Properties

Label 1764.2.j.g.589.6
Level $1764$
Weight $2$
Character 1764.589
Analytic conductor $14.086$
Analytic rank $0$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1764,2,Mod(589,1764)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1764.589"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1764, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 2, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1764 = 2^{2} \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1764.j (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [14,0,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.0856109166\)
Analytic rank: \(0\)
Dimension: \(14\)
Relative dimension: \(7\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} - 5x^{12} - 3x^{11} + 7x^{10} + 30x^{9} - 117x^{7} + 270x^{5} + 189x^{4} - 243x^{3} - 1215x^{2} + 2187 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 3^{5} \)
Twist minimal: no (minimal twist has level 252)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 589.6
Root \(-1.73040 + 0.0755709i\) of defining polynomial
Character \(\chi\) \(=\) 1764.589
Dual form 1764.2.j.g.1177.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.930647 + 1.46079i) q^{3} +(-0.483929 + 0.838189i) q^{5} +(-1.26779 + 2.71895i) q^{9} +(-0.364122 - 0.630678i) q^{11} +(1.81066 - 3.13615i) q^{13} +(-1.67478 + 0.0731419i) q^{15} -6.99897 q^{17} +0.696101 q^{19} +(-3.21898 + 5.57544i) q^{23} +(2.03163 + 3.51888i) q^{25} +(-5.15168 + 0.678412i) q^{27} +(3.34727 + 5.79764i) q^{29} +(-4.58310 + 7.93816i) q^{31} +(0.582416 - 1.11884i) q^{33} -1.70901 q^{37} +(6.26634 - 0.273666i) q^{39} +(-3.62444 + 6.27771i) q^{41} +(-0.348050 - 0.602841i) q^{43} +(-1.66548 - 2.37843i) q^{45} +(-3.83120 - 6.63583i) q^{47} +(-6.51357 - 10.2240i) q^{51} -4.11275 q^{53} +0.704836 q^{55} +(0.647824 + 1.01685i) q^{57} +(2.38809 - 4.13629i) q^{59} +(-2.46287 - 4.26582i) q^{61} +(1.75246 + 3.03535i) q^{65} +(2.91035 - 5.04087i) q^{67} +(-11.1403 + 0.486523i) q^{69} +0.304424 q^{71} -10.6776 q^{73} +(-3.24960 + 6.24261i) q^{75} +(1.61945 + 2.80497i) q^{79} +(-5.78541 - 6.89413i) q^{81} +(0.618759 + 1.07172i) q^{83} +(3.38700 - 5.86646i) q^{85} +(-5.35399 + 10.2852i) q^{87} +11.5736 q^{89} +(-15.8612 + 0.692698i) q^{93} +(-0.336863 + 0.583464i) q^{95} +(1.32933 + 2.30247i) q^{97} +(2.17641 - 0.190462i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q - 3 q^{3} - 2 q^{5} - 5 q^{9} + 2 q^{11} + 2 q^{13} + 7 q^{15} - 4 q^{17} - 14 q^{19} + 11 q^{23} - 9 q^{25} + 9 q^{27} + q^{29} - q^{31} - q^{33} - 20 q^{37} + 22 q^{39} - 33 q^{41} + 7 q^{43}+ \cdots + 7 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1764\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(883\) \(1081\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.930647 + 1.46079i 0.537309 + 0.843385i
\(4\) 0 0
\(5\) −0.483929 + 0.838189i −0.216419 + 0.374850i −0.953711 0.300725i \(-0.902771\pi\)
0.737291 + 0.675575i \(0.236105\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) −1.26779 + 2.71895i −0.422597 + 0.906318i
\(10\) 0 0
\(11\) −0.364122 0.630678i −0.109787 0.190156i 0.805897 0.592056i \(-0.201683\pi\)
−0.915684 + 0.401899i \(0.868350\pi\)
\(12\) 0 0
\(13\) 1.81066 3.13615i 0.502187 0.869813i −0.497810 0.867286i \(-0.665862\pi\)
0.999997 0.00252677i \(-0.000804296\pi\)
\(14\) 0 0
\(15\) −1.67478 + 0.0731419i −0.432427 + 0.0188851i
\(16\) 0 0
\(17\) −6.99897 −1.69750 −0.848749 0.528795i \(-0.822644\pi\)
−0.848749 + 0.528795i \(0.822644\pi\)
\(18\) 0 0
\(19\) 0.696101 0.159697 0.0798483 0.996807i \(-0.474556\pi\)
0.0798483 + 0.996807i \(0.474556\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −3.21898 + 5.57544i −0.671204 + 1.16256i 0.306359 + 0.951916i \(0.400889\pi\)
−0.977563 + 0.210643i \(0.932444\pi\)
\(24\) 0 0
\(25\) 2.03163 + 3.51888i 0.406325 + 0.703776i
\(26\) 0 0
\(27\) −5.15168 + 0.678412i −0.991440 + 0.130560i
\(28\) 0 0
\(29\) 3.34727 + 5.79764i 0.621573 + 1.07660i 0.989193 + 0.146619i \(0.0468393\pi\)
−0.367620 + 0.929976i \(0.619827\pi\)
\(30\) 0 0
\(31\) −4.58310 + 7.93816i −0.823149 + 1.42574i 0.0801762 + 0.996781i \(0.474452\pi\)
−0.903326 + 0.428956i \(0.858882\pi\)
\(32\) 0 0
\(33\) 0.582416 1.11884i 0.101386 0.194765i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −1.70901 −0.280960 −0.140480 0.990084i \(-0.544865\pi\)
−0.140480 + 0.990084i \(0.544865\pi\)
\(38\) 0 0
\(39\) 6.26634 0.273666i 1.00342 0.0438217i
\(40\) 0 0
\(41\) −3.62444 + 6.27771i −0.566042 + 0.980413i 0.430910 + 0.902395i \(0.358193\pi\)
−0.996952 + 0.0780185i \(0.975141\pi\)
\(42\) 0 0
\(43\) −0.348050 0.602841i −0.0530772 0.0919324i 0.838266 0.545261i \(-0.183570\pi\)
−0.891343 + 0.453329i \(0.850236\pi\)
\(44\) 0 0
\(45\) −1.66548 2.37843i −0.248274 0.354555i
\(46\) 0 0
\(47\) −3.83120 6.63583i −0.558838 0.967936i −0.997594 0.0693294i \(-0.977914\pi\)
0.438756 0.898606i \(-0.355419\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) −6.51357 10.2240i −0.912082 1.43165i
\(52\) 0 0
\(53\) −4.11275 −0.564929 −0.282465 0.959278i \(-0.591152\pi\)
−0.282465 + 0.959278i \(0.591152\pi\)
\(54\) 0 0
\(55\) 0.704836 0.0950401
\(56\) 0 0
\(57\) 0.647824 + 1.01685i 0.0858064 + 0.134686i
\(58\) 0 0
\(59\) 2.38809 4.13629i 0.310903 0.538500i −0.667655 0.744471i \(-0.732702\pi\)
0.978558 + 0.205971i \(0.0660353\pi\)
\(60\) 0 0
\(61\) −2.46287 4.26582i −0.315338 0.546182i 0.664171 0.747581i \(-0.268785\pi\)
