Properties

Label 252.2.i.b.25.5
Level $252$
Weight $2$
Character 252.25
Analytic conductor $2.012$
Analytic rank $0$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [252,2,Mod(25,252)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("252.25"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(252, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 4, 4])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 252 = 2^{2} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 252.i (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [14] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.01223013094\)
Analytic rank: \(0\)
Dimension: \(14\)
Relative dimension: \(7\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} - 5x^{12} - 3x^{11} + 7x^{10} + 30x^{9} - 117x^{7} + 270x^{5} + 189x^{4} - 243x^{3} - 1215x^{2} + 2187 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 25.5
Root \(-1.73040 - 0.0755709i\) of defining polynomial
Character \(\chi\) \(=\) 252.25
Dual form 252.2.i.b.121.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.799754 + 1.53636i) q^{3} +(-0.483929 + 0.838189i) q^{5} +(-1.52054 + 2.16517i) q^{7} +(-1.72079 + 2.45742i) q^{9} +(-0.364122 - 0.630678i) q^{11} +(1.81066 + 3.13615i) q^{13} +(-1.67478 - 0.0731419i) q^{15} +(3.49948 - 6.06128i) q^{17} +(-0.348050 - 0.602841i) q^{19} +(-4.54253 - 0.604489i) q^{21} +(-3.21898 + 5.57544i) q^{23} +(2.03163 + 3.51888i) q^{25} +(-5.15168 - 0.678412i) q^{27} +(3.34727 - 5.79764i) q^{29} +9.16620 q^{31} +(0.677738 - 1.06381i) q^{33} +(-1.07899 - 2.32229i) q^{35} +(0.854506 + 1.48005i) q^{37} +(-3.37017 + 5.28997i) q^{39} +(-3.62444 - 6.27771i) q^{41} +(-0.348050 + 0.602841i) q^{43} +(-1.22704 - 2.63156i) q^{45} +7.66240 q^{47} +(-2.37591 - 6.58445i) q^{49} +(12.1110 + 0.528918i) q^{51} +(2.05637 - 3.56174i) q^{53} +0.704836 q^{55} +(0.647824 - 1.01685i) q^{57} -4.77618 q^{59} +4.92574 q^{61} +(-2.70420 - 7.46239i) q^{63} -3.50492 q^{65} -5.82070 q^{67} +(-11.1403 - 0.486523i) q^{69} +0.304424 q^{71} +(5.33879 - 9.24705i) q^{73} +(-3.78145 + 5.93554i) q^{75} +(1.91919 + 0.170585i) q^{77} -3.23890 q^{79} +(-3.07779 - 8.45738i) q^{81} +(0.618759 - 1.07172i) q^{83} +(3.38700 + 5.86646i) q^{85} +(11.5842 + 0.505913i) q^{87} +(-5.78679 - 10.0230i) q^{89} +(-9.54349 - 0.848265i) q^{91} +(7.33071 + 14.0826i) q^{93} +0.673726 q^{95} +(1.32933 - 2.30247i) q^{97} +(2.17641 + 0.190462i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q + 3 q^{3} - 2 q^{5} + 6 q^{7} - 5 q^{9} + 