Properties

Label 5292.2.j.h.3529.5
Level $5292$
Weight $2$
Character 5292.3529
Analytic conductor $42.257$
Analytic rank $0$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5292,2,Mod(1765,5292)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5292.1765"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5292, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 2, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 5292 = 2^{2} \cdot 3^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5292.j (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [14,0,0,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(42.2568327497\)
Analytic rank: \(0\)
Dimension: \(14\)
Relative dimension: \(7\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} - 5x^{12} - 3x^{11} + 7x^{10} + 30x^{9} - 117x^{7} + 270x^{5} + 189x^{4} - 243x^{3} - 1215x^{2} + 2187 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{25}]\)
Coefficient ring index: \( 3^{8} \)
Twist minimal: no (minimal twist has level 252)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 3529.5
Root \(-1.73040 - 0.0755709i\) of defining polynomial
Character \(\chi\) \(=\) 5292.3529
Dual form 5292.2.j.h.1765.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.483929 + 0.838189i) q^{5} +(0.364122 - 0.630678i) q^{11} +(1.81066 + 3.13615i) q^{13} +6.99897 q^{17} +0.696101 q^{19} +(3.21898 + 5.57544i) q^{23} +(2.03163 - 3.51888i) q^{25} +(-3.34727 + 5.79764i) q^{29} +(-4.58310 - 7.93816i) q^{31} -1.70901 q^{37} +(3.62444 + 6.27771i) q^{41} +(-0.348050 + 0.602841i) q^{43} +(3.83120 - 6.63583i) q^{47} +4.11275 q^{53} +0.704836 q^{55} +(-2.38809 - 4.13629i) q^{59} +(-2.46287 + 4.26582i) q^{61} +(-1.75246 + 3.03535i) q^{65} +(2.91035 + 5.04087i) q^{67} -0.304424 q^{71} -10.6776 q^{73} +(1.61945 - 2.80497i) q^{79} +(-0.618759 + 1.07172i) q^{83} +(3.38700 + 5.86646i) q^{85} -11.5736 q^{89} +(0.336863 + 0.583464i) q^{95} +(1.32933 - 2.30247i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q + 2 q^{5} - 2 q^{11} + 2 q^{13} + 4 q^{17} - 14 q^{19} - 11 q^{23} - 9 q^{25} - q^{29} - q^{31} - 20 q^{37} + 33 q^{41} + 7 q^{43} + 3 q^{47} - 30 q^{53} - 28 q^{55} + 14 q^{59} - 10 q^{61} - 15 q^{65}+ \cdots - 18 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/5292\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(1081\) \(2647\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0.483929 + 0.838189i 0.216419 + 0.374850i 0.953711 0.300725i \(-0.0972288\pi\)
−0.737291 + 0.675575i \(0.763895\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 0.364122 0.630678i 0.109787 0.190156i −0.805897 0.592056i \(-0.798317\pi\)
0.915684 + 0.401899i \(0.131650\pi\)
\(12\) 0 0
\(13\) 1.81066 + 3.13615i 0.502187 + 0.869813i 0.999997 + 0.00252677i \(0.000804296\pi\)
−0.497810 + 0.867286i \(0.665862\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 6.99897 1.69750 0.848749 0.528795i \(-0.177356\pi\)
0.848749 + 0.528795i \(0.177356\pi\)
\(18\) 0 0
\(19\) 0.696101 0.159697 0.0798483 0.996807i \(-0.474556\pi\)
0.0798483 + 0.996807i \(0.474556\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 3.21898 + 5.57544i 0.671204 + 1.16256i 0.977563 + 0.210643i \(0.0675557\pi\)
−0.306359 + 0.951916i \(0.599111\pi\)
\(24\) 0 0
\(25\) 2.03163 3.51888i 0.406325 0.703776i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −3.34727 + 5.79764i −0.621573 + 1.07660i 0.367620 + 0.929976i \(0.380173\pi\)
−0.989193 + 0.146619i \(0.953161\pi\)
\(30\) 0 0
\(31\) −4.58310 7.93816i −0.823149 1.42574i −0.903326 0.428956i \(-0.858882\pi\)
0.0801762 0.996781i \(-0.474452\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −1.70901 −0.280960 −0.140480 0.990084i \(-0.544865\pi\)
−0.140480 + 0.990084i \(0.544865\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 3.62444 + 6.27771i 0.566042 + 0.980413i 0.996952 + 0.0780185i \(0.0248593\pi\)
−0.430910 + 0.902395i \(0.641807\pi\)
\(42\) 0 0
\(43\) −0.348050 + 0.602841i −0.0530772 + 0.0919324i −0.891343 0.453329i \(-0.850236\pi\)
0.838266 + 0.545261i \(0.183570\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 3.83120 6.63583i 0.558838 0.967936i −0.438756 0.898606i \(-0.644581\pi\)
0.997594 0.0693294i \(-0.0220860\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 4.11275 0.564929 0.282465 0.959278i \(-0.408848\pi\)
0.282465 + 0.959278i \(0.408848\pi\)
\(54\) 0 0
\(55\) 0.704836 0.0950401
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −2.38809 4.13629i −0.310903 0.538500i 0.667655 0.744471i \(-0.267298\pi\)
−0.978558 + 0.205971i \(0.933965\pi\)
\(60\) 0 0
\(61\) −2.46287 + 4.26582i −0.315338 + 0.546182i −0.979509 0.201399i \(-0.935451\pi\)