−0.979509 + 0.201399i \(0.935451\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 1.75246 + 3.03535i 0.217366 + 0.376489i
\(66\) 0 0
\(67\) 2.91035 5.04087i 0.355556 0.615841i −0.631657 0.775248i \(-0.717625\pi\)
0.987213 + 0.159407i \(0.0509583\pi\)
\(68\) 0 0
\(69\) −11.1403 + 0.486523i −1.34113 + 0.0585704i
\(70\) 0 0
\(71\) 0.304424 0.0361285 0.0180642 0.999837i \(-0.494250\pi\)
0.0180642 + 0.999837i \(0.494250\pi\)
\(72\) 0 0
\(73\) −10.6776 −1.24972 −0.624858 0.780739i \(-0.714843\pi\)
−0.624858 + 0.780739i \(0.714843\pi\)
\(74\) 0 0
\(75\) −3.24960 + 6.24261i −0.375232 + 0.720834i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 1.61945 + 2.80497i 0.182203 + 0.315584i 0.942630 0.333839i \(-0.108344\pi\)
−0.760428 + 0.649423i \(0.775011\pi\)
\(80\) 0 0
\(81\) −5.78541 6.89413i −0.642823 0.766015i
\(82\) 0 0
\(83\) 0.618759 + 1.07172i 0.0679176 + 0.117637i 0.897985 0.440027i \(-0.145031\pi\)
−0.830067 + 0.557664i \(0.811698\pi\)
\(84\) 0 0
\(85\) 3.38700 5.86646i 0.367372 0.636307i
\(86\) 0 0
\(87\) −5.35399 + 10.2852i −0.574008 + 1.10269i
\(88\) 0 0
\(89\) 11.5736 1.22680 0.613399 0.789773i \(-0.289802\pi\)
0.613399 + 0.789773i \(0.289802\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −15.8612 + 0.692698i −1.64473 + 0.0718295i
\(94\) 0 0
\(95\) −0.336863 + 0.583464i −0.0345614 + 0.0598622i
\(96\) 0 0
\(97\) 1.32933 + 2.30247i 0.134973 + 0.233780i 0.925587 0.378534i \(-0.123572\pi\)
−0.790614 + 0.612315i \(0.790238\pi\)
\(98\) 0 0
\(99\) 2.17641 0.190462i 0.218738 0.0191422i
\(100\) 0 0
\(101\) −0.806969 1.39771i −0.0802964 0.139077i 0.823081 0.567924i \(-0.192253\pi\)
−0.903377 + 0.428847i \(0.858920\pi\)
\(102\) 0 0
\(103\) −5.42007 + 9.38783i −0.534055 + 0.925010i 0.465153 + 0.885230i \(0.345999\pi\)
−0.999208 + 0.0397803i \(0.987334\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −9.95259 −0.962153 −0.481077 0.876679i \(-0.659754\pi\)
−0.481077 + 0.876679i \(0.659754\pi\)
\(108\) 0 0
\(109\) 18.5567 1.77741 0.888705 0.458480i \(-0.151606\pi\)
0.888705 + 0.458480i \(0.151606\pi\)
\(110\) 0 0
\(111\) −1.59049 2.49650i −0.150962 0.236957i
\(112\) 0 0
\(113\) 5.75824 9.97356i 0.541689 0.938234i −0.457118 0.889406i \(-0.651118\pi\)
0.998807 0.0488275i \(-0.0155485\pi\)
\(114\) 0 0
\(115\) −3.11551 5.39623i −0.290523 0.503201i
\(116\) 0 0
\(117\) 6.23152 + 8.89909i 0.576104 + 0.822721i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 5.23483 9.06699i 0.475894 0.824272i
\(122\) 0 0
\(123\) −12.5435 + 0.547804i −1.13101 + 0.0493938i
\(124\) 0 0
\(125\) −8.77193 −0.784586
\(126\) 0 0
\(127\) 9.06977 0.804812 0.402406 0.915461i \(-0.368174\pi\)
0.402406 + 0.915461i \(0.368174\pi\)
\(128\) 0 0
\(129\) 0.556710 1.06946i 0.0490156 0.0941607i
\(130\) 0 0
\(131\) −6.54255 + 11.3320i −0.571625 + 0.990084i 0.424774 + 0.905299i \(0.360354\pi\)
−0.996399 + 0.0847847i \(0.972980\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 1.92441 4.64638i 0.165626 0.399897i
\(136\) 0 0
\(137\) 10.0382 + 17.3867i 0.857623 + 1.48545i 0.874190 + 0.485584i \(0.161393\pi\)
−0.0165668 + 0.999863i \(0.505274\pi\)
\(138\) 0 0
\(139\) 0.337832 0.585143i 0.0286546 0.0496312i −0.851343 0.524610i \(-0.824211\pi\)
0.879997 + 0.474979i \(0.157544\pi\)
\(140\) 0 0
\(141\) 6.12804 11.7722i 0.516074 0.991397i
\(142\) 0 0
\(143\) −2.63720 −0.220534
\(144\) 0 0
\(145\) −6.47936 −0.538082
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −10.7544 + 18.6271i −0.881034 + 1.52599i −0.0308402 + 0.999524i \(0.509818\pi\)
−0.850193 + 0.526471i \(0.823515\pi\)
\(150\) 0 0
\(151\) −7.08523 12.2720i −0.576588 0.998680i −0.995867 0.0908223i \(-0.971050\pi\)
0.419279 0.907857i \(-0.362283\pi\)
\(152\) 0 0
\(153\) 8.87324 19.0299i 0.717359 1.53847i
\(154\) 0 0
\(155\) −4.43579 7.68301i −0.356291 0.617114i
\(156\) 0 0
\(157\) 7.99845 13.8537i 0.638346 1.10565i −0.347450 0.937699i \(-0.612952\pi\)
0.985796 0.167949i \(-0.0537143\pi\)
\(158\) 0 0
\(159\) −3.82752 6.00784i −0.303542 0.476453i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 20.1808 1.58068 0.790340 0.612669i \(-0.209904\pi\)
0.790340 + 0.612669i \(0.209904\pi\)
\(164\) 0 0
\(165\) 0.655953 + 1.02961i 0.0510659 + 0.0801554i
\(166\) 0 0
\(167\) −12.2299 + 21.1828i −0.946378 + 1.63917i −0.193410 + 0.981118i \(0.561955\pi\)
−0.752968 + 0.658057i \(0.771379\pi\)
\(168\) 0 0
\(169\) −0.0569772 0.0986874i −0.00438286 0.00759134i
\(170\) 0 0
\(171\) −0.882511 + 1.89267i −0.0674873 + 0.144736i
\(172\) 0 0
\(173\) −9.87800 17.1092i −0.751010 1.30079i −0.947333 0.320249i \(-0.896233\pi\)
0.196323 0.980539i \(-0.437100\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 8.26471 0.360940i 0.621214 0.0271299i
\(178\) 0 0
\(179\) 12.6488 0.945415 0.472707 0.881219i \(-0.343277\pi\)
0.472707 + 0.881219i \(0.343277\pi\)
\(180\) 0 0
\(181\) 12.5654 0.933975 0.466988 0.884264i \(-0.345339\pi\)
0.466988 + 0.884264i \(0.345339\pi\)
\(182\) 0 0
\(183\) 3.93938 7.56770i 0.291208 0.559421i
\(184\) 0 0
\(185\) 0.827040 1.43248i 0.0608052 0.105318i
\(186\) 0 0
\(187\) 2.54848 + 4.41409i 0.186363 + 0.322790i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 3.70316 + 6.41407i 0.267951 + 0.464105i 0.968333 0.249663i \(-0.0803200\pi\)
−0.700381 + 0.713769i \(0.746987\pi\)
\(192\) 0 0
\(193\) 0.813937 1.40978i 0.0585885 0.101478i −0.835244 0.549880i \(-0.814673\pi\)
0.893832 + 0.448402i \(0.148007\pi\)
\(194\) 0 0
\(195\) −2.80308 + 5.38481i −0.200732 + 0.385614i
\(196\) 0 0
