290\pi\)
−0.440757 + 0.897627i \(0.645290\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −2.81680 + 4.87884i −0.153898 + 0.266560i
\(336\) 0 0
\(337\) 16.8985 + 29.2691i 0.920520 + 1.59439i 0.798613 + 0.601845i \(0.205568\pi\)
0.121907 + 0.992542i \(0.461099\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 3.33761 + 5.78092i 0.180742 + 0.313054i
\(342\) 0 0
\(343\) 17.8691 + 4.86767i 0.964842 + 0.262829i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −35.3274 −1.89647 −0.948237 0.317562i \(-0.897136\pi\)
−0.948237 + 0.317562i \(0.897136\pi\)
\(348\) 0 0
\(349\) −5.75344 + 9.96526i −0.307975 + 0.533428i −0.977919 0.208983i \(-0.932985\pi\)
0.669944 + 0.742411i \(0.266318\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 12.4432 + 21.5522i 0.662283 + 1.14711i 0.980014 + 0.198926i \(0.0637455\pi\)
−0.317732 + 0.948181i \(0.602921\pi\)
\(354\) 0 0
\(355\) −0.147320 + 0.255165i −0.00781891 + 0.0135427i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −9.22681 15.9813i −0.486972 0.843461i 0.512916 0.858439i \(-0.328565\pi\)
−0.999888 + 0.0149785i \(0.995232\pi\)
\(360\) 0 0
\(361\) 9.25772 16.0348i 0.487249 0.843939i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −5.16718 8.94982i −0.270463 0.468455i
\(366\) 0 0
\(367\) 9.10688 + 15.7736i 0.475375 + 0.823374i 0.999602 0.0282046i \(-0.00897899\pi\)
−0.524227 + 0.851579i \(0.675646\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −4.58498 9.86817i −0.238040 0.512330i
\(372\) 0 0
\(373\) 9.09995 15.7616i 0.471177 0.816103i −0.528279 0.849071i \(-0.677162\pi\)
0.999456 + 0.0329676i \(0.0104958\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −24.2431 −1.24858
\(378\) 0 0
\(379\) −24.1061 −1.23825 −0.619124 0.785293i \(-0.712512\pi\)
−0.619124 + 0.785293i \(0.712512\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −3.21847 + 5.57455i −0.164456 + 0.284846i −0.936462 0.350769i \(-0.885920\pi\)
0.772006 + 0.635615i \(0.219254\pi\)
\(384\) 0 0
\(385\) −1.07173 + 1.52609i −0.0546205 + 0.0777767i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 16.9299 + 29.3234i 0.858379 + 1.48676i 0.873475 + 0.486869i \(0.161861\pi\)
−0.0150964 + 0.999886i \(0.504806\pi\)
\(390\) 0 0
\(391\) 22.5295 + 39.0223i 1.13937 + 1.97344i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −1.56740 + 2.71481i −0.0788643 + 0.136597i
\(396\) 0 0
\(397\) −0.808630 1.40059i −0.0405840 0.0702935i 0.845020 0.534735i \(-0.179588\pi\)
−0.885604 + 0.464441i \(0.846255\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 2.87691 4.98296i 0.143666 0.248837i −0.785208 0.619232i \(-0.787444\pi\)
0.928874 + 0.370395i \(0.120778\pi\)
\(402\) 0 0
\(403\) 16.5969 + 28.7466i 0.826749 + 1.43197i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −0.622289 + 1.07784i −0.0308457 + 0.0534263i
\(408\) 0 0
\(409\) −5.77262 −0.285438 −0.142719 0.989763i \(-0.545584\pi\)
−0.142719 + 0.989763i \(0.545584\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −7.26237 + 10.3412i −0.357358 + 0.508859i
\(414\) 0 0
\(415\) 0.598871 + 1.03727i 0.0293974 + 0.0509178i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 9.29032 + 16.0913i 0.453862 + 0.786111i 0.998622 0.0524804i \(-0.0167127\pi\)