2 q^{11} + 2 q^{13} + 7 q^{15} + 2 q^{17} + 7 q^{19} - 11 q^{21} + 11 q^{23} - 9 q^{25} + 9 q^{27} + q^{29} + 2 q^{31} - 4 q^{33} - 19 q^{35} + 10 q^{37}+ \cdots + 7 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/252\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(73\) \(127\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.799754 + 1.53636i 0.461738 + 0.887016i
\(4\) 0 0
\(5\) −0.483929 + 0.838189i −0.216419 + 0.374850i −0.953711 0.300725i \(-0.902771\pi\)
0.737291 + 0.675575i \(0.236105\pi\)
\(6\) 0 0
\(7\) −1.52054 + 2.16517i −0.574710 + 0.818357i
\(8\) 0 0
\(9\) −1.72079 + 2.45742i −0.573595 + 0.819139i
\(10\) 0 0
\(11\) −0.364122 0.630678i −0.109787 0.190156i 0.805897 0.592056i \(-0.201683\pi\)
−0.915684 + 0.401899i \(0.868350\pi\)
\(12\) 0 0
\(13\) 1.81066 + 3.13615i 0.502187 + 0.869813i 0.999997 + 0.00252677i \(0.000804296\pi\)
−0.497810 + 0.867286i \(0.665862\pi\)
\(14\) 0 0
\(15\) −1.67478 0.0731419i −0.432427 0.0188851i
\(16\) 0 0
\(17\) 3.49948 6.06128i 0.848749 1.47008i −0.0335755 0.999436i \(-0.510689\pi\)
0.882325 0.470641i \(-0.155977\pi\)
\(18\) 0 0
\(19\) −0.348050 0.602841i −0.0798483 0.138301i 0.823336 0.567554i \(-0.192110\pi\)
−0.903184 + 0.429253i \(0.858777\pi\)
\(20\) 0 0
\(21\) −4.54253 0.604489i −0.991262 0.131910i
\(22\) 0 0
\(23\) −3.21898 + 5.57544i −0.671204 + 1.16256i 0.306359 + 0.951916i \(0.400889\pi\)
−0.977563 + 0.210643i \(0.932444\pi\)
\(24\) 0 0
\(25\) 2.03163 + 3.51888i 0.406325 + 0.703776i
\(26\) 0 0
\(27\) −5.15168 0.678412i −0.991440 0.130560i
\(28\) 0 0
\(29\) 3.34727 5.79764i 0.621573 1.07660i −0.367620 0.929976i \(-0.619827\pi\)
0.989193 0.146619i \(-0.0468393\pi\)
\(30\) 0 0
\(31\) 9.16620 1.64630 0.823149 0.567825i \(-0.192215\pi\)
0.823149 + 0.567825i \(0.192215\pi\)
\(32\) 0 0
\(33\) 0.677738 1.06381i 0.117979 0.185185i
\(34\) 0 0
\(35\) −1.07899 2.32229i −0.182382 0.392538i
\(36\) 0 0
\(37\) 0.854506 + 1.48005i 0.140480 + 0.243318i 0.927677 0.373383i \(-0.121802\pi\)
−0.787197 + 0.616701i \(0.788469\pi\)
\(38\) 0 0
\(39\) −3.37017 + 5.28997i −0.539659 + 0.847074i
\(40\) 0 0
\(41\) −3.62444 6.27771i −0.566042 0.980413i −0.996952 0.0780185i \(-0.975141\pi\)
0.430910 0.902395i \(-0.358193\pi\)
\(42\) 0 0
\(43\) −0.348050 + 0.602841i −0.0530772 + 0.0919324i −0.891343 0.453329i \(-0.850236\pi\)
0.838266 + 0.545261i \(0.183570\pi\)
\(44\) 0 0
\(45\) −1.22704 2.63156i −0.182917 0.392289i
\(46\) 0 0
\(47\) 7.66240 1.11768 0.558838 0.829277i \(-0.311247\pi\)
0.558838 + 0.829277i \(0.311247\pi\)
