Properties

Label 2268.2.k.e.1297.3
Level $2268$
Weight $2$
Character 2268.1297
Analytic conductor $18.110$
Analytic rank $0$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2268,2,Mod(1297,2268)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2268.1297"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2268, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 2])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2268 = 2^{2} \cdot 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2268.k (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [14,0,0,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.1100711784\)
Analytic rank: \(0\)
Dimension: \(14\)
Relative dimension: \(7\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} - 5x^{12} - 3x^{11} + 7x^{10} + 30x^{9} - 117x^{7} + 270x^{5} + 189x^{4} - 243x^{3} - 1215x^{2} + 2187 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 3^{7} \)
Twist minimal: no (minimal twist has level 252)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 1297.3
Root \(-1.73040 + 0.0755709i\) of defining polynomial
Character \(\chi\) \(=\) 2268.1297
Dual form 2268.2.k.e.1621.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.483929 + 0.838189i) q^{5} +(2.63536 - 0.234242i) q^{7} +(-0.364122 - 0.630678i) q^{11} -3.62132 q^{13} +(3.49948 + 6.06128i) q^{17} +(-0.348050 + 0.602841i) q^{19} +(-3.21898 + 5.57544i) q^{23} +(2.03163 + 3.51888i) q^{25} -6.69454 q^{29} +(-4.58310 - 7.93816i) q^{31} +(-1.07899 + 2.32229i) q^{35} +(0.854506 - 1.48005i) q^{37} +7.24887 q^{41} +0.696101 q^{43} +(-3.83120 + 6.63583i) q^{47} +(6.89026 - 1.23462i) q^{49} +(2.05637 + 3.56174i) q^{53} +0.704836 q^{55} +(2.38809 + 4.13629i) q^{59} +(-2.46287 + 4.26582i) q^{61} +(1.75246 - 3.03535i) q^{65} +(2.91035 + 5.04087i) q^{67} +0.304424 q^{71} +(5.33879 + 9.24705i) q^{73} +(-1.10732 - 1.57677i) q^{77} +(1.61945 - 2.80497i) q^{79} -1.23752 q^{83} -6.77400 q^{85} +(-5.78679 + 10.0230i) q^{89} +(-9.54349 + 0.848265i) q^{91} +(-0.336863 - 0.583464i) q^{95} -2.65866 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q - 2 q^{5} - 3 q^{7} + 2 q^{11} - 4 q^{13} + 2 q^{17} + 7 q^{19} + 11 q^{23} - 9 q^{25} - 2 q^{29} - q^{31} - 19 q^{35} + 10 q^{37} + 66 q^{41} - 14 q^{43} - 3 q^{47} + 17 q^{49} - 15 q^{53} - 28 q^{55}+ \cdots + 36 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2268\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(1135\) \(1541\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −0.483929 + 0.838189i −0.216419 + 0.374850i −0.953711 0.300725i \(-0.902771\pi\)
0.737291 + 0.675575i \(0.236105\pi\)
\(6\) 0 0
\(7\) 2.63536 0.234242i 0.996073 0.0885351i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −0.364122 0.630678i −0.109787 0.190156i 0.805897 0.592056i \(-0.201683\pi\)
−0.915684 + 0.401899i \(0.868350\pi\)
\(12\) 0 0
\(13\) −3.62132 −1.00437 −0.502187 0.864759i \(-0.667471\pi\)
−0.502187 + 0.864759i \(0.667471\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 3.49948 + 6.06128i 0.848749 + 1.47008i 0.882325 + 0.470641i \(0.155977\pi\)
−0.0335755 + 0.999436i \(0.510689\pi\)
\(18\) 0 0
\(19\) −0.348050 + 0.602841i −0.0798483 + 0.138301i −0.903184 0.429253i \(-0.858777\pi\)
0.823336 + 0.567554i \(0.192110\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −3.21898 + 5.57544i −0.671204 + 1.16256i 0.306359 + 0.951916i \(0.400889\pi\)
−0.977563 + 0.210643i \(0.932444\pi\)
\(24\) 0 0
\(25\) 2.03163 + 3.51888i 0.406325 + 0.703776i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −6.69454 −1.24315 −0.621573 0.783356i \(-0.713506\pi\)
−0.621573 + 0.783356i \(0.713506\pi\)
\(30\) 0 0
\(31\) −4.58310 7.93816i −0.823149 1.42574i −0.903326 0.428956i \(-0.858882\pi\)
0.0801762 0.996781i \(-0.474452\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −1.07899 + 2.32229i −0.182382 + 0.392538i
\(36\) 0 0
\(37\) 0.854506 1.48005i 0.140480 0.243318i −0.787197 0.616701i \(-0.788469\pi\)
0.927677 + 0.373383i \(0.121802\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 7.24887 1.13208 0.566042 0.824376i \(-0.308474\pi\)
0.566042 + 0.824376i \(0.308474\pi\)
\(42\) 0 0
\(43\) 0.696101 0.106154 0.0530772 0.998590i \(-0.483097\pi\)
0.0530772 + 0.998590i \(0.483097\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −3.83120 + 6.63583i −0.558838 + 0.967936i 0.438756 + 0.898606i \(0.355419\pi\)
−0.997594 + 0.0693294i \(0.977914\pi\)
\(48\) 0 0
\(49\) 6.89026 1.23462i 0.984323 0.176375i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 2.05637 + 3.56174i 0.282465 + 0.489243i 0.971991 0.235017i \(-0.0755147\pi\)
−0.689527 + 0.724260i \(0.742181\pi\)
\(54\) 0 0
\(55\) 0.704836 0.0950401
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 2.38809 + 4.13629i 0.310903 + 0.538500i 0.978558 0.205971i \(-0.0660353\pi\)
−0.667655 + 0.744471i \(0.732702\pi\)
\(60\) 0 0
\(61\) −2.46287 + 4.26582i −0.315338 + 0.546182i −0.979509 0.201399i \(-0.935451\pi\)
0.664171 + 0.747581i \(0.268785\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 1.75246 3.03535i 0.217366 0.376489i