0.664171 + 0.747581i \(0.268785\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −1.75246 + 3.03535i −0.217366 + 0.376489i
\(66\) 0 0
\(67\) 2.91035 + 5.04087i 0.355556 + 0.615841i 0.987213 0.159407i \(-0.0509583\pi\)
−0.631657 + 0.775248i \(0.717625\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −0.304424 −0.0361285 −0.0180642 0.999837i \(-0.505750\pi\)
−0.0180642 + 0.999837i \(0.505750\pi\)
\(72\) 0 0
\(73\) −10.6776 −1.24972 −0.624858 0.780739i \(-0.714843\pi\)
−0.624858 + 0.780739i \(0.714843\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 1.61945 2.80497i 0.182203 0.315584i −0.760428 0.649423i \(-0.775011\pi\)
0.942630 + 0.333839i \(0.108344\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −0.618759 + 1.07172i −0.0679176 + 0.117637i −0.897985 0.440027i \(-0.854969\pi\)
0.830067 + 0.557664i \(0.188302\pi\)
\(84\) 0 0
\(85\) 3.38700 + 5.86646i 0.367372 + 0.636307i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −11.5736 −1.22680 −0.613399 0.789773i \(-0.710198\pi\)
−0.613399 + 0.789773i \(0.710198\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0.336863 + 0.583464i 0.0345614 + 0.0598622i
\(96\) 0 0
\(97\) 1.32933 2.30247i 0.134973 0.233780i −0.790614 0.612315i \(-0.790238\pi\)
0.925587 + 0.378534i \(0.123572\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 0.806969 1.39771i 0.0802964 0.139077i −0.823081 0.567924i \(-0.807747\pi\)
0.903377 + 0.428847i \(0.141080\pi\)
\(102\) 0 0
\(103\) −5.42007 9.38783i −0.534055 0.925010i −0.999208 0.0397803i \(-0.987334\pi\)
0.465153 0.885230i \(-0.345999\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 9.95259 0.962153 0.481077 0.876679i \(-0.340246\pi\)
0.481077 + 0.876679i \(0.340246\pi\)
\(108\) 0 0
\(109\) 18.5567 1.77741 0.888705 0.458480i \(-0.151606\pi\)
0.888705 + 0.458480i \(0.151606\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −5.75824 9.97356i −0.541689 0.938234i −0.998807 0.0488275i \(-0.984452\pi\)
0.457118 0.889406i \(-0.348882\pi\)
\(114\) 0 0
\(115\) −3.11551 + 5.39623i −0.290523 + 0.503201i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 5.23483 + 9.06699i 0.475894 + 0.824272i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 8.77193 0.784586
\(126\) 0 0
\(127\) 9.06977 0.804812 0.402406 0.915461i \(-0.368174\pi\)
0.402406 + 0.915461i \(0.368174\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 6.54255 + 11.3320i 0.571625 + 0.990084i 0.996399 + 0.0847847i \(0.0270202\pi\)
−0.424774 + 0.905299i \(0.639646\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −10.0382 + 17.3867i −0.857623 + 1.48545i 0.0165668 + 0.999863i \(0.494726\pi\)
−0.874190 + 0.485584i \(0.838607\pi\)
\(138\) 0 0
\(139\) 0.337832 + 0.585143i 0.0286546 + 0.0496312i 0.879997 0.474979i \(-0.157544\pi\)
−0.851343 + 0.524610i \(0.824211\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 2.63720 0.220534
\(144\) 0 0
\(145\) −6.47936 −0.538082
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 10.7544 + 18.6271i 0.881034 + 1.52599i 0.850193 + 0.526471i \(0.176485\pi\)
0.0308402 + 0.999524i \(0.490182\pi\)
\(150\) 0 0
\(151\) −7.08523 + 12.2720i −0.576588 + 0.998680i 0.419279 + 0.907857i \(0.362283\pi\)
−0.995867 + 0.0908223i \(0.971050\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 4.43579 7.68301i 0.356291 0.617114i
\(156\) 0 0
\(157\) 7.99845 + 13.8537i 0.638346 + 1.10565i 0.985796 + 0.167949i \(0.0537143\pi\)
−0.347450 + 0.937699i \(0.612952\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 20.1808 1.58068 0.790340 0.612669i \(-0.209904\pi\)
0.790340 + 0.612669i \(0.209904\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 12.2299 + 21.1828i 0.946378 + 1.63917i 0.752968 + 0.658057i \(0.228621\pi\)
0.193410 + 0.981118i \(0.438045\pi\)
\(168\) 0 0
\(169\) −0.0569772 + 0.0986874i −0.00438286 + 0.00759134i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 9.87800 17.1092i 0.751010 1.30079i −0.196323 0.980539i \(-0.562900\pi\)
0.947333 0.320249i \(-0.103767\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −12.6488 −0.945415 −0.472707 0.881219i \(-0.656723\pi\)
−0.472707 + 0.881219i \(0.656723\pi\)
\(180\) 0 0
\(181\) 12.5654 0.933975 0.466988 0.884264i \(-0.345339\pi\)
0.466988 + 0.884264i \(0.345339\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −0.827040 1.43248i −0.0608052 0.105318i
\(186\) 0 0
\(187\) 2.54848 4.41409i 0.186363 0.322790i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −3.70316 + 6.41407i −0.267951 + 0.464105i −0.968333 0.249663i \(-0.919680\pi\)
0.700381 + 0.713769i \(0.253013\pi\)
\(192\) 0 0
\(193\) 0.813937 + 1.40978i 0.0585885 + 0.101478i 0.893832 0.448402i \(-0.148007\pi\)