\(48\) 0 0
\(49\) −2.37591 6.58445i −0.339416 0.940636i
\(50\) 0 0
\(51\) 12.1110 + 0.528918i 1.69588 + 0.0740634i
\(52\) 0 0
\(53\) 2.05637 3.56174i 0.282465 0.489243i −0.689527 0.724260i \(-0.742181\pi\)
0.971991 + 0.235017i \(0.0755147\pi\)
\(54\) 0 0
\(55\) 0.704836 0.0950401
\(56\) 0 0
\(57\) 0.647824 1.01685i 0.0858064 0.134686i
\(58\) 0 0
\(59\) −4.77618 −0.621806 −0.310903 0.950442i \(-0.600631\pi\)
−0.310903 + 0.950442i \(0.600631\pi\)
\(60\) 0 0
\(61\) 4.92574 0.630677 0.315338 0.948979i \(-0.397882\pi\)
0.315338 + 0.948979i \(0.397882\pi\)
\(62\) 0 0
\(63\) −2.70420 7.46239i −0.340697 0.940173i
\(64\) 0 0
\(65\) −3.50492 −0.434732
\(66\) 0 0
\(67\) −5.82070 −0.711111 −0.355556 0.934655i \(-0.615708\pi\)
−0.355556 + 0.934655i \(0.615708\pi\)
\(68\) 0 0
\(69\) −11.1403 0.486523i −1.34113 0.0585704i
\(70\) 0 0
\(71\) 0.304424 0.0361285 0.0180642 0.999837i \(-0.494250\pi\)
0.0180642 + 0.999837i \(0.494250\pi\)
\(72\) 0 0
\(73\) 5.33879 9.24705i 0.624858 1.08229i −0.363711 0.931512i \(-0.618490\pi\)
0.988568 0.150773i \(-0.0481763\pi\)
\(74\) 0 0
\(75\) −3.78145 + 5.93554i −0.436645 + 0.685377i
\(76\) 0 0
\(77\) 1.91919 + 0.170585i 0.218711 + 0.0194400i
\(78\) 0 0
\(79\) −3.23890 −0.364405 −0.182203 0.983261i \(-0.558323\pi\)
−0.182203 + 0.983261i \(0.558323\pi\)
\(80\) 0 0
\(81\) −3.07779 8.45738i −0.341977 0.939708i
\(82\) 0 0
\(83\) 0.618759 1.07172i 0.0679176 0.117637i −0.830067 0.557664i \(-0.811698\pi\)
0.897985 + 0.440027i \(0.145031\pi\)
\(84\) 0 0
\(85\) 3.38700 + 5.86646i 0.367372 + 0.636307i
\(86\) 0 0
\(87\) 11.5842 + 0.505913i 1.24196 + 0.0542395i
\(88\) 0 0
\(89\) −5.78679 10.0230i −0.613399 1.06244i −0.990663 0.136333i \(-0.956468\pi\)
0.377264 0.926106i \(-0.376865\pi\)
\(90\) 0 0
\(91\) −9.54349 0.848265i −1.00043 0.0889223i
\(92\) 0 0
\(93\) 7.33071 + 14.0826i 0.760159 + 1.46029i
\(94\) 0 0
\(95\) 0.673726 0.0691229
\(96\) 0 0
\(97\) 1.32933 2.30247i 0.134973 0.233780i −0.790614 0.612315i \(-0.790238\pi\)
0.925587 + 0.378534i \(0.123572\pi\)
\(98\) 0 0
\(99\) 2.17641 + 0.190462i 0.218738 + 0.0191422i
\(100\) 0 0
\(101\) −0.806969 1.39771i −0.0802964 0.139077i 0.823081 0.567924i \(-0.192253\pi\)
−0.903377 + 0.428847i \(0.858920\pi\)
\(102\) 0 0
\(103\) −5.42007 + 9.38783i −0.534055 + 0.925010i 0.465153 + 0.885230i \(0.345999\pi\)
−0.999208 + 0.0397803i \(0.987334\pi\)
\(104\) 0 0
\(105\) 2.70494 3.51497i 0.263975 0.343026i
\(106\) 0 0
\(107\) 4.97630 + 8.61920i 0.481077 + 0.833249i 0.999764 0.0217146i \(-0.00691252\pi\)