\(197\) −8.27125 −0.589302 −0.294651 0.955605i \(-0.595203\pi\)
−0.294651 + 0.955605i \(0.595203\pi\)
\(198\) 0 0
\(199\) −10.6882 −0.757667 −0.378834 0.925465i \(-0.623675\pi\)
−0.378834 + 0.925465i \(0.623675\pi\)
\(200\) 0 0
\(201\) 10.0721 0.439876i 0.710434 0.0310264i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −3.50794 6.07593i −0.245005 0.424361i
\(206\) 0 0
\(207\) −11.0783 15.8207i −0.769998 1.09962i
\(208\) 0 0
\(209\) −0.253466 0.439015i −0.0175326 0.0303673i
\(210\) 0 0
\(211\) −11.2725 + 19.5246i −0.776034 + 1.34413i 0.158178 + 0.987411i \(0.449438\pi\)
−0.934211 + 0.356720i \(0.883895\pi\)
\(212\) 0 0
\(213\) 0.283311 + 0.444699i 0.0194122 + 0.0304702i
\(214\) 0 0
\(215\) 0.673726 0.0459478
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −9.93705 15.5976i −0.671484 1.05399i
\(220\) 0 0
\(221\) −12.6727 + 21.9498i −0.852461 + 1.47651i
\(222\) 0 0
\(223\) 3.70093 + 6.41020i 0.247832 + 0.429258i 0.962924 0.269772i \(-0.0869484\pi\)
−0.715092 + 0.699031i \(0.753615\pi\)
\(224\) 0 0
\(225\) −12.1433 + 1.06269i −0.809556 + 0.0708458i
\(226\) 0 0
\(227\) 0.299086 + 0.518033i 0.0198511 + 0.0343831i 0.875780 0.482710i \(-0.160347\pi\)
−0.855929 + 0.517093i \(0.827014\pi\)
\(228\) 0 0
\(229\) 2.01858 3.49629i 0.133392 0.231041i −0.791590 0.611052i \(-0.790747\pi\)
0.924982 + 0.380011i \(0.124080\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 11.1951 0.733414 0.366707 0.930336i \(-0.380485\pi\)
0.366707 + 0.930336i \(0.380485\pi\)
\(234\) 0 0
\(235\) 7.41611 0.483774
\(236\) 0 0
\(237\) −2.59033 + 4.97611i −0.168260 + 0.323233i
\(238\) 0 0
\(239\) −12.8171 + 22.1999i −0.829069 + 1.43599i 0.0697006 + 0.997568i \(0.477796\pi\)
−0.898769 + 0.438421i \(0.855538\pi\)
\(240\) 0 0
\(241\) 3.29590 + 5.70866i 0.212307 + 0.367727i 0.952436 0.304738i \(-0.0985688\pi\)
−0.740129 + 0.672465i \(0.765236\pi\)
\(242\) 0 0
\(243\) 4.68668 14.8672i 0.300651 0.953734i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 1.26040 2.18308i 0.0801975 0.138906i
\(248\) 0 0
\(249\) −0.989711 + 1.90127i −0.0627204 + 0.120488i
\(250\) 0 0
\(251\) 25.0438 1.58075 0.790374 0.612624i \(-0.209886\pi\)
0.790374 + 0.612624i \(0.209886\pi\)
\(252\) 0 0
\(253\) 4.68840 0.294757
\(254\) 0 0
\(255\) 11.7217 0.511918i 0.734044 0.0320575i
\(256\) 0 0
\(257\) 9.07036 15.7103i 0.565794 0.979984i −0.431182 0.902265i \(-0.641903\pi\)
0.996975 0.0777184i \(-0.0247635\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −20.0072 + 1.75086i −1.23841 + 0.108376i
\(262\) 0 0
\(263\) −6.40438 11.0927i −0.394911 0.684006i 0.598179 0.801363i \(-0.295891\pi\)
−0.993090 + 0.117357i \(0.962558\pi\)
\(264\) 0 0
\(265\) 1.99028 3.44726i 0.122262 0.211763i
\(266\) 0 0
\(267\) 10.7709 + 16.9065i 0.659170 + 1.03466i
\(268\) 0 0
\(269\) 28.8825 1.76099 0.880497 0.474052i \(-0.157209\pi\)
0.880497 + 0.474052i \(0.157209\pi\)
\(270\) 0 0
\(271\) −9.19159 −0.558349 −0.279175 0.960240i \(-0.590061\pi\)
−0.279175 + 0.960240i \(0.590061\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 1.47952 2.56260i 0.0892183 0.154531i
\(276\) 0 0
\(277\) 1.95778 + 3.39098i 0.117632 + 0.203744i 0.918829 0.394656i \(-0.129136\pi\)
−0.801197 + 0.598401i \(0.795803\pi\)
\(278\) 0 0
\(279\) −15.7731 22.5252i −0.944309 1.34855i
\(280\) 0 0
\(281\) 7.64654 + 13.2442i 0.456154 + 0.790082i 0.998754 0.0499093i \(-0.0158932\pi\)
−0.542600 + 0.839991i \(0.682560\pi\)
\(282\) 0 0
\(283\) −12.4890 + 21.6315i −0.742392 + 1.28586i 0.209011 + 0.977913i \(0.432975\pi\)
−0.951403 + 0.307947i \(0.900358\pi\)
\(284\) 0 0
\(285\) −1.16582 + 0.0509141i −0.0690570 + 0.00301589i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 31.9855 1.88150
\(290\) 0 0
\(291\) −2.12628 + 4.08466i −0.124645 + 0.239447i
\(292\) 0 0
\(293\) −4.08092 + 7.06835i −0.238410 + 0.412938i −0.960258 0.279114i \(-0.909959\pi\)
0.721848 + 0.692051i \(0.243293\pi\)
\(294\) 0 0
\(295\) 2.31133 + 4.00334i 0.134571 + 0.233084i
\(296\) 0 0
\(297\) 2.30370 + 3.00202i 0.133674 + 0.174195i
\(298\) 0 0
\(299\) 11.6570 + 20.1904i 0.674139 + 1.16764i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 1.29075 2.47959i 0.0741519 0.142448i
\(304\) 0 0
\(305\) 4.76742 0.272981
\(306\) 0 0
\(307\) 18.0692 1.03126 0.515631 0.856811i \(-0.327558\pi\)
0.515631 + 0.856811i \(0.327558\pi\)
\(308\) 0 0
\(309\) −18.7578 + 0.819199i −1.06709 + 0.0466026i
\(310\) 0 0
\(311\) 5.00384 8.66691i 0.283742 0.491456i −0.688561 0.725178i \(-0.741757\pi\)
0.972303 + 0.233723i \(0.0750907\pi\)
\(312\) 0 0
\(313\) −1.49532 2.58998i −0.0845207 0.146394i 0.820666 0.571408i \(-0.193603\pi\)
−0.905187 + 0.425014i \(0.860269\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 11.9246 + 20.6541i 0.669754 + 1.16005i 0.977973 + 0.208732i \(0.0669336\pi\)
−0.308219 + 0.951315i \(0.599733\pi\)
\(318\) 0 0
\(319\) 2.43763 4.22210i 0.136481 0.236392i
\(320\) 0 0
\(321\) −9.26235 14.5386i −0.516974 0.811466i
\(322\) 0 0
\(323\) −4.87199 −0.271085
\(324\) 0 0
\(325\) 14.7143 0.816204
\(326\) 0 0
\(327\) 17.2697 + 27.1074i 0.955019 + 1.49904i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 8.01886 + 13.8891i 0.440757 + 0.763413i 0.997746 0.0671069i \(-0.0213768\pi\)
−0.556989 + 0.830520i \(0.688044\pi\)
\(332\) 0 0
\(333\) 2.16667 4.64672i 0.118733 0.254639i
\(334\) 0 0
\(335\) 2.81680 + 4.87884i 0.153898 + 0.266560i
\(336\) 0 0
\(337\) 16.8985 29.2691i 0.920520 1.59439i 0.121907 0.992542i \(-0.461099\pi\)
0.798613 0.601845i \(-0.205568\pi\)