−0.835244 + 0.549880i \(0.814673\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 8.27125 0.589302 0.294651 0.955605i \(-0.404797\pi\)
0.294651 + 0.955605i \(0.404797\pi\)
\(198\) 0 0
\(199\) −10.6882 −0.757667 −0.378834 0.925465i \(-0.623675\pi\)
−0.378834 + 0.925465i \(0.623675\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −3.50794 + 6.07593i −0.245005 + 0.424361i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0.253466 0.439015i 0.0175326 0.0303673i
\(210\) 0 0
\(211\) −11.2725 19.5246i −0.776034 1.34413i −0.934211 0.356720i \(-0.883895\pi\)
0.158178 0.987411i \(-0.449438\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −0.673726 −0.0459478
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 12.6727 + 21.9498i 0.852461 + 1.47651i
\(222\) 0 0
\(223\) 3.70093 6.41020i 0.247832 0.429258i −0.715092 0.699031i \(-0.753615\pi\)
0.962924 + 0.269772i \(0.0869484\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −0.299086 + 0.518033i −0.0198511 + 0.0343831i −0.875780 0.482710i \(-0.839653\pi\)
0.855929 + 0.517093i \(0.172986\pi\)
\(228\) 0 0
\(229\) 2.01858 + 3.49629i 0.133392 + 0.231041i 0.924982 0.380011i \(-0.124080\pi\)
−0.791590 + 0.611052i \(0.790747\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −11.1951 −0.733414 −0.366707 0.930336i \(-0.619515\pi\)
−0.366707 + 0.930336i \(0.619515\pi\)
\(234\) 0 0
\(235\) 7.41611 0.483774
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 12.8171 + 22.1999i 0.829069 + 1.43599i 0.898769 + 0.438421i \(0.144462\pi\)
−0.0697006 + 0.997568i \(0.522204\pi\)
\(240\) 0 0
\(241\) 3.29590 5.70866i 0.212307 0.367727i −0.740129 0.672465i \(-0.765236\pi\)
0.952436 + 0.304738i \(0.0985688\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 1.26040 + 2.18308i 0.0801975 + 0.138906i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −25.0438 −1.58075 −0.790374 0.612624i \(-0.790114\pi\)
−0.790374 + 0.612624i \(0.790114\pi\)
\(252\) 0 0
\(253\) 4.68840 0.294757
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −9.07036 15.7103i −0.565794 0.979984i −0.996975 0.0777184i \(-0.975236\pi\)
0.431182 0.902265i \(-0.358097\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 6.40438 11.0927i 0.394911 0.684006i −0.598179 0.801363i \(-0.704109\pi\)
0.993090 + 0.117357i \(0.0374421\pi\)
\(264\) 0 0
\(265\) 1.99028 + 3.44726i 0.122262 + 0.211763i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −28.8825 −1.76099 −0.880497 0.474052i \(-0.842791\pi\)
−0.880497 + 0.474052i \(0.842791\pi\)
\(270\) 0 0
\(271\) −9.19159 −0.558349 −0.279175 0.960240i \(-0.590061\pi\)
−0.279175 + 0.960240i \(0.590061\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −1.47952 2.56260i −0.0892183 0.154531i
\(276\) 0 0
\(277\) 1.95778 3.39098i 0.117632 0.203744i −0.801197 0.598401i \(-0.795803\pi\)
0.918829 + 0.394656i \(0.129136\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −7.64654 + 13.2442i −0.456154 + 0.790082i −0.998754 0.0499093i \(-0.984107\pi\)
0.542600 + 0.839991i \(0.317440\pi\)
\(282\) 0 0
\(283\) −12.4890 21.6315i −0.742392 1.28586i −0.951403 0.307947i \(-0.900358\pi\)
0.209011 0.977913i \(-0.432975\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 31.9855 1.88150
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 4.08092 + 7.06835i 0.238410 + 0.412938i 0.960258 0.279114i \(-0.0900406\pi\)
−0.721848 + 0.692051i \(0.756707\pi\)
\(294\) 0 0
\(295\) 2.31133 4.00334i 0.134571 0.233084i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −11.6570 + 20.1904i −0.674139 + 1.16764i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −4.76742 −0.272981
\(306\) 0 0
\(307\) 18.0692 1.03126 0.515631 0.856811i \(-0.327558\pi\)
0.515631 + 0.856811i \(0.327558\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −5.00384 8.66691i −0.283742 0.491456i 0.688561 0.725178i \(-0.258243\pi\)
−0.972303 + 0.233723i \(0.924909\pi\)
\(312\) 0 0
\(313\) −1.49532 + 2.58998i −0.0845207 + 0.146394i −0.905187 0.425014i \(-0.860269\pi\)
0.820666 + 0.571408i \(0.193603\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −11.9246 + 20.6541i −0.669754 + 1.16005i 0.308219 + 0.951315i \(0.400267\pi\)
−0.977973 + 0.208732i \(0.933066\pi\)
\(318\) 0 0
\(319\) 2.43763 + 4.22210i 0.136481 + 0.236392i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 4.87199 0.271085
\(324\) 0 0
\(325\) 14.7143 0.816204
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 8.01886 13.8891i 0.440757 0.763413i −0.556989 0.830520i \(-0.688044\pi\)
0.997746 + 0.0671069i \(0.0213768\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −2.81680 + 4.87884i −0.153898 + 0.266560i
\(336\) 0 0
\(337\) 16.8985 + 29.2691i 0.920520 + 1.59439i 0.798613 + 0.601845i \(0.205568\pi\)