\(66\) 0 0
\(67\) 2.91035 + 5.04087i 0.355556 + 0.615841i 0.987213 0.159407i \(-0.0509583\pi\)
−0.631657 + 0.775248i \(0.717625\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0.304424 0.0361285 0.0180642 0.999837i \(-0.494250\pi\)
0.0180642 + 0.999837i \(0.494250\pi\)
\(72\) 0 0
\(73\) 5.33879 + 9.24705i 0.624858 + 1.08229i 0.988568 + 0.150773i \(0.0481763\pi\)
−0.363711 + 0.931512i \(0.618490\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −1.10732 1.57677i −0.126191 0.179690i
\(78\) 0 0
\(79\) 1.61945 2.80497i 0.182203 0.315584i −0.760428 0.649423i \(-0.775011\pi\)
0.942630 + 0.333839i \(0.108344\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −1.23752 −0.135835 −0.0679176 0.997691i \(-0.521636\pi\)
−0.0679176 + 0.997691i \(0.521636\pi\)
\(84\) 0 0
\(85\) −6.77400 −0.734744
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −5.78679 + 10.0230i −0.613399 + 1.06244i 0.377264 + 0.926106i \(0.376865\pi\)
−0.990663 + 0.136333i \(0.956468\pi\)
\(90\) 0 0
\(91\) −9.54349 + 0.848265i −1.00043 + 0.0889223i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −0.336863 0.583464i −0.0345614 0.0598622i
\(96\) 0 0
\(97\) −2.65866 −0.269946 −0.134973 0.990849i \(-0.543095\pi\)
−0.134973 + 0.990849i \(0.543095\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −0.806969 1.39771i −0.0802964 0.139077i 0.823081 0.567924i \(-0.192253\pi\)
−0.903377 + 0.428847i \(0.858920\pi\)
\(102\) 0 0
\(103\) −5.42007 + 9.38783i −0.534055 + 0.925010i 0.465153 + 0.885230i \(0.345999\pi\)
−0.999208 + 0.0397803i \(0.987334\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 4.97630 8.61920i 0.481077 0.833249i −0.518688 0.854964i \(-0.673579\pi\)
0.999764 + 0.0217146i \(0.00691252\pi\)
\(108\) 0 0
\(109\) −9.27835 16.0706i −0.888705 1.53928i −0.841407 0.540401i \(-0.818272\pi\)
−0.0472974 0.998881i \(-0.515061\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −11.5165 −1.08338 −0.541689 0.840579i \(-0.682215\pi\)
−0.541689 + 0.840579i \(0.682215\pi\)
\(114\) 0 0
\(115\) −3.11551 5.39623i −0.290523 0.503201i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 10.6422 + 15.1539i 0.975570 + 1.38916i
\(120\) 0 0
\(121\) 5.23483 9.06699i 0.475894 0.824272i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −8.77193 −0.784586
\(126\) 0 0
\(127\) 9.06977 0.804812 0.402406 0.915461i \(-0.368174\pi\)
0.402406 + 0.915461i \(0.368174\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −6.54255 + 11.3320i −0.571625 + 0.990084i 0.424774 + 0.905299i \(0.360354\pi\)
−0.996399 + 0.0847847i \(0.972980\pi\)
\(132\) 0 0
\(133\) −0.776028 + 1.67023i −0.0672902 + 0.144828i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 10.0382 + 17.3867i 0.857623 + 1.48545i 0.874190 + 0.485584i \(0.161393\pi\)
−0.0165668 + 0.999863i \(0.505274\pi\)
\(138\) 0 0
\(139\) −0.675665 −0.0573091 −0.0286546 0.999589i \(-0.509122\pi\)
−0.0286546 + 0.999589i \(0.509122\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 1.31860 + 2.28388i 0.110267 + 0.190988i
\(144\) 0 0
\(145\) 3.23968 5.61129i 0.269041 0.465992i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −10.7544 + 18.6271i −0.881034 + 1.52599i −0.0308402 + 0.999524i \(0.509818\pi\)
−0.850193 + 0.526471i \(0.823515\pi\)
\(150\) 0 0
\(151\) −7.08523 12.2720i −0.576588 0.998680i −0.995867 0.0908223i \(-0.971050\pi\)
0.419279 0.907857i \(-0.362283\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 8.87158 0.712582
\(156\) 0 0
\(157\) 7.99845 + 13.8537i 0.638346 + 1.10565i 0.985796 + 0.167949i \(0.0537143\pi\)
−0.347450 + 0.937699i \(0.612952\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −7.17717 + 15.4473i −0.565641 + 1.21742i
\(162\) 0 0
\(163\) −10.0904 + 17.4771i −0.790340 + 1.36891i 0.135417 + 0.990789i \(0.456763\pi\)
−0.925757 + 0.378120i \(0.876571\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 24.4598 1.89276 0.946378 0.323061i \(-0.104712\pi\)
0.946378 + 0.323061i \(0.104712\pi\)
\(168\) 0 0
\(169\) 0.113954 0.00876572
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −9.87800 + 17.1092i −0.751010 + 1.30079i 0.196323 + 0.980539i \(0.437100\pi\)
−0.947333 + 0.320249i \(0.896233\pi\)
\(174\) 0 0
\(175\) 6.17834 + 8.79763i 0.467039 + 0.665038i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −6.32439 10.9542i −0.472707 0.818753i 0.526805 0.849986i \(-0.323390\pi\)
−0.999512 + 0.0312332i \(0.990057\pi\)
\(180\) 0 0
\(181\) 12.5654 0.933975 0.466988 0.884264i \(-0.345339\pi\)
0.466988 + 0.884264i \(0.345339\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0.827040 + 1.43248i 0.0608052 + 0.105318i
\(186\) 0 0
\(187\) 2.54848 4.41409i 0.186363 0.322790i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 3.70316 6.41407i 0.267951 0.464105i −0.700381 0.713769i \(-0.746987\pi\)
0.968333 + 0.249663i \(0.0803200\pi\)
\(192\) 0 0
\(193\) 0.813937 + 1.40978i 0.0585885 + 0.101478i 0.893832 0.448402i \(-0.148007\pi\)
−0.835244 + 0.549880i \(0.814673\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −8.27125 −0.589302 −0.294651 0.955605i \(-0.595203\pi\)