\(338\) 0 0
\(339\) 19.9281 0.870311i 1.08235 0.0472688i
\(340\) 0 0
\(341\) 6.67523 0.361484
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 4.98329 9.57308i 0.268291 0.515397i
\(346\) 0 0
\(347\) −17.6637 + 30.5944i −0.948237 + 1.64240i −0.199102 + 0.979979i \(0.563802\pi\)
−0.749136 + 0.662417i \(0.769531\pi\)
\(348\) 0 0
\(349\) −5.75344 9.96526i −0.307975 0.533428i 0.669944 0.742411i \(-0.266318\pi\)
−0.977919 + 0.208983i \(0.932985\pi\)
\(350\) 0 0
\(351\) −7.20033 + 17.3848i −0.384325 + 0.927933i
\(352\) 0 0
\(353\) −12.4432 21.5522i −0.662283 1.14711i −0.980014 0.198926i \(-0.936254\pi\)
0.317732 0.948181i \(-0.397079\pi\)
\(354\) 0 0
\(355\) −0.147320 + 0.255165i −0.00781891 + 0.0135427i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −18.4536 −0.973944 −0.486972 0.873417i \(-0.661899\pi\)
−0.486972 + 0.873417i \(0.661899\pi\)
\(360\) 0 0
\(361\) −18.5154 −0.974497
\(362\) 0 0
\(363\) 18.1167 0.791202i 0.950881 0.0415273i
\(364\) 0 0
\(365\) 5.16718 8.94982i 0.270463 0.468455i
\(366\) 0 0
\(367\) 9.10688 + 15.7736i 0.475375 + 0.823374i 0.999602 0.0282046i \(-0.00897899\pi\)
−0.524227 + 0.851579i \(0.675646\pi\)
\(368\) 0 0
\(369\) −12.4738 17.8135i −0.649358 0.927334i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 9.09995 15.7616i 0.471177 0.816103i −0.528279 0.849071i \(-0.677162\pi\)
0.999456 + 0.0329676i \(0.0104958\pi\)
\(374\) 0 0
\(375\) −8.16357 12.8139i −0.421565 0.661708i
\(376\) 0 0
\(377\) 24.2431 1.24858
\(378\) 0 0
\(379\) −24.1061 −1.23825 −0.619124 0.785293i \(-0.712512\pi\)
−0.619124 + 0.785293i \(0.712512\pi\)
\(380\) 0 0
\(381\) 8.44076 + 13.2490i 0.432433 + 0.678767i
\(382\) 0 0
\(383\) 3.21847 5.57455i 0.164456 0.284846i −0.772006 0.635615i \(-0.780746\pi\)
0.936462 + 0.350769i \(0.114080\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 2.08035 0.182055i 0.105750 0.00925440i
\(388\) 0 0
\(389\) −16.9299 29.3234i −0.858379 1.48676i −0.873475 0.486869i \(-0.838139\pi\)
0.0150964 0.999886i \(-0.495194\pi\)
\(390\) 0 0
\(391\) 22.5295 39.0223i 1.13937 1.97344i
\(392\) 0 0
\(393\) −22.6425 + 0.988853i −1.14216 + 0.0498810i
\(394\) 0 0
\(395\) −3.13480 −0.157729
\(396\) 0 0
\(397\) 1.61726 0.0811679 0.0405840 0.999176i \(-0.487078\pi\)
0.0405840 + 0.999176i \(0.487078\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −2.87691 + 4.98296i −0.143666 + 0.248837i −0.928874 0.370395i \(-0.879222\pi\)
0.785208 + 0.619232i \(0.212556\pi\)
\(402\) 0 0
\(403\) 16.5969 + 28.7466i 0.826749 + 1.43197i
\(404\) 0 0
\(405\) 8.57831 1.51300i 0.426260 0.0751813i
\(406\) 0 0
\(407\) 0.622289 + 1.07784i 0.0308457 + 0.0534263i
\(408\) 0 0
\(409\) 2.88631 4.99923i 0.142719 0.247196i −0.785801 0.618480i \(-0.787749\pi\)
0.928520 + 0.371284i \(0.121082\pi\)
\(410\) 0 0
\(411\) −16.0562 + 30.8446i −0.791995 + 1.52145i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −1.19774 −0.0587948
\(416\) 0 0
\(417\) 1.16917 0.0510606i 0.0572546 0.00250045i
\(418\) 0 0
\(419\) −9.29032 + 16.0913i −0.453862 + 0.786111i −0.998622 0.0524804i \(-0.983287\pi\)
0.544760 + 0.838592i \(0.316621\pi\)
\(420\) 0 0
\(421\) −8.05788 13.9567i −0.392717 0.680206i 0.600090 0.799933i \(-0.295131\pi\)
−0.992807 + 0.119727i \(0.961798\pi\)
\(422\) 0 0
\(423\) 22.8997 2.00399i 1.11342 0.0974375i
\(424\) 0 0
\(425\) −14.2193 24.6285i −0.689737 1.19466i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −2.45431 3.85239i −0.118495 0.185995i
\(430\) 0 0
\(431\) −3.65327 −0.175972 −0.0879860 0.996122i \(-0.528043\pi\)
−0.0879860 + 0.996122i \(0.528043\pi\)
\(432\) 0 0
\(433\) 12.6697 0.608865 0.304432 0.952534i \(-0.401533\pi\)
0.304432 + 0.952534i \(0.401533\pi\)
\(434\) 0 0
\(435\) −6.03000 9.46496i −0.289116 0.453810i
\(436\) 0 0
\(437\) −2.24073 + 3.88107i −0.107189 + 0.185657i
\(438\) 0 0
\(439\) −5.85810 10.1465i −0.279592 0.484267i 0.691692 0.722193i \(-0.256866\pi\)
−0.971283 + 0.237926i \(0.923532\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 14.8735 + 25.7617i 0.706661 + 1.22397i 0.966089 + 0.258210i \(0.0831328\pi\)
−0.259428 + 0.965763i \(0.583534\pi\)
\(444\) 0 0
\(445\) −5.60079 + 9.70085i −0.265503 + 0.459865i
\(446\) 0 0
\(447\) −37.2188 + 1.62544i −1.76039 + 0.0768806i
\(448\) 0 0
\(449\) 11.0193 0.520034 0.260017 0.965604i \(-0.416272\pi\)
0.260017 + 0.965604i \(0.416272\pi\)
\(450\) 0 0
\(451\) 5.27895 0.248576
\(452\) 0 0
\(453\) 11.3329 21.7709i 0.532466 1.02289i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −0.258224 0.447257i −0.0120792 0.0209218i 0.859923 0.510424i \(-0.170512\pi\)
−0.872002 + 0.489503i \(0.837178\pi\)
\(458\) 0 0
\(459\) 36.0564 4.74818i 1.68297 0.221626i
\(460\) 0 0
\(461\) −3.54962 6.14813i −0.165322 0.286347i 0.771447 0.636293i \(-0.219533\pi\)
−0.936770 + 0.349946i \(0.886200\pi\)
\(462\) 0 0
\(463\) −4.91148 + 8.50693i −0.228256 + 0.395351i −0.957291 0.289125i \(-0.906636\pi\)
0.729035 + 0.684476i \(0.239969\pi\)
\(464\) 0 0
\(465\) 7.09508 13.6299i 0.329027 0.632072i
\(466\) 0 0
\(467\) 9.59208 0.443868 0.221934 0.975062i \(-0.428763\pi\)
0.221934 + 0.975062i \(0.428763\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 27.6811 1.20890i 1.27548 0.0557032i
\(472\) 0 0
\(473\) −0.253466 + 0.439015i −0.0116544 + 0.0201859i
\(474\) 0 0
\(475\) 1.41422 + 2.44950i 0.0648887 + 0.112391i
\(476\) 0 0
\(477\) 5.21411 11.1824i 0.238738 0.512005i
\(478\) 0 0
\(479\) −8.13621 14.0923i −0.371753 0.643895i 0.618082 0.786113i \(-0.287910\pi\)