0.121907 + 0.992542i \(0.461099\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −6.67523 −0.361484
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 17.6637 + 30.5944i 0.948237 + 1.64240i 0.749136 + 0.662417i \(0.230469\pi\)
0.199102 + 0.979979i \(0.436198\pi\)
\(348\) 0 0
\(349\) −5.75344 + 9.96526i −0.307975 + 0.533428i −0.977919 0.208983i \(-0.932985\pi\)
0.669944 + 0.742411i \(0.266318\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 12.4432 21.5522i 0.662283 1.14711i −0.317732 0.948181i \(-0.602921\pi\)
0.980014 0.198926i \(-0.0637455\pi\)
\(354\) 0 0
\(355\) −0.147320 0.255165i −0.00781891 0.0135427i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 18.4536 0.973944 0.486972 0.873417i \(-0.338101\pi\)
0.486972 + 0.873417i \(0.338101\pi\)
\(360\) 0 0
\(361\) −18.5154 −0.974497
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −5.16718 8.94982i −0.270463 0.468455i
\(366\) 0 0
\(367\) 9.10688 15.7736i 0.475375 0.823374i −0.524227 0.851579i \(-0.675646\pi\)
0.999602 + 0.0282046i \(0.00897899\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 9.09995 + 15.7616i 0.471177 + 0.816103i 0.999456 0.0329676i \(-0.0104958\pi\)
−0.528279 + 0.849071i \(0.677162\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −24.2431 −1.24858
\(378\) 0 0
\(379\) −24.1061 −1.23825 −0.619124 0.785293i \(-0.712512\pi\)
−0.619124 + 0.785293i \(0.712512\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −3.21847 5.57455i −0.164456 0.284846i 0.772006 0.635615i \(-0.219254\pi\)
−0.936462 + 0.350769i \(0.885920\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 16.9299 29.3234i 0.858379 1.48676i −0.0150964 0.999886i \(-0.504806\pi\)
0.873475 0.486869i \(-0.161861\pi\)
\(390\) 0 0
\(391\) 22.5295 + 39.0223i 1.13937 + 1.97344i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 3.13480 0.157729
\(396\) 0 0
\(397\) 1.61726 0.0811679 0.0405840 0.999176i \(-0.487078\pi\)
0.0405840 + 0.999176i \(0.487078\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 2.87691 + 4.98296i 0.143666 + 0.248837i 0.928874 0.370395i \(-0.120778\pi\)
−0.785208 + 0.619232i \(0.787444\pi\)
\(402\) 0 0
\(403\) 16.5969 28.7466i 0.826749 1.43197i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −0.622289 + 1.07784i −0.0308457 + 0.0534263i
\(408\) 0 0
\(409\) 2.88631 + 4.99923i 0.142719 + 0.247196i 0.928520 0.371284i \(-0.121082\pi\)
−0.785801 + 0.618480i \(0.787749\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −1.19774 −0.0587948
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 9.29032 + 16.0913i 0.453862 + 0.786111i 0.998622 0.0524804i \(-0.0167127\pi\)
−0.544760 + 0.838592i \(0.683379\pi\)
\(420\) 0 0
\(421\) −8.05788 + 13.9567i −0.392717 + 0.680206i −0.992807 0.119727i \(-0.961798\pi\)
0.600090 + 0.799933i \(0.295131\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 14.2193 24.6285i 0.689737 1.19466i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 3.65327 0.175972 0.0879860 0.996122i \(-0.471957\pi\)
0.0879860 + 0.996122i \(0.471957\pi\)
\(432\) 0 0
\(433\) 12.6697 0.608865 0.304432 0.952534i \(-0.401533\pi\)
0.304432 + 0.952534i \(0.401533\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 2.24073 + 3.88107i 0.107189 + 0.185657i
\(438\) 0 0
\(439\) −5.85810 + 10.1465i −0.279592 + 0.484267i −0.971283 0.237926i \(-0.923532\pi\)
0.691692 + 0.722193i \(0.256866\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −14.8735 + 25.7617i −0.706661 + 1.22397i 0.259428 + 0.965763i \(0.416466\pi\)
−0.966089 + 0.258210i \(0.916867\pi\)
\(444\) 0 0
\(445\) −5.60079 9.70085i −0.265503 0.459865i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −11.0193 −0.520034 −0.260017 0.965604i \(-0.583728\pi\)
−0.260017 + 0.965604i \(0.583728\pi\)
\(450\) 0 0
\(451\) 5.27895 0.248576
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −0.258224 + 0.447257i −0.0120792 + 0.0209218i −0.872002 0.489503i \(-0.837178\pi\)
0.859923 + 0.510424i \(0.170512\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 3.54962 6.14813i 0.165322 0.286347i −0.771447 0.636293i \(-0.780467\pi\)
0.936770 + 0.349946i \(0.113800\pi\)
\(462\) 0 0
\(463\) −4.91148 8.50693i −0.228256 0.395351i 0.729035 0.684476i \(-0.239969\pi\)
−0.957291 + 0.289125i \(0.906636\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −9.59208 −0.443868 −0.221934 0.975062i \(-0.571237\pi\)
−0.221934 + 0.975062i \(0.571237\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0.253466 + 0.439015i 0.0116544 + 0.0201859i
\(474\) 0 0
\(475\) 1.41422 2.44950i 0.0648887 0.112391i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 8.13621 14.0923i 0.371753 0.643895i −0.618082 0.786113i \(-0.712090\pi\)
0.989835 + 0.142218i \(0.0454235\pi\)
\(480\) 0 0