−0.294651 + 0.955605i \(0.595203\pi\)
\(198\) 0 0
\(199\) 5.34411 + 9.25627i 0.378834 + 0.656159i 0.990893 0.134653i \(-0.0429919\pi\)
−0.612059 + 0.790812i \(0.709659\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −17.6425 + 1.56814i −1.23826 + 0.110062i
\(204\) 0 0
\(205\) −3.50794 + 6.07593i −0.245005 + 0.424361i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0.506931 0.0350652
\(210\) 0 0
\(211\) 22.5451 1.55207 0.776034 0.630691i \(-0.217228\pi\)
0.776034 + 0.630691i \(0.217228\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −0.336863 + 0.583464i −0.0229739 + 0.0397919i
\(216\) 0 0
\(217\) −13.9376 19.8464i −0.946145 1.34726i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −12.6727 21.9498i −0.852461 1.47651i
\(222\) 0 0
\(223\) −7.40186 −0.495665 −0.247832 0.968803i \(-0.579718\pi\)
−0.247832 + 0.968803i \(0.579718\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 0.299086 + 0.518033i 0.0198511 + 0.0343831i 0.875780 0.482710i \(-0.160347\pi\)
−0.855929 + 0.517093i \(0.827014\pi\)
\(228\) 0 0
\(229\) 2.01858 3.49629i 0.133392 0.231041i −0.791590 0.611052i \(-0.790747\pi\)
0.924982 + 0.380011i \(0.124080\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −5.59754 + 9.69523i −0.366707 + 0.635155i −0.989049 0.147591i \(-0.952848\pi\)
0.622341 + 0.782746i \(0.286182\pi\)
\(234\) 0 0
\(235\) −3.70805 6.42254i −0.241887 0.418960i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 25.6342 1.65814 0.829069 0.559146i \(-0.188871\pi\)
0.829069 + 0.559146i \(0.188871\pi\)
\(240\) 0 0
\(241\) 3.29590 + 5.70866i 0.212307 + 0.367727i 0.952436 0.304738i \(-0.0985688\pi\)
−0.740129 + 0.672465i \(0.765236\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −2.29955 + 6.37281i −0.146913 + 0.407144i
\(246\) 0 0
\(247\) 1.26040 2.18308i 0.0801975 0.138906i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 25.0438 1.58075 0.790374 0.612624i \(-0.209886\pi\)
0.790374 + 0.612624i \(0.209886\pi\)
\(252\) 0 0
\(253\) 4.68840 0.294757
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 9.07036 15.7103i 0.565794 0.979984i −0.431182 0.902265i \(-0.641903\pi\)
0.996975 0.0777184i \(-0.0247635\pi\)
\(258\) 0 0
\(259\) 1.90524 4.10062i 0.118386 0.254800i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −6.40438 11.0927i −0.394911 0.684006i 0.598179 0.801363i \(-0.295891\pi\)
−0.993090 + 0.117357i \(0.962558\pi\)
\(264\) 0 0
\(265\) −3.98055 −0.244523
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −14.4412 25.0129i −0.880497 1.52507i −0.850789 0.525507i \(-0.823876\pi\)
−0.0297079 0.999559i \(-0.509458\pi\)
\(270\) 0 0
\(271\) 4.59579 7.96015i 0.279175 0.483544i −0.692005 0.721892i \(-0.743273\pi\)
0.971180 + 0.238348i \(0.0766059\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 1.47952 2.56260i 0.0892183 0.154531i
\(276\) 0 0
\(277\) 1.95778 + 3.39098i 0.117632 + 0.203744i 0.918829 0.394656i \(-0.129136\pi\)
−0.801197 + 0.598401i \(0.795803\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −15.2931 −0.912308 −0.456154 0.889901i \(-0.650773\pi\)
−0.456154 + 0.889901i \(0.650773\pi\)
\(282\) 0 0
\(283\) −12.4890 21.6315i −0.742392 1.28586i −0.951403 0.307947i \(-0.900358\pi\)
0.209011 0.977913i \(-0.432975\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 19.1034 1.69799i 1.12764 0.100229i
\(288\) 0 0
\(289\) −15.9928 + 27.7003i −0.940751 + 1.62943i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 8.16183 0.476819 0.238410 0.971165i \(-0.423374\pi\)
0.238410 + 0.971165i \(0.423374\pi\)
\(294\) 0 0
\(295\) −4.62266 −0.269142
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 11.6570 20.1904i 0.674139 1.16764i
\(300\) 0 0
\(301\) 1.83448 0.163056i 0.105738 0.00939839i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −2.38371 4.12870i −0.136491 0.236409i
\(306\) 0 0
\(307\) 18.0692 1.03126 0.515631 0.856811i \(-0.327558\pi\)
0.515631 + 0.856811i \(0.327558\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 5.00384 + 8.66691i 0.283742 + 0.491456i 0.972303 0.233723i \(-0.0750907\pi\)
−0.688561 + 0.725178i \(0.741757\pi\)
\(312\) 0 0
\(313\) −1.49532 + 2.58998i −0.0845207 + 0.146394i −0.905187 0.425014i \(-0.860269\pi\)
0.820666 + 0.571408i \(0.193603\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 11.9246 20.6541i 0.669754 1.16005i −0.308219 0.951315i \(-0.599733\pi\)
0.977973 0.208732i \(-0.0669336\pi\)
\(318\) 0 0
\(319\) 2.43763 + 4.22210i 0.136481 + 0.236392i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −4.87199 −0.271085
\(324\) 0 0
\(325\) −7.35717 12.7430i −0.408102 0.706854i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −8.54221 + 18.3852i −0.470947 + 1.01361i
\(330\) 0 0
\(331\) 8.01886 13.8891i 0.440757 0.763413i −0.556989 0.830520i \(-0.688044\pi\)
0.997746 + 0.0671069i \(0.0213768\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −5.63360 −0.307797
\(336\) 0 0
\(337\) −33.7970 −1.84104 −0.920520 0.390696i \(-0.872234\pi\)
−0.920520 + 0.390696i \(0.872234\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −3.33761 + 5.78092i −0.180742 + 0.313054i