−0.544760 + 0.838592i \(0.683379\pi\)
\(420\) 0 0
\(421\) −8.05788 + 13.9567i −0.392717 + 0.680206i −0.992807 0.119727i \(-0.961798\pi\)
0.600090 + 0.799933i \(0.295131\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −28.4386 −1.37947
\(426\) 0 0
\(427\) −7.48979 + 10.6651i −0.362456 + 0.516119i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −1.82664 + 3.16383i −0.0879860 + 0.152396i −0.906660 0.421863i \(-0.861376\pi\)
0.818674 + 0.574259i \(0.194710\pi\)
\(432\) 0 0
\(433\) 12.6697 0.608865 0.304432 0.952534i \(-0.401533\pi\)
0.304432 + 0.952534i \(0.401533\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −4.48147 −0.214378
\(438\) 0 0
\(439\) 11.7162 0.559183 0.279592 0.960119i \(-0.409801\pi\)
0.279592 + 0.960119i \(0.409801\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 29.7470 1.41332 0.706661 0.707552i \(-0.250201\pi\)
0.706661 + 0.707552i \(0.250201\pi\)
\(444\) 0 0
\(445\) 11.2016 0.531006
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −11.0193 −0.520034 −0.260017 0.965604i \(-0.583728\pi\)
−0.260017 + 0.965604i \(0.583728\pi\)
\(450\) 0 0
\(451\) −2.63947 + 4.57170i −0.124288 + 0.215273i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −5.32937 + 7.58875i −0.249845 + 0.355766i
\(456\) 0 0
\(457\) 0.516448 0.0241584 0.0120792 0.999927i \(-0.496155\pi\)
0.0120792 + 0.999927i \(0.496155\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 3.54962 6.14813i 0.165322 0.286347i −0.771447 0.636293i \(-0.780467\pi\)
0.936770 + 0.349946i \(0.113800\pi\)
\(462\) 0 0
\(463\) −4.91148 8.50693i −0.228256 0.395351i 0.729035 0.684476i \(-0.239969\pi\)
−0.957291 + 0.289125i \(0.906636\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 4.79604 + 8.30698i 0.221934 + 0.384401i 0.955395 0.295330i \(-0.0954297\pi\)
−0.733461 + 0.679731i \(0.762096\pi\)
\(468\) 0 0
\(469\) 8.85061 12.6028i 0.408683 0.581943i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −0.506931 −0.0233087
\(474\) 0 0
\(475\) 1.41422 2.44950i 0.0648887 0.112391i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 8.13621 + 14.0923i 0.371753 + 0.643895i 0.989835 0.142218i \(-0.0454235\pi\)
−0.618082 + 0.786113i \(0.712090\pi\)
\(480\) 0 0
\(481\) −3.09444 + 5.35973i −0.141094 + 0.244383i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −1.28660 2.22846i −0.0584217 0.101189i
\(486\) 0 0
\(487\) −9.50511 + 16.4633i −0.430718 + 0.746025i −0.996935 0.0782307i \(-0.975073\pi\)
0.566217 + 0.824256i \(0.308406\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −2.55413 4.42387i −0.115266 0.199647i 0.802620 0.596491i \(-0.203439\pi\)
−0.917886 + 0.396844i \(0.870105\pi\)
\(492\) 0 0
\(493\) −23.4274 40.5775i −1.05512 1.82752i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0.462889 0.659130i 0.0207634 0.0295660i
\(498\) 0 0
\(499\) 14.2638 24.7056i 0.638536 1.10598i −0.347219 0.937784i \(-0.612874\pi\)
0.985754 0.168192i \(-0.0537928\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −4.05885 −0.180975 −0.0904877 0.995898i \(-0.528843\pi\)
−0.0904877 + 0.995898i \(0.528843\pi\)
\(504\) 0 0
\(505\) 1.56206 0.0695108
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 8.63023 14.9480i 0.382528 0.662558i −0.608895 0.793251i \(-0.708387\pi\)