\(481\) −3.09444 5.35973i −0.141094 0.244383i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 2.57321 0.116843
\(486\) 0 0
\(487\) 19.0102 0.861436 0.430718 0.902487i \(-0.358260\pi\)
0.430718 + 0.902487i \(0.358260\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −2.55413 4.42387i −0.115266 0.199647i 0.802620 0.596491i \(-0.203439\pi\)
−0.917886 + 0.396844i \(0.870105\pi\)
\(492\) 0 0
\(493\) −23.4274 + 40.5775i −1.05512 + 1.82752i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 14.2638 + 24.7056i 0.638536 + 1.10598i 0.985754 + 0.168192i \(0.0537928\pi\)
−0.347219 + 0.937784i \(0.612874\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −4.05885 −0.180975 −0.0904877 0.995898i \(-0.528843\pi\)
−0.0904877 + 0.995898i \(0.528843\pi\)
\(504\) 0 0
\(505\) 1.56206 0.0695108
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 8.63023 + 14.9480i 0.382528 + 0.662558i 0.991423 0.130693i \(-0.0417202\pi\)
−0.608895 + 0.793251i \(0.708387\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 5.24585 9.08608i 0.231160 0.400380i
\(516\) 0 0
\(517\) −2.79005 4.83250i −0.122706 0.212533i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −34.1050 −1.49417 −0.747083 0.664730i \(-0.768546\pi\)
−0.747083 + 0.664730i \(0.768546\pi\)
\(522\) 0 0
\(523\) 18.8969 0.826306 0.413153 0.910662i \(-0.364428\pi\)
0.413153 + 0.910662i \(0.364428\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −32.0770 55.5589i −1.39729 2.42019i
\(528\) 0 0
\(529\) −9.22366 + 15.9758i −0.401029 + 0.694602i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −13.1252 + 22.7336i −0.568517 + 0.984701i
\(534\) 0 0
\(535\) 4.81634 + 8.34215i 0.208229 + 0.360663i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −1.12823 −0.0485066 −0.0242533 0.999706i \(-0.507721\pi\)
−0.0242533 + 0.999706i \(0.507721\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 8.98012 + 15.5540i 0.384666 + 0.666261i
\(546\) 0 0
\(547\) 15.8427 27.4404i 0.677386 1.17327i −0.298380 0.954447i \(-0.596446\pi\)
0.975765 0.218819i \(-0.0702205\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −2.33004 + 4.03575i −0.0992630 + 0.171929i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −27.6271 −1.17060 −0.585298 0.810818i \(-0.699023\pi\)
−0.585298 + 0.810818i \(0.699023\pi\)
\(558\) 0 0
\(559\) −2.52080 −0.106619
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0.920685 + 1.59467i 0.0388022 + 0.0672074i 0.884774 0.466020i \(-0.154312\pi\)
−0.845972 + 0.533227i \(0.820979\pi\)
\(564\) 0 0
\(565\) 5.57315 9.65298i 0.234464 0.406104i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −5.75524 + 9.96837i −0.241272 + 0.417896i −0.961077 0.276281i \(-0.910898\pi\)
0.719805 + 0.694177i \(0.244231\pi\)
\(570\) 0 0
\(571\) 4.35262 + 7.53896i 0.182152 + 0.315496i 0.942613 0.333887i \(-0.108361\pi\)
−0.760461 + 0.649383i \(0.775027\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 26.1591 1.09091
\(576\) 0 0
\(577\) 14.4872 0.603108 0.301554 0.953449i \(-0.402495\pi\)
0.301554 + 0.953449i \(0.402495\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 1.49754 2.59382i 0.0620218 0.107425i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 14.3695 24.8886i 0.593091 1.02726i −0.400722 0.916200i \(-0.631241\pi\)
0.993813 0.111065i \(-0.0354261\pi\)
\(588\) 0 0
\(589\) −3.19030 5.52576i −0.131454 0.227685i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 13.6466 0.560397 0.280199 0.959942i \(-0.409600\pi\)
0.280199 + 0.959942i \(0.409600\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 2.64585 + 4.58275i 0.108106 + 0.187246i 0.915003 0.403447i \(-0.132188\pi\)
−0.806897 + 0.590693i \(0.798855\pi\)
\(600\) 0 0
\(601\) 17.0522 29.5353i 0.695574 1.20477i −0.274412 0.961612i \(-0.588483\pi\)
0.969987 0.243158i \(-0.0781834\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −5.06657 + 8.77555i −0.205985 + 0.356777i
\(606\) 0 0
\(607\) 4.52232 + 7.83289i 0.183555 + 0.317927i 0.943089 0.332541i \(-0.107906\pi\)
−0.759533 + 0.650468i \(0.774573\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 27.7480 1.12256
\(612\) 0 0
\(613\) −11.9578 −0.482970 −0.241485 0.970405i \(-0.577634\pi\)
−0.241485 + 0.970405i \(0.577634\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −5.13220 8.88923i −0.206615 0.357867i 0.744031 0.668145i \(-0.232911\pi\)
−0.950646 + 0.310278i \(0.899578\pi\)
\(618\) 0 0
\(619\) 21.7803 37.7245i 0.875423 1.51628i 0.0191114 0.999817i \(-0.493916\pi\)
0.856312 0.516460i \(-0.172750\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −5.91314 10.2419i −0.236526 0.409674i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −11.9613 −0.476929
\(630\) 0 0