\(342\) 0 0
\(343\) 17.8691 4.86767i 0.964842 0.262829i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −17.6637 30.5944i −0.948237 1.64240i −0.749136 0.662417i \(-0.769531\pi\)
−0.199102 0.979979i \(-0.563802\pi\)
\(348\) 0 0
\(349\) 11.5069 0.615950 0.307975 0.951395i \(-0.400349\pi\)
0.307975 + 0.951395i \(0.400349\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −12.4432 21.5522i −0.662283 1.14711i −0.980014 0.198926i \(-0.936254\pi\)
0.317732 0.948181i \(-0.397079\pi\)
\(354\) 0 0
\(355\) −0.147320 + 0.255165i −0.00781891 + 0.0135427i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 9.22681 15.9813i 0.486972 0.843461i −0.512916 0.858439i \(-0.671435\pi\)
0.999888 + 0.0149785i \(0.00476798\pi\)
\(360\) 0 0
\(361\) 9.25772 + 16.0348i 0.487249 + 0.843939i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −10.3344 −0.540925
\(366\) 0 0
\(367\) 9.10688 + 15.7736i 0.475375 + 0.823374i 0.999602 0.0282046i \(-0.00897899\pi\)
−0.524227 + 0.851579i \(0.675646\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 6.25360 + 8.90479i 0.324671 + 0.462314i
\(372\) 0 0
\(373\) 9.09995 15.7616i 0.471177 0.816103i −0.528279 0.849071i \(-0.677162\pi\)
0.999456 + 0.0329676i \(0.0104958\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 24.2431 1.24858
\(378\) 0 0
\(379\) −24.1061 −1.23825 −0.619124 0.785293i \(-0.712512\pi\)
−0.619124 + 0.785293i \(0.712512\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 3.21847 5.57455i 0.164456 0.284846i −0.772006 0.635615i \(-0.780746\pi\)
0.936462 + 0.350769i \(0.114080\pi\)
\(384\) 0 0
\(385\) 1.85750 0.165102i 0.0946668 0.00841438i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −16.9299 29.3234i −0.858379 1.48676i −0.873475 0.486869i \(-0.838139\pi\)
0.0150964 0.999886i \(-0.495194\pi\)
\(390\) 0 0
\(391\) −45.0591 −2.27873
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 1.56740 + 2.71481i 0.0788643 + 0.136597i
\(396\) 0 0
\(397\) −0.808630 + 1.40059i −0.0405840 + 0.0702935i −0.885604 0.464441i \(-0.846255\pi\)
0.845020 + 0.534735i \(0.179588\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −2.87691 + 4.98296i −0.143666 + 0.248837i −0.928874 0.370395i \(-0.879222\pi\)
0.785208 + 0.619232i \(0.212556\pi\)
\(402\) 0 0
\(403\) 16.5969 + 28.7466i 0.826749 + 1.43197i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −1.24458 −0.0616914
\(408\) 0 0
\(409\) 2.88631 + 4.99923i 0.142719 + 0.247196i 0.928520 0.371284i \(-0.121082\pi\)
−0.785801 + 0.618480i \(0.787749\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 7.26237 + 10.3412i 0.357358 + 0.508859i
\(414\) 0 0
\(415\) 0.598871 1.03727i 0.0293974 0.0509178i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 18.5806 0.907723 0.453862 0.891072i \(-0.350046\pi\)
0.453862 + 0.891072i \(0.350046\pi\)
\(420\) 0 0
\(421\) 16.1158 0.785434 0.392717 0.919659i \(-0.371535\pi\)
0.392717 + 0.919659i \(0.371535\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −14.2193 + 24.6285i −0.689737 + 1.19466i
\(426\) 0 0
\(427\) −5.49132 + 11.8189i −0.265744 + 0.571956i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 1.82664 + 3.16383i 0.0879860 + 0.152396i 0.906660 0.421863i \(-0.138624\pi\)
−0.818674 + 0.574259i \(0.805290\pi\)
\(432\) 0 0
\(433\) 12.6697 0.608865 0.304432 0.952534i \(-0.401533\pi\)
0.304432 + 0.952534i \(0.401533\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −2.24073 3.88107i −0.107189 0.185657i
\(438\) 0 0
\(439\) −5.85810 + 10.1465i −0.279592 + 0.484267i −0.971283 0.237926i \(-0.923532\pi\)
0.691692 + 0.722193i \(0.256866\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 14.8735 25.7617i 0.706661 1.22397i −0.259428 0.965763i \(-0.583534\pi\)
0.966089 0.258210i \(-0.0831328\pi\)
\(444\) 0 0
\(445\) −5.60079 9.70085i −0.265503 0.459865i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 11.0193 0.520034 0.260017 0.965604i \(-0.416272\pi\)
0.260017 + 0.965604i \(0.416272\pi\)
\(450\) 0 0
\(451\) −2.63947 4.57170i −0.124288 0.215273i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 3.90736 8.40974i 0.183180 0.394255i
\(456\) 0 0
\(457\) −0.258224 + 0.447257i −0.0120792 + 0.0209218i −0.872002 0.489503i \(-0.837178\pi\)
0.859923 + 0.510424i \(0.170512\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 7.09925 0.330645 0.165322 0.986240i \(-0.447134\pi\)
0.165322 + 0.986240i \(0.447134\pi\)
\(462\) 0 0
\(463\) 9.82296 0.456512 0.228256 0.973601i \(-0.426698\pi\)
0.228256 + 0.973601i \(0.426698\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −4.79604 + 8.30698i −0.221934 + 0.384401i −0.955395 0.295330i \(-0.904570\pi\)
0.733461 + 0.679731i \(0.237904\pi\)
\(468\) 0 0
\(469\) 8.85061 + 12.6028i 0.408683 + 0.581943i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −0.253466 0.439015i −0.0116544 0.0201859i
\(474\) 0 0
\(475\) −2.82843 −0.129777
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −8.13621 14.0923i −0.371753 0.643895i 0.618082 0.786113i \(-0.287910\pi\)
−0.989835 + 0.142218i \(0.954576\pi\)
\(480\) 0 0