0.991423 + 0.130693i \(0.0417202\pi\)
\(510\) 0 0
\(511\) 11.9036 + 25.6199i 0.526584 + 1.13336i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 5.24585 + 9.08608i 0.231160 + 0.400380i
\(516\) 0 0
\(517\) −2.79005 4.83250i −0.122706 0.212533i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 17.0525 29.5358i 0.747083 1.29399i −0.202132 0.979358i \(-0.564787\pi\)
0.949215 0.314628i \(-0.101880\pi\)
\(522\) 0 0
\(523\) −9.44847 16.3652i −0.413153 0.715602i 0.582080 0.813132i \(-0.302239\pi\)
−0.995233 + 0.0975299i \(0.968906\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −32.0770 + 55.5589i −1.39729 + 2.42019i
\(528\) 0 0
\(529\) −9.22366 15.9758i −0.401029 0.694602i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −13.1252 + 22.7336i −0.568517 + 0.984701i
\(534\) 0 0
\(535\) −9.63269 −0.416457
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 3.28754 3.89598i 0.141605 0.167812i
\(540\) 0 0
\(541\) 0.564117 + 0.977080i 0.0242533 + 0.0420080i 0.877897 0.478849i \(-0.158946\pi\)
−0.853644 + 0.520857i \(0.825613\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 8.98012 + 15.5540i 0.384666 + 0.666261i
\(546\) 0 0
\(547\) 15.8427 27.4404i 0.677386 1.17327i −0.298380 0.954447i \(-0.596446\pi\)
0.975765 0.218819i \(-0.0702205\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 4.66008 0.198526
\(552\) 0 0
\(553\) 4.92488 7.01277i 0.209427 0.298213i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 13.8135 23.9257i 0.585298 1.01377i −0.409540 0.912292i \(-0.634311\pi\)
0.994838 0.101474i \(-0.0323559\pi\)
\(558\) 0 0
\(559\) −2.52080 −0.106619
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −1.84137 −0.0776045 −0.0388022 0.999247i \(-0.512354\pi\)
−0.0388022 + 0.999247i \(0.512354\pi\)
\(564\) 0 0
\(565\) −11.1463 −0.468929
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 11.5105 0.482545 0.241272 0.970457i \(-0.422435\pi\)
0.241272 + 0.970457i \(0.422435\pi\)
\(570\) 0 0
\(571\) −8.70524 −0.364303 −0.182152 0.983270i \(-0.558306\pi\)
−0.182152 + 0.983270i \(0.558306\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 26.1591 1.09091
\(576\) 0 0
\(577\) −7.24358 + 12.5462i −0.301554 + 0.522307i −0.976488 0.215571i \(-0.930839\pi\)
0.674934 + 0.737878i \(0.264172\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −1.37961 2.96932i −0.0572359 0.123188i
\(582\) 0 0
\(583\) −2.99508 −0.124044
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 14.3695 24.8886i 0.593091 1.02726i −0.400722 0.916200i \(-0.631241\pi\)
0.993813 0.111065i \(-0.0354261\pi\)
\(588\) 0 0
\(589\) −3.19030 5.52576i −0.131454 0.227685i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −6.82328 11.8183i −0.280199 0.485318i 0.691235 0.722630i \(-0.257067\pi\)
−0.971434 + 0.237312i \(0.923734\pi\)
\(594\) 0 0
\(595\) −17.8519 1.58676i −0.731858 0.0650506i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −5.29170 −0.216213 −0.108106 0.994139i \(-0.534479\pi\)
−0.108106 + 0.994139i \(0.534479\pi\)
\(600\) 0 0
\(601\) 17.0522 29.5353i 0.695574 1.20477i −0.274412 0.961612i \(-0.588483\pi\)
0.969987 0.243158i \(-0.0781834\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −5.06657 8.77555i −0.205985 0.356777i