\(631\) 19.3703 0.771119 0.385559 0.922683i \(-0.374008\pi\)
0.385559 + 0.922683i \(0.374008\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 4.38912 + 7.60218i 0.174177 + 0.301684i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 2.25008 3.89725i 0.0888728 0.153932i −0.818162 0.574988i \(-0.805007\pi\)
0.907035 + 0.421055i \(0.138340\pi\)
\(642\) 0 0
\(643\) −20.9045 36.2077i −0.824394 1.42789i −0.902381 0.430939i \(-0.858183\pi\)
0.0779869 0.996954i \(-0.475151\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 23.8761 0.938667 0.469334 0.883021i \(-0.344494\pi\)
0.469334 + 0.883021i \(0.344494\pi\)
\(648\) 0 0
\(649\) −3.47822 −0.136532
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −4.16674 7.21700i −0.163057 0.282423i 0.772907 0.634520i \(-0.218802\pi\)
−0.935964 + 0.352097i \(0.885469\pi\)
\(654\) 0 0
\(655\) −6.33226 + 10.9678i −0.247422 + 0.428547i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 20.2488 35.0719i 0.788781 1.36621i −0.137933 0.990442i \(-0.544046\pi\)
0.926714 0.375767i \(-0.122621\pi\)
\(660\) 0 0
\(661\) 3.88559 + 6.73004i 0.151132 + 0.261768i 0.931644 0.363373i \(-0.118375\pi\)
−0.780512 + 0.625141i \(0.785042\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −43.0992 −1.66881
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 1.79357 + 3.10656i 0.0692400 + 0.119927i
\(672\) 0 0
\(673\) −22.7830 + 39.4614i −0.878221 + 1.52112i −0.0249302 + 0.999689i \(0.507936\pi\)
−0.853291 + 0.521435i \(0.825397\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 6.54521 11.3366i 0.251553 0.435702i −0.712401 0.701773i \(-0.752392\pi\)
0.963954 + 0.266071i \(0.0857254\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −25.3011 −0.968121 −0.484060 0.875035i \(-0.660839\pi\)
−0.484060 + 0.875035i \(0.660839\pi\)
\(684\) 0 0
\(685\) −19.4311 −0.742425
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 7.44679 + 12.8982i 0.283700 + 0.491383i
\(690\) 0 0
\(691\) 12.2016 21.1337i 0.464170 0.803965i −0.534994 0.844856i \(-0.679686\pi\)
0.999164 + 0.0408905i \(0.0130195\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −0.326974 + 0.566335i −0.0124028 + 0.0214823i
\(696\) 0 0
\(697\) 25.3673 + 43.9375i 0.960855 + 1.66425i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 18.4137 0.695476 0.347738 0.937592i \(-0.386950\pi\)
0.347738 + 0.937592i \(0.386950\pi\)
\(702\) 0 0
\(703\) −1.18965 −0.0448683
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 6.66501 11.5441i 0.250310 0.433549i −0.713301 0.700858i \(-0.752801\pi\)
0.963611 + 0.267308i \(0.0861342\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 29.5058 51.1056i 1.10500 1.91392i
\(714\) 0 0
\(715\) 1.27622 + 2.21047i 0.0477278 + 0.0826671i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −15.6941 −0.585291 −0.292646 0.956221i \(-0.594536\pi\)
−0.292646 + 0.956221i \(0.594536\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 13.6008 + 23.5573i 0.505121 + 0.874896i
\(726\) 0 0
\(727\) −12.8388 + 22.2374i −0.476163 + 0.824739i −0.999627 0.0273090i \(-0.991306\pi\)
0.523464 + 0.852048i \(0.324640\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −2.43599 + 4.21926i −0.0900985 + 0.156055i
\(732\) 0 0
\(733\) −0.586541 1.01592i −0.0216644 0.0375238i 0.854990 0.518645i \(-0.173563\pi\)
−0.876654 + 0.481121i \(0.840230\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 4.23889 0.156141
\(738\) 0 0
\(739\) −23.2229 −0.854266 −0.427133 0.904189i \(-0.640476\pi\)
−0.427133 + 0.904189i \(0.640476\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −11.7846 20.4115i −0.432335 0.748826i 0.564739 0.825269i \(-0.308977\pi\)
−0.997074 + 0.0764439i \(0.975643\pi\)
\(744\) 0 0
\(745\) −10.4087 + 18.0284i −0.381346 + 0.660510i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −22.0531 38.1971i −0.804728 1.39383i −0.916474 0.400093i \(-0.868978\pi\)
0.111746 0.993737i \(-0.464356\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −13.7150 −0.499139
\(756\) 0 0
\(757\) −2.71020 −0.0985040 −0.0492520 0.998786i \(-0.515684\pi\)
−0.0492520 + 0.998786i \(0.515684\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 14.5248 + 25.1577i 0.526524 + 0.911966i 0.999522 + 0.0309029i \(0.00983826\pi\)
−0.472999 + 0.881063i \(0.656828\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 8.64804 14.9788i 0.312263 0.540855i
\(768\) 0 0
\(769\) −5.25175 9.09629i −0.189383 0.328021i 0.755662 0.654962i \(-0.227315\pi\)
−0.945045 + 0.326941i \(0.893982\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −23.8460 −0.857682 −0.428841 0.903380i \(-0.641078\pi\)
−0.428841 + 0.903380i \(0.641078\pi\)
\(774\) 0 0
\(775\) −37.2446 −1.33787