\(481\) −3.09444 + 5.35973i −0.141094 + 0.244383i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 1.28660 2.22846i 0.0584217 0.101189i
\(486\) 0 0
\(487\) −9.50511 16.4633i −0.430718 0.746025i 0.566217 0.824256i \(-0.308406\pi\)
−0.996935 + 0.0782307i \(0.975073\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −5.10825 −0.230532 −0.115266 0.993335i \(-0.536772\pi\)
−0.115266 + 0.993335i \(0.536772\pi\)
\(492\) 0 0
\(493\) −23.4274 40.5775i −1.05512 1.82752i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0.802268 0.0713089i 0.0359866 0.00319864i
\(498\) 0 0
\(499\) 14.2638 24.7056i 0.638536 1.10598i −0.347219 0.937784i \(-0.612874\pi\)
0.985754 0.168192i \(-0.0537928\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 4.05885 0.180975 0.0904877 0.995898i \(-0.471157\pi\)
0.0904877 + 0.995898i \(0.471157\pi\)
\(504\) 0 0
\(505\) 1.56206 0.0695108
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −8.63023 + 14.9480i −0.382528 + 0.662558i −0.991423 0.130693i \(-0.958280\pi\)
0.608895 + 0.793251i \(0.291613\pi\)
\(510\) 0 0
\(511\) 16.2357 + 23.1188i 0.718224 + 1.02271i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −5.24585 9.08608i −0.231160 0.400380i
\(516\) 0 0
\(517\) 5.58009 0.245412
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −17.0525 29.5358i −0.747083 1.29399i −0.949215 0.314628i \(-0.898120\pi\)
0.202132 0.979358i \(-0.435213\pi\)
\(522\) 0 0
\(523\) −9.44847 + 16.3652i −0.413153 + 0.715602i −0.995233 0.0975299i \(-0.968906\pi\)
0.582080 + 0.813132i \(0.302239\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 32.0770 55.5589i 1.39729 2.42019i
\(528\) 0 0
\(529\) −9.22366 15.9758i −0.401029 0.694602i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −26.2505 −1.13703
\(534\) 0 0
\(535\) 4.81634 + 8.34215i 0.208229 + 0.360663i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −3.28754 3.89598i −0.141605 0.167812i
\(540\) 0 0
\(541\) 0.564117 0.977080i 0.0242533 0.0420080i −0.853644 0.520857i \(-0.825613\pi\)
0.877897 + 0.478849i \(0.158946\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 17.9602 0.769332
\(546\) 0 0
\(547\) −31.6854 −1.35477 −0.677386 0.735628i \(-0.736887\pi\)
−0.677386 + 0.735628i \(0.736887\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 2.33004 4.03575i 0.0992630 0.171929i
\(552\) 0 0
\(553\) 3.61080 7.77146i 0.153547 0.330476i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −13.8135 23.9257i −0.585298 1.01377i −0.994838 0.101474i \(-0.967644\pi\)
0.409540 0.912292i \(-0.365689\pi\)
\(558\) 0 0
\(559\) −2.52080 −0.106619
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −0.920685 1.59467i −0.0388022 0.0672074i 0.845972 0.533227i \(-0.179021\pi\)
−0.884774 + 0.466020i \(0.845688\pi\)
\(564\) 0 0
\(565\) 5.57315 9.65298i 0.234464 0.406104i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 5.75524 9.96837i 0.241272 0.417896i −0.719805 0.694177i \(-0.755769\pi\)
0.961077 + 0.276281i \(0.0891020\pi\)
\(570\) 0 0
\(571\) 4.35262 + 7.53896i 0.182152 + 0.315496i 0.942613 0.333887i \(-0.108361\pi\)
−0.760461 + 0.649383i \(0.775027\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −26.1591 −1.09091
\(576\) 0 0
\(577\) −7.24358 12.5462i −0.301554 0.522307i 0.674934 0.737878i \(-0.264172\pi\)
−0.976488 + 0.215571i \(0.930839\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −3.26131 + 0.289879i −0.135302 + 0.0120262i
\(582\) 0 0
\(583\) 1.49754 2.59382i 0.0620218 0.107425i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 28.7389 1.18618 0.593091 0.805135i \(-0.297907\pi\)
0.593091 + 0.805135i \(0.297907\pi\)
\(588\) 0 0
\(589\) 6.38060 0.262908
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 6.82328 11.8183i 0.280199 0.485318i −0.691235 0.722630i \(-0.742933\pi\)
0.971434 + 0.237312i \(0.0762663\pi\)
\(594\) 0 0
\(595\) −17.8519 + 1.58676i −0.731858 + 0.0650506i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −2.64585 4.58275i −0.108106 0.187246i 0.806897 0.590693i \(-0.201145\pi\)
−0.915003 + 0.403447i \(0.867812\pi\)
\(600\) 0 0
\(601\) −34.1044 −1.39115 −0.695574 0.718454i \(-0.744850\pi\)
−0.695574 + 0.718454i \(0.744850\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 5.06657 + 8.77555i 0.205985 + 0.356777i
\(606\) 0 0
\(607\) 4.52232 7.83289i 0.183555 0.317927i −0.759533 0.650468i \(-0.774573\pi\)
0.943089 + 0.332541i \(0.107906\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 13.8740 24.0305i 0.561282 0.972169i
\(612\) 0 0
\(613\) 5.97889 + 10.3557i 0.241485 + 0.418264i 0.961137 0.276070i \(-0.0890322\pi\)
−0.719653 + 0.694334i \(0.755699\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −10.2644 −0.413229 −0.206615 0.978422i \(-0.566245\pi\)
−0.206615 + 0.978422i \(0.566245\pi\)
\(618\) 0 0
\(619\) 21.7803 + 37.7245i 0.875423 + 1.51628i 0.856312 + 0.516460i \(0.172750\pi\)
0.0191114 + 0.999817i \(0.493916\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −12.9025 + 27.7698i −0.516927 + 1.11257i
\(624\) 0 0
\(625\) −5.91314 + 10.2419i −0.236526 + 0.409674i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 11.9613 0.476929