−0.989835 + 0.142218i \(0.954576\pi\)
\(480\) 0 0
\(481\) −3.09444 + 5.35973i −0.141094 + 0.244383i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −2.57321 −0.116843
\(486\) 0 0
\(487\) 19.0102 0.861436 0.430718 0.902487i \(-0.358260\pi\)
0.430718 + 0.902487i \(0.358260\pi\)
\(488\) 0 0
\(489\) 18.7812 + 29.4798i 0.849314 + 1.33312i
\(490\) 0 0
\(491\) 2.55413 4.42387i 0.115266 0.199647i −0.802620 0.596491i \(-0.796561\pi\)
0.917886 + 0.396844i \(0.129895\pi\)
\(492\) 0 0
\(493\) −23.4274 40.5775i −1.05512 1.82752i
\(494\) 0 0
\(495\) −0.893585 + 1.91642i −0.0401637 + 0.0861365i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 14.2638 24.7056i 0.638536 1.10598i −0.347219 0.937784i \(-0.612874\pi\)
0.985754 0.168192i \(-0.0537928\pi\)
\(500\) 0 0
\(501\) −42.3253 + 1.84845i −1.89095 + 0.0825826i
\(502\) 0 0
\(503\) 4.05885 0.180975 0.0904877 0.995898i \(-0.471157\pi\)
0.0904877 + 0.995898i \(0.471157\pi\)
\(504\) 0 0
\(505\) 1.56206 0.0695108
\(506\) 0 0
\(507\) 0.0911355 0.175075i 0.00404747 0.00777534i
\(508\) 0 0
\(509\) −8.63023 + 14.9480i −0.382528 + 0.662558i −0.991423 0.130693i \(-0.958280\pi\)
0.608895 + 0.793251i \(0.291613\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −3.58609 + 0.472243i −0.158330 + 0.0208500i
\(514\) 0 0
\(515\) −5.24585 9.08608i −0.231160 0.400380i
\(516\) 0 0
\(517\) −2.79005 + 4.83250i −0.122706 + 0.212533i
\(518\) 0 0
\(519\) 15.7999 30.3523i 0.693541 1.33232i
\(520\) 0 0
\(521\) 34.1050 1.49417 0.747083 0.664730i \(-0.231454\pi\)
0.747083 + 0.664730i \(0.231454\pi\)
\(522\) 0 0
\(523\) 18.8969 0.826306 0.413153 0.910662i \(-0.364428\pi\)
0.413153 + 0.910662i \(0.364428\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 32.0770 55.5589i 1.39729 2.42019i
\(528\) 0 0
\(529\) −9.22366 15.9758i −0.401029 0.694602i
\(530\) 0 0
\(531\) 8.21878 + 11.7371i 0.356665 + 0.509345i
\(532\) 0 0
\(533\) 13.1252 + 22.7336i 0.568517 + 0.984701i
\(534\) 0 0
\(535\) 4.81634 8.34215i 0.208229 0.360663i
\(536\) 0 0
\(537\) 11.7716 + 18.4772i 0.507980 + 0.797349i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −1.12823 −0.0485066 −0.0242533 0.999706i \(-0.507721\pi\)
−0.0242533 + 0.999706i \(0.507721\pi\)
\(542\) 0 0
\(543\) 11.6939 + 18.3553i 0.501834 + 0.787701i
\(544\) 0 0
\(545\) −8.98012 + 15.5540i −0.384666 + 0.666261i
\(546\) 0 0
\(547\) 15.8427 + 27.4404i 0.677386 + 1.17327i 0.975765 + 0.218819i \(0.0702205\pi\)
−0.298380 + 0.954447i \(0.596446\pi\)
\(548\) 0 0
\(549\) 14.7210 1.28826i 0.628276 0.0549816i
\(550\) 0 0
\(551\) 2.33004 + 4.03575i 0.0992630 + 0.171929i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 2.86222 0.125000i 0.121495 0.00530597i
\(556\) 0 0
\(557\) 27.6271 1.17060 0.585298 0.810818i \(-0.300977\pi\)
0.585298 + 0.810818i \(0.300977\pi\)
\(558\) 0 0
\(559\) −2.52080 −0.106619
\(560\) 0 0
\(561\) −4.07631 + 7.83074i −0.172102 + 0.330614i
\(562\) 0 0
\(563\) −0.920685 + 1.59467i −0.0388022 + 0.0672074i −0.884774 0.466020i \(-0.845688\pi\)
0.845972 + 0.533227i \(0.179021\pi\)
\(564\) 0 0
\(565\) 5.57315 + 9.65298i 0.234464 + 0.406104i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 5.75524 + 9.96837i 0.241272 + 0.417896i 0.961077 0.276281i \(-0.0891020\pi\)
−0.719805 + 0.694177i \(0.755769\pi\)
\(570\) 0 0
\(571\) 4.35262 7.53896i 0.182152 0.315496i −0.760461 0.649383i \(-0.775027\pi\)
0.942613 + 0.333887i \(0.108361\pi\)
\(572\) 0 0
\(573\) −5.92324 + 11.3788i −0.247447 + 0.475354i
\(574\) 0 0
\(575\) −26.1591 −1.09091
\(576\) 0 0
\(577\) 14.4872 0.603108 0.301554 0.953449i \(-0.402495\pi\)
0.301554 + 0.953449i \(0.402495\pi\)
\(578\) 0 0
\(579\) 2.81688 0.123020i 0.117065 0.00511254i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 1.49754 + 2.59382i 0.0620218 + 0.107425i
\(584\) 0 0
\(585\) −10.4747 + 0.916663i −0.433077 + 0.0378994i
\(586\) 0 0
\(587\) −14.3695 24.8886i −0.593091 1.02726i −0.993813 0.111065i \(-0.964574\pi\)
0.400722 0.916200i \(-0.368759\pi\)
\(588\) 0 0
\(589\) −3.19030 + 5.52576i −0.131454 + 0.227685i
\(590\) 0 0
\(591\) −7.69761 12.0825i −0.316637 0.497009i
\(592\) 0 0
\(593\) −13.6466 −0.560397 −0.280199 0.959942i \(-0.590400\pi\)
−0.280199 + 0.959942i \(0.590400\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −9.94696 15.6132i −0.407102 0.639006i
\(598\) 0 0
\(599\) −2.64585 + 4.58275i −0.108106 + 0.187246i −0.915003 0.403447i \(-0.867812\pi\)
0.806897 + 0.590693i \(0.201145\pi\)
\(600\) 0 0
\(601\) 17.0522 + 29.5353i 0.695574 + 1.20477i 0.969987 + 0.243158i \(0.0781834\pi\)
−0.274412 + 0.961612i \(0.588483\pi\)
\(602\) 0 0
\(603\) 10.0162 + 14.3039i 0.407890 + 0.582499i
\(604\) 0 0
\(605\) 5.06657 + 8.77555i 0.205985 + 0.356777i
\(606\) 0 0
\(607\) 4.52232 7.83289i 0.183555 0.317927i −0.759533 0.650468i \(-0.774573\pi\)
0.943089 + 0.332541i \(0.107906\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −27.7480 −1.12256
\(612\) 0 0
\(613\) −11.9578 −0.482970 −0.241485 0.970405i \(-0.577634\pi\)
−0.241485 + 0.970405i \(0.577634\pi\)
\(614\) 0 0
\(615\) 5.61098 10.7789i 0.226256 0.434647i
\(616\) 0 0
\(617\) 5.13220 8.88923i 0.206615 0.357867i −0.744031 0.668145i \(-0.767089\pi\)
0.950646 + 0.310278i \(0.100422\pi\)
\(618\) 0 0
\(619\) 21.7803 + 37.7245i 0.875423 + 1.51628i 0.856312 + 0.516460i \(0.172750\pi\)
0.0191114 + 0.999817i \(0.493916\pi\)
\(620\) 0 0
\(621\) 12.8007 30.9066i 0.513674 1.24024i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −5.91314 + 10.2419i −0.236526 + 0.409674i