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 2.52297 + 4.36992i 0.0903949 + 0.156569i
\(780\) 0 0
\(781\) −0.110847 + 0.191993i −0.00396643 + 0.00687007i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −7.74136 + 13.4084i −0.276301 + 0.478567i
\(786\) 0 0
\(787\) 2.19788 + 3.80684i 0.0783460 + 0.135699i 0.902536 0.430613i \(-0.141703\pi\)
−0.824190 + 0.566313i \(0.808369\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −17.8377 −0.633435
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 2.56236 + 4.43813i 0.0907633 + 0.157207i 0.907833 0.419333i \(-0.137736\pi\)
−0.817069 + 0.576540i \(0.804403\pi\)
\(798\) 0 0
\(799\) 26.8144 46.4440i 0.948627 1.64307i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −3.88794 + 6.73410i −0.137202 + 0.237641i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −32.9223 −1.15749 −0.578744 0.815510i \(-0.696457\pi\)
−0.578744 + 0.815510i \(0.696457\pi\)
\(810\) 0 0
\(811\) −31.8830 −1.11956 −0.559781 0.828640i \(-0.689115\pi\)
−0.559781 + 0.828640i \(0.689115\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 9.76605 + 16.9153i 0.342090 + 0.592517i
\(816\) 0 0
\(817\) −0.242278 + 0.419638i −0.00847624 + 0.0146813i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 17.1139 29.6421i 0.597278 1.03452i −0.395943 0.918275i \(-0.629582\pi\)
0.993221 0.116241i \(-0.0370844\pi\)
\(822\) 0 0
\(823\) −19.1866 33.2321i −0.668802 1.15840i −0.978239 0.207480i \(-0.933474\pi\)
0.309437 0.950920i \(-0.399859\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −9.23903 −0.321273 −0.160636 0.987014i \(-0.551355\pi\)
−0.160636 + 0.987014i \(0.551355\pi\)
\(828\) 0 0
\(829\) −41.6448 −1.44638 −0.723191 0.690648i \(-0.757326\pi\)
−0.723191 + 0.690648i \(0.757326\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −11.8368 + 20.5019i −0.409629 + 0.709499i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 15.4241 26.7154i 0.532500 0.922318i −0.466780 0.884374i \(-0.654586\pi\)
0.999280 0.0379439i \(-0.0120808\pi\)
\(840\) 0 0
\(841\) −7.90845 13.6978i −0.272705 0.472339i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −0.110292 −0.00379415
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −5.50128 9.52849i −0.188581 0.326632i
\(852\) 0 0
\(853\) −11.4171 + 19.7750i −0.390913 + 0.677082i −0.992570 0.121673i \(-0.961174\pi\)
0.601657 + 0.798755i \(0.294507\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −26.6720 + 46.1973i −0.911100 + 1.57807i −0.0985862 + 0.995129i \(0.531432\pi\)
−0.812513 + 0.582942i \(0.801901\pi\)
\(858\) 0 0
\(859\) 11.5878 + 20.0707i 0.395372 + 0.684804i 0.993149 0.116859i \(-0.0372825\pi\)
−0.597777 + 0.801663i \(0.703949\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 9.16911 0.312120 0.156060 0.987748i \(-0.450121\pi\)
0.156060 + 0.987748i \(0.450121\pi\)
\(864\) 0 0
\(865\) 19.1210 0.650133
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −1.17936 2.04270i −0.0400069 0.0692940i
\(870\) 0 0
\(871\) −10.5393 + 18.2546i −0.357111 + 0.618534i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −18.6190 32.2490i −0.628718 1.08897i −0.987809 0.155670i \(-0.950247\pi\)
0.359091 0.933303i \(-0.383087\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −7.15345 −0.241006 −0.120503 0.992713i \(-0.538451\pi\)
−0.120503 + 0.992713i \(0.538451\pi\)
\(882\) 0 0
\(883\) −39.8688 −1.34169 −0.670846 0.741596i \(-0.734069\pi\)
−0.670846 + 0.741596i \(0.734069\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −10.6755 18.4904i −0.358447 0.620848i 0.629255 0.777199i \(-0.283360\pi\)
−0.987702 + 0.156351i \(0.950027\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 2.66690 4.61921i 0.0892445 0.154576i
\(894\) 0 0
\(895\) −6.12111 10.6021i −0.204606 0.354388i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 61.3635 2.04659
\(900\) 0 0
\(901\) 28.7850 0.958967
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 6.08073 + 10.5321i 0.202130 + 0.350100i
\(906\) 0 0
\(907\) 11.3012 19.5742i 0.375250 0.649951i −0.615115 0.788438i \(-0.710890\pi\)
0.990364 + 0.138486i \(0.0442237\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −12.7594 + 22.0999i −0.422738 + 0.732203i −0.996206 0.0870243i \(-0.972264\pi\)
0.573468 + 0.819228i \(0.305598\pi\)
\(912\) 0 0
\(913\) 0.450607 + 0.780475i 0.0149129 + 0.0258300i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −11.4265 −0.376926 −0.188463 0.982080i \(-0.560351\pi\)
−0.188463 + 0.982080i \(0.560351\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −0.551208 0.954721i −0.0181432 0.0314250i
\(924\) 0 0
\(925\) −3.47207 + 6.01381i −0.114161 + 0.197733i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 6.79851 11.7754i 0.223052 0.386337i −0.732681 0.680572i \(-0.761731\pi\)