\(606\) 0 0
\(607\) 4.52232 7.83289i 0.183555 0.317927i −0.759533 0.650468i \(-0.774573\pi\)
0.943089 + 0.332541i \(0.107906\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −13.8740 24.0305i −0.561282 0.972169i
\(612\) 0 0
\(613\) 5.97889 10.3557i 0.241485 0.418264i −0.719653 0.694334i \(-0.755699\pi\)
0.961137 + 0.276070i \(0.0890322\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −5.13220 8.88923i −0.206615 0.357867i 0.744031 0.668145i \(-0.232911\pi\)
−0.950646 + 0.310278i \(0.899578\pi\)
\(618\) 0 0
\(619\) 21.7803 + 37.7245i 0.875423 + 1.51628i 0.856312 + 0.516460i \(0.172750\pi\)
0.0191114 + 0.999817i \(0.493916\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −30.5006 2.71102i −1.22198 0.108615i
\(624\) 0 0
\(625\) −5.91314 + 10.2419i −0.236526 + 0.409674i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −11.9613 −0.476929
\(630\) 0 0
\(631\) 19.3703 0.771119 0.385559 0.922683i \(-0.374008\pi\)
0.385559 + 0.922683i \(0.374008\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 4.38912 7.60218i 0.174177 0.301684i
\(636\) 0 0
\(637\) 16.3479 19.3734i 0.647727 0.767604i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 2.25008 + 3.89725i 0.0888728 + 0.153932i 0.907035 0.421055i \(-0.138340\pi\)
−0.818162 + 0.574988i \(0.805007\pi\)
\(642\) 0 0
\(643\) −20.9045 36.2077i −0.824394 1.42789i −0.902381 0.430939i \(-0.858183\pi\)
0.0779869 0.996954i \(-0.475151\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −11.9381 + 20.6773i −0.469334 + 0.812910i −0.999385 0.0350555i \(-0.988839\pi\)
0.530052 + 0.847965i \(0.322173\pi\)
\(648\) 0 0
\(649\) 1.73911 + 3.01223i 0.0682661 + 0.118240i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −4.16674 + 7.21700i −0.163057 + 0.282423i −0.935964 0.352097i \(-0.885469\pi\)
0.772907 + 0.634520i \(0.218802\pi\)
\(654\) 0 0
\(655\) −6.33226 10.9678i −0.247422 0.428547i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 20.2488 35.0719i 0.788781 1.36621i −0.137933 0.990442i \(-0.544046\pi\)
0.926714 0.375767i \(-0.122621\pi\)
\(660\) 0 0
\(661\) −7.77118 −0.302264 −0.151132 0.988514i \(-0.548292\pi\)
−0.151132 + 0.988514i \(0.548292\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 1.02443 1.45873i 0.0397256 0.0565672i
\(666\) 0 0
\(667\) 21.5496 + 37.3250i 0.834404 + 1.44523i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 1.79357 + 3.10656i 0.0692400 + 0.119927i
\(672\) 0 0
\(673\) −22.7830 + 39.4614i −0.878221 + 1.52112i −0.0249302 + 0.999689i \(0.507936\pi\)
−0.853291 + 0.521435i \(0.825397\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −13.0904 −0.503106 −0.251553 0.967844i \(-0.580941\pi\)
−0.251553 + 0.967844i \(0.580941\pi\)
\(678\) 0 0
\(679\) 2.96394 + 6.37923i 0.113745 + 0.244812i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 12.6506 21.9114i 0.484060 0.838417i −0.515772 0.856726i \(-0.672495\pi\)
0.999832 + 0.0183087i \(0.00582815\pi\)
\(684\) 0 0
\(685\) −19.4311 −0.742425
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −14.8936 −0.567400
\(690\) 0 0
\(691\) −24.4031 −0.928339 −0.464170 0.885746i \(-0.653647\pi\)
−0.464170 + 0.885746i \(0.653647\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0.653947 0.0248056