\(626\) 0 0
\(627\) 0.405420 0.778827i 0.0161909 0.0311034i
\(628\) 0 0
\(629\) 11.9613 0.476929
\(630\) 0 0
\(631\) 19.3703 0.771119 0.385559 0.922683i \(-0.374008\pi\)
0.385559 + 0.922683i \(0.374008\pi\)
\(632\) 0 0
\(633\) −39.0121 + 1.70375i −1.55059 + 0.0677181i
\(634\) 0 0
\(635\) −4.38912 + 7.60218i −0.174177 + 0.301684i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −0.385946 + 0.827715i −0.0152678 + 0.0327439i
\(640\) 0 0
\(641\) −2.25008 3.89725i −0.0888728 0.153932i 0.818162 0.574988i \(-0.194993\pi\)
−0.907035 + 0.421055i \(0.861660\pi\)
\(642\) 0 0
\(643\) −20.9045 + 36.2077i −0.824394 + 1.42789i 0.0779869 + 0.996954i \(0.475151\pi\)
−0.902381 + 0.430939i \(0.858183\pi\)
\(644\) 0 0
\(645\) 0.627001 + 0.984170i 0.0246882 + 0.0387517i
\(646\) 0 0
\(647\) −23.8761 −0.938667 −0.469334 0.883021i \(-0.655506\pi\)
−0.469334 + 0.883021i \(0.655506\pi\)
\(648\) 0 0
\(649\) −3.47822 −0.136532
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 4.16674 7.21700i 0.163057 0.282423i −0.772907 0.634520i \(-0.781198\pi\)
0.935964 + 0.352097i \(0.114531\pi\)
\(654\) 0 0
\(655\) −6.33226 10.9678i −0.247422 0.428547i
\(656\) 0 0
\(657\) 13.5369 29.0318i 0.528126 1.13264i
\(658\) 0 0
\(659\) −20.2488 35.0719i −0.788781 1.36621i −0.926714 0.375767i \(-0.877379\pi\)
0.137933 0.990442i \(-0.455954\pi\)
\(660\) 0 0
\(661\) 3.88559 6.73004i 0.151132 0.261768i −0.780512 0.625141i \(-0.785042\pi\)
0.931644 + 0.363373i \(0.118375\pi\)
\(662\) 0 0
\(663\) −43.8579 + 1.91538i −1.70330 + 0.0743873i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −43.0992 −1.66881
\(668\) 0 0
\(669\) −5.91967 + 11.3719i −0.228868 + 0.439663i
\(670\) 0 0
\(671\) −1.79357 + 3.10656i −0.0692400 + 0.119927i
\(672\) 0 0
\(673\) −22.7830 39.4614i −0.878221 1.52112i −0.853291 0.521435i \(-0.825397\pi\)
−0.0249302 0.999689i \(-0.507936\pi\)
\(674\) 0 0
\(675\) −12.8535 16.7498i −0.494733 0.644702i
\(676\) 0 0
\(677\) −6.54521 11.3366i −0.251553 0.435702i 0.712401 0.701773i \(-0.247608\pi\)
−0.963954 + 0.266071i \(0.914275\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −0.478391 + 0.919007i −0.0183320 + 0.0352164i
\(682\) 0 0
\(683\) 25.3011 0.968121 0.484060 0.875035i \(-0.339161\pi\)
0.484060 + 0.875035i \(0.339161\pi\)
\(684\) 0 0
\(685\) −19.4311 −0.742425
\(686\) 0 0
\(687\) 6.98592 0.305092i 0.266529 0.0116400i
\(688\) 0 0
\(689\) −7.44679 + 12.8982i −0.283700 + 0.491383i
\(690\) 0 0
\(691\) 12.2016 + 21.1337i 0.464170 + 0.803965i 0.999164 0.0408905i \(-0.0130195\pi\)
−0.534994 + 0.844856i \(0.679686\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0.326974 + 0.566335i 0.0124028 + 0.0214823i
\(696\) 0 0
\(697\) 25.3673 43.9375i 0.960855 1.66425i
\(698\) 0 0
\(699\) 10.4187 + 16.3536i 0.394070 + 0.618551i
\(700\) 0 0
\(701\) −18.4137 −0.695476 −0.347738 0.937592i \(-0.613050\pi\)
−0.347738 + 0.937592i \(0.613050\pi\)
\(702\) 0 0
\(703\) −1.18965 −0.0448683
\(704\) 0 0
\(705\) 6.90178 + 10.8333i 0.259936 + 0.408008i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 6.66501 + 11.5441i 0.250310 + 0.433549i 0.963611 0.267308i \(-0.0861342\pi\)
−0.713301 + 0.700858i \(0.752801\pi\)
\(710\) 0 0
\(711\) −9.67971 + 0.847090i −0.363018 + 0.0317684i
\(712\) 0 0
\(713\) −29.5058 51.1056i −1.10500 1.91392i
\(714\) 0 0
\(715\) 1.27622 2.21047i 0.0477278 0.0826671i
\(716\) 0 0
\(717\) −44.3574 + 1.93720i −1.65656 + 0.0723460i
\(718\) 0 0
\(719\) 15.6941 0.585291 0.292646 0.956221i \(-0.405464\pi\)
0.292646 + 0.956221i \(0.405464\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −5.27182 + 10.1274i −0.196061 + 0.376640i
\(724\) 0 0
\(725\) −13.6008 + 23.5573i −0.505121 + 0.874896i
\(726\) 0 0
\(727\) −12.8388 22.2374i −0.476163 0.824739i 0.523464 0.852048i \(-0.324640\pi\)
−0.999627 + 0.0273090i \(0.991306\pi\)
\(728\) 0 0
\(729\) 26.0795 6.98992i 0.965908 0.258886i
\(730\) 0 0
\(731\) 2.43599 + 4.21926i 0.0900985 + 0.156055i
\(732\) 0 0
\(733\) −0.586541 + 1.01592i −0.0216644 + 0.0375238i −0.876654 0.481121i \(-0.840230\pi\)
0.854990 + 0.518645i \(0.173563\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −4.23889 −0.156141
\(738\) 0 0
\(739\) −23.2229 −0.854266 −0.427133 0.904189i \(-0.640476\pi\)
−0.427133 + 0.904189i \(0.640476\pi\)
\(740\) 0 0
\(741\) 4.36200 0.190499i 0.160242 0.00699817i
\(742\) 0 0
\(743\) 11.7846 20.4115i 0.432335 0.748826i −0.564739 0.825269i \(-0.691023\pi\)
0.997074 + 0.0764439i \(0.0243566\pi\)
\(744\) 0 0
\(745\) −10.4087 18.0284i −0.381346 0.660510i
\(746\) 0 0
\(747\) −3.69842 + 0.323656i −0.135318 + 0.0118419i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −22.0531 + 38.1971i −0.804728 + 1.39383i 0.111746 + 0.993737i \(0.464356\pi\)
−0.916474 + 0.400093i \(0.868978\pi\)
\(752\) 0 0
\(753\) 23.3069 + 36.5836i 0.849351 + 1.33318i
\(754\) 0 0
\(755\) 13.7150 0.499139
\(756\) 0 0
\(757\) −2.71020 −0.0985040 −0.0492520 0.998786i \(-0.515684\pi\)
−0.0492520 + 0.998786i \(0.515684\pi\)
\(758\) 0 0
\(759\) 4.36325 + 6.84875i 0.158376 + 0.248594i
\(760\) 0 0
\(761\) −14.5248 + 25.1577i −0.526524 + 0.911966i 0.472999 + 0.881063i \(0.343172\pi\)
−0.999522 + 0.0309029i \(0.990162\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 11.6566 + 16.6465i 0.421445 + 0.601857i
\(766\) 0 0
\(767\) −8.64804 14.9788i −0.312263 0.540855i
\(768\) 0 0
\(769\) −5.25175 + 9.09629i −0.189383 + 0.328021i −0.945045 0.326941i \(-0.893982\pi\)
0.755662 + 0.654962i \(0.227315\pi\)