0.955733 + 0.294235i \(0.0950648\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 4.93312 0.161330
\(936\) 0 0
\(937\) −11.1455 −0.364109 −0.182054 0.983288i \(-0.558275\pi\)
−0.182054 + 0.983288i \(0.558275\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 20.7310 + 35.9072i 0.675813 + 1.17054i 0.976231 + 0.216734i \(0.0695405\pi\)
−0.300418 + 0.953808i \(0.597126\pi\)
\(942\) 0 0
\(943\) −23.3340 + 40.4156i −0.759859 + 1.31611i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 21.2784 36.8552i 0.691454 1.19763i −0.279908 0.960027i \(-0.590304\pi\)
0.971362 0.237606i \(-0.0763627\pi\)
\(948\) 0 0
\(949\) −19.3335 33.4865i −0.627590 1.08702i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −21.2114 −0.687106 −0.343553 0.939133i \(-0.611630\pi\)
−0.343553 + 0.939133i \(0.611630\pi\)
\(954\) 0 0
\(955\) −7.16826 −0.231960
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −26.5096 + 45.9160i −0.855150 + 1.48116i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −0.787775 + 1.36447i −0.0253594 + 0.0439237i
\(966\) 0 0
\(967\) −9.83257 17.0305i −0.316194 0.547664i 0.663496 0.748179i \(-0.269072\pi\)
−0.979691 + 0.200515i \(0.935738\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −24.5784 −0.788757 −0.394379 0.918948i \(-0.629040\pi\)
−0.394379 + 0.918948i \(0.629040\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −23.7359 41.1117i −0.759378 1.31528i −0.943168 0.332316i \(-0.892170\pi\)
0.183790 0.982966i \(-0.441163\pi\)
\(978\) 0 0
\(979\) −4.21420 + 7.29920i −0.134686 + 0.233284i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 13.7720 23.8538i 0.439258 0.760817i −0.558374 0.829589i \(-0.688575\pi\)
0.997632 + 0.0687719i \(0.0219081\pi\)
\(984\) 0 0
\(985\) 4.00269 + 6.93287i 0.127536 + 0.220900i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −4.48147 −0.142502
\(990\) 0 0
\(991\) −38.4671 −1.22195 −0.610973 0.791651i \(-0.709222\pi\)
−0.610973 + 0.791651i \(0.709222\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −5.17233 8.95874i −0.163974 0.284011i
\(996\) 0 0
\(997\) 16.2272 28.1064i 0.513921 0.890138i −0.485948 0.873988i \(-0.661526\pi\)
0.999870 0.0161503i \(-0.00514103\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5292.2.j.h.3529.5 14
3.2 odd 2 1764.2.j.g.1177.6 14
7.2 even 3 756.2.i.b.613.5 14
7.3 odd 6 5292.2.l.i.3313.5 14
7.4 even 3 756.2.l.b.289.3 14
7.5 odd 6 5292.2.i.i.2125.3 14
7.6 odd 2 5292.2.j.g.3529.3 14
9.4 even 3 inner 5292.2.j.h.1765.5 14
9.5 odd 6 1764.2.j.g.589.6 14
21.2 odd 6 252.2.i.b.25.5 14
21.5 even 6 1764.2.i.i.1537.3 14
21.11 odd 6 252.2.l.b.205.1 yes 14
21.17 even 6 1764.2.l.i.961.7 14
21.20 even 2 1764.2.j.h.1177.2 14
28.11 odd 6 3024.2.t.j.289.3 14
28.23 odd 6 3024.2.q.j.2881.5 14
63.2 odd 6 2268.2.k.e.1621.3 14
63.4 even 3 756.2.i.b.37.5 14
63.5 even 6 1764.2.l.i.949.7 14
63.11 odd 6 2268.2.k.e.1297.3 14
63.13 odd 6 5292.2.j.g.1765.3 14
63.16 even 3 2268.2.k.f.1621.5 14
63.23 odd 6 252.2.l.b.193.1 yes 14
63.25 even 3 2268.2.k.f.1297.5 14
63.31 odd 6 5292.2.i.i.1549.3 14
63.32 odd 6 252.2.i.b.121.5 yes 14
63.40 odd 6 5292.2.l.i.361.5 14
63.41 even 6 1764.2.j.h.589.2 14
63.58 even 3 756.2.l.b.361.3 14
63.59 even 6 1764.2.i.i.373.3 14
84.11 even 6 1008.2.t.j.961.7 14
84.23 even 6 1008.2.q.j.529.3 14
252.23 even 6 1008.2.t.j.193.7 14
252.67 odd 6 3024.2.q.j.2305.5 14
252.95 even 6 1008.2.q.j.625.3 14
252.247 odd 6 3024.2.t.j.1873.3 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
252.2.i.b.25.5 14 21.2 odd 6
252.2.i.b.121.5 yes 14 63.32 odd 6
252.2.l.b.193.1 yes 14 63.23 odd 6
252.2.l.b.205.1 yes 14 21.11 odd 6
756.2.i.b.37.5 14 63.4 even 3
756.2.i.b.613.5 14 7.2 even 3
756.2.l.b.289.3 14 7.4 even 3
756.2.l.b.361.3 14 63.58 even 3
1008.2.q.j.529.3 14 84.23 even 6
1008.2.q.j.625.3 14 252.95 even 6
1008.2.t.j.193.7 14 252.23 even 6
1008.2.t.j.961.7 14 84.11 even 6
1764.2.i.i.373.3 14 63.59 even 6
1764.2.i.i.1537.3 14 21.5 even 6
1764.2.j.g.589.6 14 9.5 odd 6
1764.2.j.g.1177.6 14 3.2 odd 2
1764.2.j.h.589.2 14 63.41 even 6
1764.2.j.h.1177.2 14 21.20 even 2
1764.2.l.i.949.7 14 63.5 even 6
1764.2.l.i.961.7 14 21.17 even 6
2268.2.k.e.1297.3 14 63.11 odd 6
2268.2.k.e.1621.3 14 63.2 odd 6
2268.2.k.f.1297.5 14 63.25 even 3
2268.2.k.f.1621.5 14 63.16 even 3
3024.2.q.j.2305.5 14 252.67 odd 6
3024.2.q.j.2881.5 14 28.23 odd 6
3024.2.t.j.289.3 14 28.11 odd 6
3024.2.t.j.1873.3 14 252.247 odd 6
5292.2.i.i.1549.3 14 63.31 odd 6
5292.2.i.i.2125.3 14 7.5 odd 6
5292.2.j.g.1765.3 14 63.13 odd 6
5292.2.j.g.3529.3 14 7.6 odd 2
5292.2.j.h.1765.5 14 9.4 even 3 inner
5292.2.j.h.3529.5 14 1.1 even 1 trivial
5292.2.l.i.361.5 14 63.40 odd 6
5292.2.l.i.3313.5 14 7.3 odd 6