\(696\) 0 0
\(697\) −50.7346 −1.92171
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 18.4137 0.695476 0.347738 0.937592i \(-0.386950\pi\)
0.347738 + 0.937592i \(0.386950\pi\)
\(702\) 0 0
\(703\) 0.594823 1.03026i 0.0224342 0.0388571i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −4.25331 0.378052i −0.159962 0.0142181i
\(708\) 0 0
\(709\) −13.3300 −0.500619 −0.250310 0.968166i \(-0.580532\pi\)
−0.250310 + 0.968166i \(0.580532\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 29.5058 51.1056i 1.10500 1.91392i
\(714\) 0 0
\(715\) 1.27622 + 2.21047i 0.0477278 + 0.0826671i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 7.84705 + 13.5915i 0.292646 + 0.506877i 0.974434 0.224672i \(-0.0721310\pi\)
−0.681789 + 0.731549i \(0.738798\pi\)
\(720\) 0 0
\(721\) −12.0848 26.0099i −0.450062 0.968660i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −27.2016 −1.01024
\(726\) 0 0
\(727\) −12.8388 + 22.2374i −0.476163 + 0.824739i −0.999627 0.0273090i \(-0.991306\pi\)
0.523464 + 0.852048i \(0.324640\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −2.43599 4.21926i −0.0900985 0.156055i
\(732\) 0 0
\(733\) −0.586541 + 1.01592i −0.0216644 + 0.0375238i −0.876654 0.481121i \(-0.840230\pi\)
0.854990 + 0.518645i \(0.173563\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −2.11944 3.67098i −0.0780707 0.135222i
\(738\) 0 0
\(739\) 11.6114 20.1116i 0.427133 0.739816i −0.569484 0.822003i \(-0.692857\pi\)
0.996617 + 0.0821861i \(0.0261902\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −11.7846 20.4115i −0.432335 0.748826i 0.564739 0.825269i \(-0.308977\pi\)
−0.997074 + 0.0764439i \(0.975643\pi\)
\(744\) 0 0
\(745\) −10.4087 18.0284i −0.381346 0.660510i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 26.2287 + 2.33131i 0.958375 + 0.0851844i
\(750\) 0 0
\(751\) −22.0531 + 38.1971i −0.804728 + 1.39383i 0.111746 + 0.993737i \(0.464356\pi\)
−0.916474 + 0.400093i \(0.868978\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −13.7150 −0.499139
\(756\) 0 0
\(757\) −2.71020 −0.0985040 −0.0492520 0.998786i \(-0.515684\pi\)
−0.0492520 + 0.998786i \(0.515684\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 14.5248 25.1577i 0.526524 0.911966i −0.472999 0.881063i \(-0.656828\pi\)
0.999522 0.0309029i \(-0.00983826\pi\)
\(762\) 0 0
\(763\) −20.6874 44.5252i −0.748934 1.61192i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 8.64804 + 14.9788i 0.312263 + 0.540855i
\(768\) 0 0
\(769\) −5.25175 9.09629i −0.189383 0.328021i 0.755662 0.654962i \(-0.227315\pi\)
−0.945045 + 0.326941i \(0.893982\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 11.9230 20.6513i 0.428841 0.742774i −0.567930 0.823077i \(-0.692255\pi\)
0.996771 + 0.0803029i \(0.0255888\pi\)
\(774\) 0 0
\(775\) 18.6223 + 32.2548i 0.668933 + 1.15863i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 2.52297 4.36992i 0.0903949 0.156569i
\(780\) 0 0
\(781\) −0.110847 0.191993i −0.00396643 0.00687007i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −7.74136 + 13.4084i −0.276301 + 0.478567i
\(786\) 0 0
\(787\) −4.39576 −0.156692 −0.0783460 0.996926i \(-0.524964\pi\)