\(770\) 0 0
\(771\) 31.3907 1.37091i 1.13051 0.0493722i
\(772\) 0 0
\(773\) 23.8460 0.857682 0.428841 0.903380i \(-0.358922\pi\)
0.428841 + 0.903380i \(0.358922\pi\)
\(774\) 0 0
\(775\) −37.2446 −1.33787
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −2.52297 + 4.36992i −0.0903949 + 0.156569i
\(780\) 0 0
\(781\) −0.110847 0.191993i −0.00396643 0.00687007i
\(782\) 0 0
\(783\) −21.1772 27.5968i −0.756813 0.986227i
\(784\) 0 0
\(785\) 7.74136 + 13.4084i 0.276301 + 0.478567i
\(786\) 0 0
\(787\) 2.19788 3.80684i 0.0783460 0.135699i −0.824190 0.566313i \(-0.808369\pi\)
0.902536 + 0.430613i \(0.141703\pi\)
\(788\) 0 0
\(789\) 10.2439 19.6788i 0.364691 0.700585i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −17.8377 −0.633435
\(794\) 0 0
\(795\) 6.88795 0.300814i 0.244291 0.0106688i
\(796\) 0 0
\(797\) −2.56236 + 4.43813i −0.0907633 + 0.157207i −0.907833 0.419333i \(-0.862264\pi\)
0.817069 + 0.576540i \(0.195597\pi\)
\(798\) 0 0
\(799\) 26.8144 + 46.4440i 0.948627 + 1.64307i
\(800\) 0 0
\(801\) −14.6729 + 31.4680i −0.518442 + 1.11187i
\(802\) 0 0
\(803\) 3.88794 + 6.73410i 0.137202 + 0.237641i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 26.8794 + 42.1911i 0.946199 + 1.48520i
\(808\) 0 0
\(809\) 32.9223 1.15749 0.578744 0.815510i \(-0.303543\pi\)
0.578744 + 0.815510i \(0.303543\pi\)
\(810\) 0 0
\(811\) −31.8830 −1.11956 −0.559781 0.828640i \(-0.689115\pi\)
−0.559781 + 0.828640i \(0.689115\pi\)
\(812\) 0 0
\(813\) −8.55412 13.4269i −0.300006 0.470903i
\(814\) 0 0
\(815\) −9.76605 + 16.9153i −0.342090 + 0.592517i
\(816\) 0 0
\(817\) −0.242278 0.419638i −0.00847624 0.0146813i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −17.1139 29.6421i −0.597278 1.03452i −0.993221 0.116241i \(-0.962916\pi\)
0.395943 0.918275i \(-0.370418\pi\)
\(822\) 0 0
\(823\) −19.1866 + 33.2321i −0.668802 + 1.15840i 0.309437 + 0.950920i \(0.399859\pi\)
−0.978239 + 0.207480i \(0.933474\pi\)
\(824\) 0 0
\(825\) 5.12032 0.223617i 0.178267 0.00778535i
\(826\) 0 0
\(827\) 9.23903 0.321273 0.160636 0.987014i \(-0.448645\pi\)
0.160636 + 0.987014i \(0.448645\pi\)
\(828\) 0 0
\(829\) −41.6448 −1.44638 −0.723191 0.690648i \(-0.757326\pi\)
−0.723191 + 0.690648i \(0.757326\pi\)
\(830\) 0 0
\(831\) −3.13149 + 6.01571i −0.108630 + 0.208683i
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −11.8368 20.5019i −0.409629 0.709499i
\(836\) 0 0
\(837\) 18.2253 44.0041i 0.629959 1.52100i
\(838\) 0 0
\(839\) −15.4241 26.7154i −0.532500 0.922318i −0.999280 0.0379439i \(-0.987919\pi\)
0.466780 0.884374i \(-0.345414\pi\)
\(840\) 0 0
\(841\) −7.90845 + 13.6978i −0.272705 + 0.472339i
\(842\) 0 0
\(843\) −12.2307 + 23.4956i −0.421248 + 0.809232i
\(844\) 0 0
\(845\) 0.110292 0.00379415
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −43.2218 + 1.88761i −1.48337 + 0.0647825i
\(850\) 0 0
\(851\) 5.50128 9.52849i 0.188581 0.326632i
\(852\) 0 0
\(853\) −11.4171 19.7750i −0.390913 0.677082i 0.601657 0.798755i \(-0.294507\pi\)
−0.992570 + 0.121673i \(0.961174\pi\)
\(854\) 0 0
\(855\) −1.15934 1.65563i −0.0396485 0.0566212i
\(856\) 0 0
\(857\) 26.6720 + 46.1973i 0.911100 + 1.57807i 0.812513 + 0.582942i \(0.198099\pi\)
0.0985862 + 0.995129i \(0.468568\pi\)
\(858\) 0 0
\(859\) 11.5878 20.0707i 0.395372 0.684804i −0.597777 0.801663i \(-0.703949\pi\)
0.993149 + 0.116859i \(0.0372825\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −9.16911 −0.312120 −0.156060 0.987748i \(-0.549879\pi\)
−0.156060 + 0.987748i \(0.549879\pi\)
\(864\) 0 0
\(865\) 19.1210 0.650133
\(866\) 0 0
\(867\) 29.7672 + 46.7240i 1.01095 + 1.58683i
\(868\) 0 0
\(869\) 1.17936 2.04270i 0.0400069 0.0692940i
\(870\) 0 0
\(871\) −10.5393 18.2546i −0.357111 0.618534i
\(872\) 0 0
\(873\) −7.94562 + 0.695336i −0.268919 + 0.0235336i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −18.6190 + 32.2490i −0.628718 + 1.08897i 0.359091 + 0.933303i \(0.383087\pi\)
−0.987809 + 0.155670i \(0.950247\pi\)
\(878\) 0 0
\(879\) −14.1232 + 0.616797i −0.476365 + 0.0208041i
\(880\) 0 0
\(881\) 7.15345 0.241006 0.120503 0.992713i \(-0.461549\pi\)
0.120503 + 0.992713i \(0.461549\pi\)
\(882\) 0 0
\(883\) −39.8688 −1.34169 −0.670846 0.741596i \(-0.734069\pi\)
−0.670846 + 0.741596i \(0.734069\pi\)
\(884\) 0 0
\(885\) −3.69699 + 7.10206i −0.124273 + 0.238733i
\(886\) 0 0
\(887\) 10.6755 18.4904i 0.358447 0.620848i −0.629255 0.777199i \(-0.716640\pi\)
0.987702 + 0.156351i \(0.0499731\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −2.24138 + 6.15903i −0.0750891 + 0.206335i
\(892\) 0 0
\(893\) −2.66690 4.61921i −0.0892445 0.154576i
\(894\) 0 0
\(895\) −6.12111 + 10.6021i −0.204606 + 0.354388i
\(896\) 0 0
\(897\) −18.6454 + 35.8185i −0.622552 + 1.19594i
\(898\) 0 0
\(899\) −61.3635 −2.04659
\(900\) 0 0
\(901\) 28.7850 0.958967
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −6.08073 + 10.5321i −0.202130 + 0.350100i
\(906\) 0 0
\(907\) 11.3012 + 19.5742i 0.375250 + 0.649951i 0.990364 0.138486i \(-0.0442237\pi\)
−0.615115 + 0.788438i \(0.710890\pi\)
\(908\) 0 0
\(909\) 4.82338 0.422103i 0.159981 0.0140003i
\(910\) 0 0
\(911\) 12.7594 + 22.0999i 0.422738 + 0.732203i 0.996206 0.0870243i \(-0.0277358\pi\)
−0.573468 + 0.819228i \(0.694402\pi\)
\(912\) 0 0
\(913\) 0.450607 0.780475i 0.0149129 0.0258300i
\(914\) 0 0
\(915\) 4.43678 + 6.96418i 0.146675 + 0.230229i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −11.4265 −0.376926 −0.188463 0.982080i \(-0.560351\pi\)