\(630\) 0 0
\(631\) 19.3703 0.771119 0.385559 0.922683i \(-0.374008\pi\)
0.385559 + 0.922683i \(0.374008\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −4.38912 + 7.60218i −0.174177 + 0.301684i
\(636\) 0 0
\(637\) −24.9518 + 4.47097i −0.988628 + 0.177146i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −2.25008 3.89725i −0.0888728 0.153932i 0.818162 0.574988i \(-0.194993\pi\)
−0.907035 + 0.421055i \(0.861660\pi\)
\(642\) 0 0
\(643\) 41.8091 1.64879 0.824394 0.566016i \(-0.191516\pi\)
0.824394 + 0.566016i \(0.191516\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 11.9381 + 20.6773i 0.469334 + 0.812910i 0.999385 0.0350555i \(-0.0111608\pi\)
−0.530052 + 0.847965i \(0.677827\pi\)
\(648\) 0 0
\(649\) 1.73911 3.01223i 0.0682661 0.118240i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 4.16674 7.21700i 0.163057 0.282423i −0.772907 0.634520i \(-0.781198\pi\)
0.935964 + 0.352097i \(0.114531\pi\)
\(654\) 0 0
\(655\) −6.33226 10.9678i −0.247422 0.428547i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 40.4976 1.57756 0.788781 0.614675i \(-0.210713\pi\)
0.788781 + 0.614675i \(0.210713\pi\)
\(660\) 0 0
\(661\) 3.88559 + 6.73004i 0.151132 + 0.261768i 0.931644 0.363373i \(-0.118375\pi\)
−0.780512 + 0.625141i \(0.785042\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −1.02443 1.45873i −0.0397256 0.0565672i
\(666\) 0 0
\(667\) 21.5496 37.3250i 0.834404 1.44523i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 3.58714 0.138480
\(672\) 0 0
\(673\) 45.5661 1.75644 0.878221 0.478254i \(-0.158730\pi\)
0.878221 + 0.478254i \(0.158730\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −6.54521 + 11.3366i −0.251553 + 0.435702i −0.963954 0.266071i \(-0.914275\pi\)
0.712401 + 0.701773i \(0.247608\pi\)
\(678\) 0 0
\(679\) −7.00654 + 0.622771i −0.268886 + 0.0238997i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −12.6506 21.9114i −0.484060 0.838417i 0.515772 0.856726i \(-0.327505\pi\)
−0.999832 + 0.0183087i \(0.994172\pi\)
\(684\) 0 0
\(685\) −19.4311 −0.742425
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −7.44679 12.8982i −0.283700 0.491383i
\(690\) 0 0
\(691\) 12.2016 21.1337i 0.464170 0.803965i −0.534994 0.844856i \(-0.679686\pi\)
0.999164 + 0.0408905i \(0.0130195\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0.326974 0.566335i 0.0124028 0.0214823i
\(696\) 0 0
\(697\) 25.3673 + 43.9375i 0.960855 + 1.66425i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −18.4137 −0.695476 −0.347738 0.937592i \(-0.613050\pi\)
−0.347738 + 0.937592i \(0.613050\pi\)
\(702\) 0 0
\(703\) 0.594823 + 1.03026i 0.0224342 + 0.0388571i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −2.45406 3.49445i −0.0922943 0.131422i
\(708\) 0 0
\(709\) 6.66501 11.5441i 0.250310 0.433549i −0.713301 0.700858i \(-0.752801\pi\)
0.963611 + 0.267308i \(0.0861342\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 59.0116 2.21000
\(714\) 0 0
\(715\) −2.55244 −0.0954557
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −7.84705 + 13.5915i −0.292646 + 0.506877i −0.974434 0.224672i \(-0.927869\pi\)
0.681789 + 0.731549i \(0.261202\pi\)
\(720\) 0 0
\(721\) −12.0848 + 26.0099i −0.450062 + 0.968660i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −13.6008 23.5573i −0.505121 0.874896i
\(726\) 0 0
\(727\) 25.6775 0.952327 0.476163 0.879357i \(-0.342027\pi\)
0.476163 + 0.879357i \(0.342027\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 2.43599 + 4.21926i 0.0900985 + 0.156055i
\(732\) 0 0
\(733\) −0.586541 + 1.01592i −0.0216644 + 0.0375238i −0.876654 0.481121i \(-0.840230\pi\)
0.854990 + 0.518645i \(0.173563\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 2.11944 3.67098i 0.0780707 0.135222i
\(738\) 0 0
\(739\) 11.6114 + 20.1116i 0.427133 + 0.739816i 0.996617 0.0821861i \(-0.0261902\pi\)
−0.569484 + 0.822003i \(0.692857\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −23.5692 −0.864669 −0.432335 0.901713i \(-0.642310\pi\)
−0.432335 + 0.901713i \(0.642310\pi\)
\(744\) 0 0
\(745\) −10.4087 18.0284i −0.381346 0.660510i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 11.0954 23.8804i 0.405416 0.872569i
\(750\) 0 0
\(751\) −22.0531 + 38.1971i −0.804728 + 1.39383i 0.111746 + 0.993737i \(0.464356\pi\)
−0.916474 + 0.400093i \(0.868978\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 13.7150 0.499139
\(756\) 0 0
\(757\) −2.71020 −0.0985040 −0.0492520 0.998786i \(-0.515684\pi\)
−0.0492520 + 0.998786i \(0.515684\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −14.5248 + 25.1577i −0.526524 + 0.911966i 0.472999 + 0.881063i \(0.343172\pi\)
−0.999522 + 0.0309029i \(0.990162\pi\)
\(762\) 0 0
\(763\) −28.2162 40.1784i −1.02150 1.45456i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −8.64804 14.9788i −0.312263 0.540855i
\(768\) 0 0
\(769\) 10.5035 0.378766 0.189383 0.981903i \(-0.439351\pi\)
0.189383 + 0.981903i \(0.439351\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −11.9230 20.6513i −0.428841 0.742774i 0.567930 0.823077i \(-0.307745\pi\)