−0.0783460 + 0.996926i \(0.524964\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 30.3501 + 2.69764i 1.07912 + 0.0959171i
\(792\) 0 0
\(793\) 8.91885 + 15.4479i 0.316717 + 0.548571i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 2.56236 + 4.43813i 0.0907633 + 0.157207i 0.907833 0.419333i \(-0.137736\pi\)
−0.817069 + 0.576540i \(0.804403\pi\)
\(798\) 0 0
\(799\) 26.8144 46.4440i 0.948627 1.64307i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 7.77587 0.274405
\(804\) 0 0
\(805\) 16.4210 + 1.45957i 0.578764 + 0.0514430i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 16.4612 28.5116i 0.578744 1.00241i −0.416880 0.908961i \(-0.636877\pi\)
0.995624 0.0934519i \(-0.0297901\pi\)
\(810\) 0 0
\(811\) −31.8830 −1.11956 −0.559781 0.828640i \(-0.689115\pi\)
−0.559781 + 0.828640i \(0.689115\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −19.5321 −0.684179
\(816\) 0 0
\(817\) 0.484556 0.0169525
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −34.2277 −1.19456 −0.597278 0.802034i \(-0.703751\pi\)
−0.597278 + 0.802034i \(0.703751\pi\)
\(822\) 0 0
\(823\) 38.3732 1.33760 0.668802 0.743440i \(-0.266807\pi\)
0.668802 + 0.743440i \(0.266807\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −9.23903 −0.321273 −0.160636 0.987014i \(-0.551355\pi\)
−0.160636 + 0.987014i \(0.551355\pi\)
\(828\) 0 0
\(829\) 20.8224 36.0654i 0.723191 1.25260i −0.236523 0.971626i \(-0.576008\pi\)
0.959714 0.280978i \(-0.0906589\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 48.2247 + 8.64110i 1.67089 + 0.299396i
\(834\) 0 0
\(835\) 23.6736 0.819259
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 15.4241 26.7154i 0.532500 0.922318i −0.466780 0.884374i \(-0.654586\pi\)
0.999280 0.0379439i \(-0.0120808\pi\)
\(840\) 0 0
\(841\) −7.90845 13.6978i −0.272705 0.472339i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0.0551458 + 0.0955153i 0.00189707 + 0.00328583i
\(846\) 0 0
\(847\) 11.6718 + 25.1210i 0.401048 + 0.863168i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 11.0026 0.377163
\(852\) 0 0
\(853\) −11.4171 + 19.7750i −0.390913 + 0.677082i −0.992570 0.121673i \(-0.961174\pi\)
0.601657 + 0.798755i \(0.294507\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −26.6720 46.1973i −0.911100 1.57807i −0.812513 0.582942i \(-0.801901\pi\)
−0.0985862 0.995129i \(-0.531432\pi\)
\(858\) 0 0
\(859\) 11.5878 20.0707i 0.395372 0.684804i −0.597777 0.801663i \(-0.703949\pi\)
0.993149 + 0.116859i \(0.0372825\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −4.58456 7.94069i −0.156060 0.270304i 0.777384 0.629026i \(-0.216546\pi\)
−0.933445 + 0.358722i \(0.883213\pi\)
\(864\) 0 0
\(865\) −9.56049 + 16.5593i −0.325067 + 0.563032i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −1.17936 2.04270i −0.0400069 0.0692940i
\(870\) 0 0
\(871\) −10.5393 18.2546i −0.357111 0.618534i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −13.3381 + 18.9927i −0.450909 + 0.642071i
\(876\) 0 0
\(877\) −18.6190 + 32.2490i −0.628718 + 1.08897i 0.359091 + 0.933303i \(0.383087\pi\)
−0.987809 + 0.155670i \(0.950247\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −7.15345 −0.241006 −0.120503 0.992713i \(-0.538451\pi\)
−0.120503 + 0.992713i \(0.538451\pi\)