−0.188463 + 0.982080i \(0.560351\pi\)
\(920\) 0 0
\(921\) 16.8160 + 26.3952i 0.554106 + 0.869751i
\(922\) 0 0
\(923\) 0.551208 0.954721i 0.0181432 0.0314250i
\(924\) 0 0
\(925\) −3.47207 6.01381i −0.114161 0.197733i
\(926\) 0 0
\(927\) −18.6535 26.6387i −0.612663 0.874930i
\(928\) 0 0
\(929\) −6.79851 11.7754i −0.223052 0.386337i 0.732681 0.680572i \(-0.238269\pi\)
−0.955733 + 0.294235i \(0.904935\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 17.3173 0.756290i 0.566944 0.0247598i
\(934\) 0 0
\(935\) −4.93312 −0.161330
\(936\) 0 0
\(937\) −11.1455 −0.364109 −0.182054 0.983288i \(-0.558275\pi\)
−0.182054 + 0.983288i \(0.558275\pi\)
\(938\) 0 0
\(939\) 2.39178 4.59470i 0.0780529 0.149942i
\(940\) 0 0
\(941\) −20.7310 + 35.9072i −0.675813 + 1.17054i 0.300418 + 0.953808i \(0.402874\pi\)
−0.976231 + 0.216734i \(0.930460\pi\)
\(942\) 0 0
\(943\) −23.3340 40.4156i −0.759859 1.31611i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −21.2784 36.8552i −0.691454 1.19763i −0.971362 0.237606i \(-0.923637\pi\)
0.279908 0.960027i \(-0.409696\pi\)
\(948\) 0 0
\(949\) −19.3335 + 33.4865i −0.627590 + 1.08702i
\(950\) 0 0
\(951\) −19.0735 + 36.6410i −0.618502 + 1.18816i
\(952\) 0 0
\(953\) 21.2114 0.687106 0.343553 0.939133i \(-0.388370\pi\)
0.343553 + 0.939133i \(0.388370\pi\)
\(954\) 0 0
\(955\) −7.16826 −0.231960
\(956\) 0 0
\(957\) 8.43615 0.368428i 0.272702 0.0119096i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −26.5096 45.9160i −0.855150 1.48116i
\(962\) 0 0
\(963\) 12.6178 27.0606i 0.406603 0.872016i
\(964\) 0 0
\(965\) 0.787775 + 1.36447i 0.0253594 + 0.0439237i
\(966\) 0 0
\(967\) −9.83257 + 17.0305i −0.316194 + 0.547664i −0.979691 0.200515i \(-0.935738\pi\)
0.663496 + 0.748179i \(0.269072\pi\)
\(968\) 0 0
\(969\) −4.53410 7.11693i −0.145656 0.228629i
\(970\) 0 0
\(971\) 24.5784 0.788757 0.394379 0.918948i \(-0.370960\pi\)
0.394379 + 0.918948i \(0.370960\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 13.6939 + 21.4945i 0.438554 + 0.688375i
\(976\) 0 0
\(977\) 23.7359 41.1117i 0.759378 1.31528i −0.183790 0.982966i \(-0.558837\pi\)
0.943168 0.332316i \(-0.107830\pi\)
\(978\) 0 0
\(979\) −4.21420 7.29920i −0.134686 0.233284i
\(980\) 0 0
\(981\) −23.5260 + 50.4548i −0.751129 + 1.61090i
\(982\) 0 0
\(983\) −13.7720 23.8538i −0.439258 0.760817i 0.558374 0.829589i \(-0.311425\pi\)
−0.997632 + 0.0687719i \(0.978092\pi\)
\(984\) 0 0
\(985\) 4.00269 6.93287i 0.127536 0.220900i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 4.48147 0.142502
\(990\) 0 0
\(991\) −38.4671 −1.22195 −0.610973 0.791651i \(-0.709222\pi\)
−0.610973 + 0.791651i \(0.709222\pi\)
\(992\) 0 0
\(993\) −12.8262 + 24.6397i −0.407029 + 0.781917i
\(994\) 0 0
\(995\) 5.17233 8.95874i 0.163974 0.284011i
\(996\) 0 0
\(997\) 16.2272 + 28.1064i 0.513921 + 0.890138i 0.999870 + 0.0161503i \(0.00514103\pi\)
−0.485948 + 0.873988i \(0.661526\pi\)
\(998\) 0 0
\(999\) 8.80428 1.15941i 0.278555 0.0366823i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1764.2.j.g.589.6 14
3.2 odd 2 5292.2.j.h.1765.5 14
7.2 even 3 252.2.l.b.193.1 yes 14
7.3 odd 6 1764.2.i.i.373.3 14
7.4 even 3 252.2.i.b.121.5 yes 14
7.5 odd 6 1764.2.l.i.949.7 14
7.6 odd 2 1764.2.j.h.589.2 14
9.2 odd 6 5292.2.j.h.3529.5 14
9.7 even 3 inner 1764.2.j.g.1177.6 14
21.2 odd 6 756.2.l.b.361.3 14
21.5 even 6 5292.2.l.i.361.5 14
21.11 odd 6 756.2.i.b.37.5 14
21.17 even 6 5292.2.i.i.1549.3 14
21.20 even 2 5292.2.j.g.1765.3 14
28.11 odd 6 1008.2.q.j.625.3 14
28.23 odd 6 1008.2.t.j.193.7 14
63.2 odd 6 756.2.i.b.613.5 14
63.4 even 3 2268.2.k.e.1297.3 14
63.11 odd 6 756.2.l.b.289.3 14
63.16 even 3 252.2.i.b.25.5 14
63.20 even 6 5292.2.j.g.3529.3 14
63.23 odd 6 2268.2.k.f.1621.5 14
63.25 even 3 252.2.l.b.205.1 yes 14
63.32 odd 6 2268.2.k.f.1297.5 14
63.34 odd 6 1764.2.j.h.1177.2 14
63.38 even 6 5292.2.l.i.3313.5 14
63.47 even 6 5292.2.i.i.2125.3 14
63.52 odd 6 1764.2.l.i.961.7 14
63.58 even 3 2268.2.k.e.1621.3 14
63.61 odd 6 1764.2.i.i.1537.3 14
84.11 even 6 3024.2.q.j.2305.5 14
84.23 even 6 3024.2.t.j.1873.3 14
252.11 even 6 3024.2.t.j.289.3 14
252.79 odd 6 1008.2.q.j.529.3 14
252.151 odd 6 1008.2.t.j.961.7 14
252.191 even 6 3024.2.q.j.2881.5 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
252.2.i.b.25.5 14 63.16 even 3
252.2.i.b.121.5 yes 14 7.4 even 3
252.2.l.b.193.1 yes 14 7.2 even 3
252.2.l.b.205.1 yes 14 63.25 even 3
756.2.i.b.37.5 14 21.11 odd 6
756.2.i.b.613.5 14 63.2 odd 6
756.2.l.b.289.3 14 63.11 odd 6
756.2.l.b.361.3 14 21.2 odd 6
1008.2.q.j.529.3 14 252.79 odd 6
1008.2.q.j.625.3 14 28.11 odd 6
1008.2.t.j.193.7 14 28.23 odd 6
1008.2.t.j.961.7 14 252.151 odd 6
1764.2.i.i.373.3 14 7.3 odd 6
1764.2.i.i.1537.3 14 63.61 odd 6
1764.2.j.g.589.6 14 1.1 even 1 trivial
1764.2.j.g.1177.6 14 9.7 even 3 inner
1764.2.j.h.589.2 14 7.6 odd 2
1764.2.j.h.1177.2 14 63.34 odd 6
1764.2.l.i.949.7 14 7.5 odd 6
1764.2.l.i.961.7 14 63.52 odd 6
2268.2.k.e.1297.3 14 63.4 even 3
2268.2.k.e.1621.3 14 63.58 even 3
2268.2.k.f.1297.5 14 63.32 odd 6
2268.2.k.f.1621.5 14 63.23 odd 6
3024.2.q.j.2305.5 14 84.11 even 6
3024.2.q.j.2881.5 14 252.191 even 6
3024.2.t.j.289.3 14 252.11 even 6
3024.2.t.j.1873.3 14 84.23 even 6
5292.2.i.i.1549.3 14 21.17 even 6
5292.2.i.i.2125.3 14 63.47 even 6
5292.2.j.g.1765.3 14 21.20 even 2
5292.2.j.g.3529.3 14 63.20 even 6
5292.2.j.h.1765.5 14 3.2 odd 2
5292.2.j.h.3529.5 14 9.2 odd 6
5292.2.l.i.361.5 14 21.5 even 6
5292.2.l.i.3313.5 14 63.38 even 6