−0.996771 + 0.0803029i \(0.974411\pi\)
\(774\) 0 0
\(775\) 18.6223 32.2548i 0.668933 1.15863i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −2.52297 + 4.36992i −0.0903949 + 0.156569i
\(780\) 0 0
\(781\) −0.110847 0.191993i −0.00396643 0.00687007i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −15.4827 −0.552602
\(786\) 0 0
\(787\) 2.19788 + 3.80684i 0.0783460 + 0.135699i 0.902536 0.430613i \(-0.141703\pi\)
−0.824190 + 0.566313i \(0.808369\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −30.3501 + 2.69764i −1.07912 + 0.0959171i
\(792\) 0 0
\(793\) 8.91885 15.4479i 0.316717 0.548571i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 5.12471 0.181527 0.0907633 0.995872i \(-0.471069\pi\)
0.0907633 + 0.995872i \(0.471069\pi\)
\(798\) 0 0
\(799\) −53.6289 −1.89725
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 3.88794 6.73410i 0.137202 0.237641i
\(804\) 0 0
\(805\) −9.47452 13.4912i −0.333933 0.475503i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −16.4612 28.5116i −0.578744 1.00241i −0.995624 0.0934519i \(-0.970210\pi\)
0.416880 0.908961i \(-0.363123\pi\)
\(810\) 0 0
\(811\) −31.8830 −1.11956 −0.559781 0.828640i \(-0.689115\pi\)
−0.559781 + 0.828640i \(0.689115\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −9.76605 16.9153i −0.342090 0.592517i
\(816\) 0 0
\(817\) −0.242278 + 0.419638i −0.00847624 + 0.0146813i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −17.1139 + 29.6421i −0.597278 + 1.03452i 0.395943 + 0.918275i \(0.370418\pi\)
−0.993221 + 0.116241i \(0.962916\pi\)
\(822\) 0 0
\(823\) −19.1866 33.2321i −0.668802 1.15840i −0.978239 0.207480i \(-0.933474\pi\)
0.309437 0.950920i \(-0.399859\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 9.23903 0.321273 0.160636 0.987014i \(-0.448645\pi\)
0.160636 + 0.987014i \(0.448645\pi\)
\(828\) 0 0
\(829\) 20.8224 + 36.0654i 0.723191 + 1.25260i 0.959714 + 0.280978i \(0.0906589\pi\)
−0.236523 + 0.971626i \(0.576008\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 31.5958 + 37.4433i 1.09473 + 1.29733i
\(834\) 0 0
\(835\) −11.8368 + 20.5019i −0.409629 + 0.709499i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 30.8483 1.06500 0.532500 0.846430i \(-0.321253\pi\)
0.532500 + 0.846430i \(0.321253\pi\)
\(840\) 0 0
\(841\) 15.8169 0.545410
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −0.0551458 + 0.0955153i −0.00189707 + 0.00328583i
\(846\) 0 0
\(847\) 11.6718 25.1210i 0.401048 0.863168i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 5.50128 + 9.52849i 0.188581 + 0.326632i
\(852\) 0 0
\(853\) 22.8342 0.781827 0.390913 0.920428i \(-0.372159\pi\)
0.390913 + 0.920428i \(0.372159\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 26.6720 + 46.1973i 0.911100 + 1.57807i 0.812513 + 0.582942i \(0.198099\pi\)
0.0985862 + 0.995129i \(0.468568\pi\)
\(858\) 0 0
\(859\) 11.5878 20.0707i 0.395372 0.684804i −0.597777 0.801663i \(-0.703949\pi\)
0.993149 + 0.116859i \(0.0372825\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 4.58456 7.94069i 0.156060 0.270304i −0.777384 0.629026i \(-0.783454\pi\)
0.933445 + 0.358722i \(0.116787\pi\)
\(864\) 0 0
\(865\) −9.56049 16.5593i −0.325067 0.563032i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −2.35871 −0.0800138
\(870\) 0 0
\(871\) −10.5393 18.2546i −0.357111 0.618534i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −23.1172 + 2.05476i −0.781505 + 0.0694634i
\(876\) 0 0
\(877\) −18.6190 + 32.2490i −0.628718 + 1.08897i 0.359091 + 0.933303i \(0.383087\pi\)
−0.987809 + 0.155670i \(0.950247\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 7.15345 0.241006 0.120503 0.992713i \(-0.461549\pi\)
0.120503 + 0.992713i \(0.461549\pi\)
\(882\) 0 0
\(883\) −39.8688 −1.34169 −0.670846 0.741596i \(-0.734069\pi\)
−0.670846 + 0.741596i \(0.734069\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 10.6755 18.4904i 0.358447 0.620848i −0.629255 0.777199i \(-0.716640\pi\)
0.987702 + 0.156351i \(0.0499731\pi\)
\(888\) 0 0
\(889\) 23.9021 2.12452i 0.801652 0.0712542i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −2.66690 4.61921i −0.0892445 0.154576i
\(894\) 0 0
\(895\) 12.2422 0.409212
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 30.6818 + 53.1424i 1.02329 + 1.77240i
\(900\) 0 0
\(901\) −14.3925 + 24.9285i −0.479483 + 0.830490i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −6.08073 + 10.5321i −0.202130 + 0.350100i
\(906\) 0 0
\(907\) 11.3012 + 19.5742i 0.375250 + 0.649951i 0.990364 0.138486i \(-0.0442237\pi\)
−0.615115 + 0.788438i \(0.710890\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −25.5188 −0.845476 −0.422738 0.906252i \(-0.638931\pi\)
−0.422738 + 0.906252i \(0.638931\pi\)
\(912\) 0 0
\(913\) 0.450607 + 0.780475i 0.0149129 + 0.0258300i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −14.5876 + 31.3965i −0.481723 + 1.03681i
\(918\) 0 0
\(919\) 5.71326 9.89566i 0.188463 0.326428i −0.756275 0.654254i \(-0.772983\pi\)
0.944738 + 0.327826i \(0.106316\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −1.10242 −0.0362865
\(924\) 0 0