\(882\) 0 0
\(883\) −39.8688 −1.34169 −0.670846 0.741596i \(-0.734069\pi\)
−0.670846 + 0.741596i \(0.734069\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −10.6755 + 18.4904i −0.358447 + 0.620848i −0.987702 0.156351i \(-0.950027\pi\)
0.629255 + 0.777199i \(0.283360\pi\)
\(888\) 0 0
\(889\) −13.7910 + 19.6376i −0.462534 + 0.658624i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 2.66690 + 4.61921i 0.0892445 + 0.154576i
\(894\) 0 0
\(895\) −6.12111 10.6021i −0.204606 0.354388i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −30.6818 + 53.1424i −1.02329 + 1.77240i
\(900\) 0 0
\(901\) −14.3925 24.9285i −0.479483 0.830490i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 6.08073 10.5321i 0.202130 0.350100i
\(906\) 0 0
\(907\) 11.3012 + 19.5742i 0.375250 + 0.649951i 0.990364 0.138486i \(-0.0442237\pi\)
−0.615115 + 0.788438i \(0.710890\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −12.7594 + 22.0999i −0.422738 + 0.732203i −0.996206 0.0870243i \(-0.972264\pi\)
0.573468 + 0.819228i \(0.305598\pi\)
\(912\) 0 0
\(913\) −0.901215 −0.0298259
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 14.5876 + 31.3965i 0.481723 + 1.03681i
\(918\) 0 0
\(919\) 5.71326 + 9.89566i 0.188463 + 0.326428i 0.944738 0.327826i \(-0.106316\pi\)
−0.756275 + 0.654254i \(0.772983\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −0.551208 0.954721i −0.0181432 0.0314250i
\(924\) 0 0
\(925\) −3.47207 + 6.01381i −0.114161 + 0.197733i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −13.5970 −0.446104 −0.223052 0.974807i \(-0.571602\pi\)
−0.223052 + 0.974807i \(0.571602\pi\)
\(930\) 0 0
\(931\) −3.14244 + 3.72402i −0.102989 + 0.122050i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −2.46656 + 4.27221i −0.0806652 + 0.139716i
\(936\) 0 0
\(937\) −11.1455 −0.364109 −0.182054 0.983288i \(-0.558275\pi\)
−0.182054 + 0.983288i \(0.558275\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −41.4621 −1.35163 −0.675813 0.737073i \(-0.736207\pi\)
−0.675813 + 0.737073i \(0.736207\pi\)
\(942\) 0 0
\(943\) 46.6680 1.51972
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −42.5567 −1.38291 −0.691454 0.722421i \(-0.743029\pi\)
−0.691454 + 0.722421i \(0.743029\pi\)
\(948\) 0 0
\(949\) 38.6669 1.25518
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −21.2114 −0.687106 −0.343553 0.939133i \(-0.611630\pi\)
−0.343553 + 0.939133i \(0.611630\pi\)
\(954\) 0 0
\(955\) 3.58413 6.20790i 0.115980 0.200883i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 52.9087 + 4.70275i 1.70851 + 0.151860i
\(960\) 0 0
\(961\) 53.0193 1.71030
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −0.787775 + 1.36447i −0.0253594 + 0.0439237i
\(966\) 0 0
\(967\) −9.83257 17.0305i −0.316194 0.547664i 0.663496 0.748179i \(-0.269072\pi\)
−0.979691 + 0.200515i \(0.935738\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 12.2892 + 21.2855i 0.394379 + 0.683084i 0.993022 0.117932i \(-0.0376265\pi\)
−0.598643 + 0.801016i \(0.704293\pi\)
\(972\) 0 0
\(973\) −1.78062 0.158269i −0.0570841 0.00507387i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 47.4718 1.51876 0.759378 0.650650i \(-0.225503\pi\)
0.759378 + 0.650650i \(0.225503\pi\)