\(925\) 6.94415 0.228322
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −6.79851 + 11.7754i −0.223052 + 0.386337i −0.955733 0.294235i \(-0.904935\pi\)
0.732681 + 0.680572i \(0.238269\pi\)
\(930\) 0 0
\(931\) −1.65388 + 4.58344i −0.0542036 + 0.150216i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 2.46656 + 4.27221i 0.0806652 + 0.139716i
\(936\) 0 0
\(937\) −11.1455 −0.364109 −0.182054 0.983288i \(-0.558275\pi\)
−0.182054 + 0.983288i \(0.558275\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −20.7310 35.9072i −0.675813 1.17054i −0.976231 0.216734i \(-0.930460\pi\)
0.300418 0.953808i \(-0.402874\pi\)
\(942\) 0 0
\(943\) −23.3340 + 40.4156i −0.759859 + 1.31611i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −21.2784 + 36.8552i −0.691454 + 1.19763i 0.279908 + 0.960027i \(0.409696\pi\)
−0.971362 + 0.237606i \(0.923637\pi\)
\(948\) 0 0
\(949\) −19.3335 33.4865i −0.627590 1.08702i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 21.2114 0.687106 0.343553 0.939133i \(-0.388370\pi\)
0.343553 + 0.939133i \(0.388370\pi\)
\(954\) 0 0
\(955\) 3.58413 + 6.20790i 0.115980 + 0.200883i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 30.5270 + 43.4689i 0.985770 + 1.40368i
\(960\) 0 0
\(961\) −26.5096 + 45.9160i −0.855150 + 1.48116i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −1.57555 −0.0507188
\(966\) 0 0
\(967\) 19.6651 0.632388 0.316194 0.948695i \(-0.397595\pi\)
0.316194 + 0.948695i \(0.397595\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −12.2892 + 21.2855i −0.394379 + 0.683084i −0.993022 0.117932i \(-0.962374\pi\)
0.598643 + 0.801016i \(0.295707\pi\)
\(972\) 0 0
\(973\) −1.78062 + 0.158269i −0.0570841 + 0.00507387i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 23.7359 + 41.1117i 0.759378 + 1.31528i 0.943168 + 0.332316i \(0.107830\pi\)
−0.183790 + 0.982966i \(0.558837\pi\)
\(978\) 0 0
\(979\) 8.42839 0.269373
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −13.7720 23.8538i −0.439258 0.760817i 0.558374 0.829589i \(-0.311425\pi\)
−0.997632 + 0.0687719i \(0.978092\pi\)
\(984\) 0 0
\(985\) 4.00269 6.93287i 0.127536 0.220900i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −2.24073 + 3.88107i −0.0712512 + 0.123411i
\(990\) 0 0
\(991\) 19.2335 + 33.3135i 0.610973 + 1.05824i 0.991077 + 0.133293i \(0.0425551\pi\)
−0.380103 + 0.924944i \(0.624112\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −10.3447 −0.327948
\(996\) 0 0
\(997\) 16.2272 + 28.1064i 0.513921 + 0.890138i 0.999870 + 0.0161503i \(0.00514103\pi\)
−0.485948 + 0.873988i \(0.661526\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2268.2.k.e.1297.3 14
3.2 odd 2 2268.2.k.f.1297.5 14
7.4 even 3 inner 2268.2.k.e.1621.3 14
9.2 odd 6 756.2.i.b.37.5 14
9.4 even 3 252.2.l.b.205.1 yes 14
9.5 odd 6 756.2.l.b.289.3 14
9.7 even 3 252.2.i.b.121.5 yes 14
21.11 odd 6 2268.2.k.f.1621.5 14
36.7 odd 6 1008.2.q.j.625.3 14
36.11 even 6 3024.2.q.j.2305.5 14
36.23 even 6 3024.2.t.j.289.3 14
36.31 odd 6 1008.2.t.j.961.7 14
63.2 odd 6 5292.2.j.h.1765.5 14
63.4 even 3 252.2.i.b.25.5 14
63.5 even 6 5292.2.j.g.3529.3 14
63.11 odd 6 756.2.l.b.361.3 14
63.13 odd 6 1764.2.l.i.961.7 14
63.16 even 3 1764.2.j.g.589.6 14
63.20 even 6 5292.2.i.i.1549.3 14
63.23 odd 6 5292.2.j.h.3529.5 14
63.25 even 3 252.2.l.b.193.1 yes 14
63.31 odd 6 1764.2.i.i.1537.3 14
63.32 odd 6 756.2.i.b.613.5 14
63.34 odd 6 1764.2.i.i.373.3 14
63.38 even 6 5292.2.l.i.361.5 14
63.40 odd 6 1764.2.j.h.1177.2 14
63.41 even 6 5292.2.l.i.3313.5 14
63.47 even 6 5292.2.j.g.1765.3 14
63.52 odd 6 1764.2.l.i.949.7 14
63.58 even 3 1764.2.j.g.1177.6 14
63.59 even 6 5292.2.i.i.2125.3 14
63.61 odd 6 1764.2.j.h.589.2 14
252.11 even 6 3024.2.t.j.1873.3 14
252.67 odd 6 1008.2.q.j.529.3 14
252.95 even 6 3024.2.q.j.2881.5 14
252.151 odd 6 1008.2.t.j.193.7 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
252.2.i.b.25.5 14 63.4 even 3
252.2.i.b.121.5 yes 14 9.7 even 3
252.2.l.b.193.1 yes 14 63.25 even 3
252.2.l.b.205.1 yes 14 9.4 even 3
756.2.i.b.37.5 14 9.2 odd 6
756.2.i.b.613.5 14 63.32 odd 6
756.2.l.b.289.3 14 9.5 odd 6
756.2.l.b.361.3 14 63.11 odd 6
1008.2.q.j.529.3 14 252.67 odd 6
1008.2.q.j.625.3 14 36.7 odd 6
1008.2.t.j.193.7 14 252.151 odd 6
1008.2.t.j.961.7 14 36.31 odd 6
1764.2.i.i.373.3 14 63.34 odd 6
1764.2.i.i.1537.3 14 63.31 odd 6
1764.2.j.g.589.6 14 63.16 even 3
1764.2.j.g.1177.6 14 63.58 even 3
1764.2.j.h.589.2 14 63.61 odd 6
1764.2.j.h.1177.2 14 63.40 odd 6
1764.2.l.i.949.7 14 63.52 odd 6
1764.2.l.i.961.7 14 63.13 odd 6
2268.2.k.e.1297.3 14 1.1 even 1 trivial
2268.2.k.e.1621.3 14 7.4 even 3 inner
2268.2.k.f.1297.5 14 3.2 odd 2
2268.2.k.f.1621.5 14 21.11 odd 6
3024.2.q.j.2305.5 14 36.11 even 6
3024.2.q.j.2881.5 14 252.95 even 6
3024.2.t.j.289.3 14 36.23 even 6
3024.2.t.j.1873.3 14 252.11 even 6
5292.2.i.i.1549.3 14 63.20 even 6
5292.2.i.i.2125.3 14 63.59 even 6
5292.2.j.g.1765.3 14 63.47 even 6
5292.2.j.g.3529.3 14 63.5 even 6
5292.2.j.h.1765.5 14 63.2 odd 6
5292.2.j.h.3529.5 14 63.23 odd 6
5292.2.l.i.361.5 14 63.38 even 6
5292.2.l.i.3313.5 14 63.41 even 6