\(978\) 0 0
\(979\) −4.21420 + 7.29920i −0.134686 + 0.233284i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 13.7720 + 23.8538i 0.439258 + 0.760817i 0.997632 0.0687719i \(-0.0219081\pi\)
−0.558374 + 0.829589i \(0.688575\pi\)
\(984\) 0 0
\(985\) 4.00269 6.93287i 0.127536 0.220900i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 2.24073 + 3.88107i 0.0712512 + 0.123411i
\(990\) 0 0
\(991\) 19.2335 33.3135i 0.610973 1.05824i −0.380103 0.924944i \(-0.624112\pi\)
0.991077 0.133293i \(-0.0425551\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −5.17233 8.95874i −0.163974 0.284011i
\(996\) 0 0
\(997\) 16.2272 + 28.1064i 0.513921 + 0.890138i 0.999870 + 0.0161503i \(0.00514103\pi\)
−0.485948 + 0.873988i \(0.661526\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 756.2.i.b.613.5 14
3.2 odd 2 252.2.i.b.25.5 14
4.3 odd 2 3024.2.q.j.2881.5 14
7.2 even 3 756.2.l.b.289.3 14
7.3 odd 6 5292.2.j.g.3529.3 14
7.4 even 3 5292.2.j.h.3529.5 14
7.5 odd 6 5292.2.l.i.3313.5 14
7.6 odd 2 5292.2.i.i.2125.3 14
9.2 odd 6 2268.2.k.e.1621.3 14
9.4 even 3 756.2.l.b.361.3 14
9.5 odd 6 252.2.l.b.193.1 yes 14
9.7 even 3 2268.2.k.f.1621.5 14
12.11 even 2 1008.2.q.j.529.3 14
21.2 odd 6 252.2.l.b.205.1 yes 14
21.5 even 6 1764.2.l.i.961.7 14
21.11 odd 6 1764.2.j.g.1177.6 14
21.17 even 6 1764.2.j.h.1177.2 14
21.20 even 2 1764.2.i.i.1537.3 14
28.23 odd 6 3024.2.t.j.289.3 14
36.23 even 6 1008.2.t.j.193.7 14
36.31 odd 6 3024.2.t.j.1873.3 14
63.2 odd 6 2268.2.k.e.1297.3 14
63.4 even 3 5292.2.j.h.1765.5 14
63.5 even 6 1764.2.i.i.373.3 14
63.13 odd 6 5292.2.l.i.361.5 14
63.16 even 3 2268.2.k.f.1297.5 14
63.23 odd 6 252.2.i.b.121.5 yes 14
63.31 odd 6 5292.2.j.g.1765.3 14
63.32 odd 6 1764.2.j.g.589.6 14
63.40 odd 6 5292.2.i.i.1549.3 14
63.41 even 6 1764.2.l.i.949.7 14
63.58 even 3 inner 756.2.i.b.37.5 14
63.59 even 6 1764.2.j.h.589.2 14
84.23 even 6 1008.2.t.j.961.7 14
252.23 even 6 1008.2.q.j.625.3 14
252.247 odd 6 3024.2.q.j.2305.5 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
252.2.i.b.25.5 14 3.2 odd 2
252.2.i.b.121.5 yes 14 63.23 odd 6
252.2.l.b.193.1 yes 14 9.5 odd 6
252.2.l.b.205.1 yes 14 21.2 odd 6
756.2.i.b.37.5 14 63.58 even 3 inner
756.2.i.b.613.5 14 1.1 even 1 trivial
756.2.l.b.289.3 14 7.2 even 3
756.2.l.b.361.3 14 9.4 even 3
1008.2.q.j.529.3 14 12.11 even 2
1008.2.q.j.625.3 14 252.23 even 6
1008.2.t.j.193.7 14 36.23 even 6
1008.2.t.j.961.7 14 84.23 even 6
1764.2.i.i.373.3 14 63.5 even 6
1764.2.i.i.1537.3 14 21.20 even 2
1764.2.j.g.589.6 14 63.32 odd 6
1764.2.j.g.1177.6 14 21.11 odd 6
1764.2.j.h.589.2 14 63.59 even 6
1764.2.j.h.1177.2 14 21.17 even 6
1764.2.l.i.949.7 14 63.41 even 6
1764.2.l.i.961.7 14 21.5 even 6
2268.2.k.e.1297.3 14 63.2 odd 6
2268.2.k.e.1621.3 14 9.2 odd 6
2268.2.k.f.1297.5 14 63.16 even 3
2268.2.k.f.1621.5 14 9.7 even 3
3024.2.q.j.2305.5 14 252.247 odd 6
3024.2.q.j.2881.5 14 4.3 odd 2
3024.2.t.j.289.3 14 28.23 odd 6
3024.2.t.j.1873.3 14 36.31 odd 6
5292.2.i.i.1549.3 14 63.40 odd 6
5292.2.i.i.2125.3 14 7.6 odd 2
5292.2.j.g.1765.3 14 63.31 odd 6
5292.2.j.g.3529.3 14 7.3 odd 6
5292.2.j.h.1765.5 14 63.4 even 3
5292.2.j.h.3529.5 14 7.4 even 3
5292.2.l.i.361.5 14 63.13 odd 6
5292.2.l.i.3313.5 14 7.5 odd 6