−0.518688 + 0.854964i \(0.673579\pi\)
\(108\) 0 0
\(109\) −9.27835 + 16.0706i −0.888705 + 1.53928i −0.0472974 + 0.998881i \(0.515061\pi\)
−0.841407 + 0.540401i \(0.818272\pi\)
\(110\) 0 0
\(111\) −1.59049 + 2.49650i −0.150962 + 0.236957i
\(112\) 0 0
\(113\) 5.75824 + 9.97356i 0.541689 + 0.938234i 0.998807 + 0.0488275i \(0.0155485\pi\)
−0.457118 + 0.889406i \(0.651118\pi\)
\(114\) 0 0
\(115\) −3.11551 5.39623i −0.290523 0.503201i
\(116\) 0 0
\(117\) −10.8226 0.947106i −1.00055 0.0875599i
\(118\) 0 0
\(119\) 7.80260 + 16.7934i 0.715263 + 1.53945i
\(120\) 0 0
\(121\) 5.23483 9.06699i 0.475894 0.824272i
\(122\) 0 0
\(123\) 6.74614 10.5891i 0.608279 0.954783i
\(124\) 0 0
\(125\) −8.77193 −0.784586
\(126\) 0 0
\(127\) 9.06977 0.804812 0.402406 0.915461i \(-0.368174\pi\)
0.402406 + 0.915461i \(0.368174\pi\)
\(128\) 0 0
\(129\) −1.20453 0.0526050i −0.106053 0.00463161i
\(130\) 0 0
\(131\) −6.54255 + 11.3320i −0.571625 + 0.990084i 0.424774 + 0.905299i \(0.360354\pi\)
−0.996399 + 0.0847847i \(0.972980\pi\)
\(132\) 0 0
\(133\) 1.83448 + 0.163056i 0.159069 + 0.0141388i
\(134\) 0 0
\(135\) 3.06168 3.98977i 0.263508 0.343385i
\(136\) 0 0
\(137\) 10.0382 + 17.3867i 0.857623 + 1.48545i 0.874190 + 0.485584i \(0.161393\pi\)
−0.0165668 + 0.999863i \(0.505274\pi\)
\(138\) 0 0
\(139\) 0.337832 + 0.585143i 0.0286546 + 0.0496312i 0.879997 0.474979i \(-0.157544\pi\)
−0.851343 + 0.524610i \(0.824211\pi\)
\(140\) 0 0
\(141\) 6.12804 + 11.7722i 0.516074 + 0.991397i
\(142\) 0 0
\(143\) 1.31860 2.28388i 0.110267 0.190988i
\(144\) 0 0
\(145\) 3.23968 + 5.61129i 0.269041 + 0.465992i
\(146\) 0 0
\(147\) 8.21592 8.91620i 0.677638 0.735396i
\(148\) 0 0
\(149\) −10.7544 + 18.6271i −0.881034 + 1.52599i −0.0308402 + 0.999524i \(0.509818\pi\)
−0.850193 + 0.526471i \(0.823515\pi\)
\(150\) 0 0
\(151\) −7.08523 12.2720i −0.576588 0.998680i −0.995867 0.0908223i \(-0.971050\pi\)
0.419279 0.907857i \(-0.362283\pi\)
\(152\) 0 0
\(153\) 8.87324 + 19.0299i 0.717359 + 1.53847i
\(154\) 0 0
\(155\) −4.43579 + 7.68301i −0.356291 + 0.617114i
\(156\) 0 0
\(157\) −15.9969 −1.27669 −0.638346 0.769750i \(-0.720381\pi\)
−0.638346 + 0.769750i \(0.720381\pi\)
\(158\) 0 0
\(159\) 7.11670 + 0.310804i 0.564391 + 0.0246484i
\(160\) 0 0
\(161\) −7.17717 15.4473i −0.565641 1.21742i
\(162\) 0 0
\(163\) −10.0904 17.4771i −0.790340 1.36891i −0.925757 0.378120i \(-0.876571\pi\)
0.135417 0.990789i \(-0.456763\pi\)
\(164\) 0 0
\(165\) 0.563696 + 1.08288i 0.0438836 + 0.0843021i
\(166\) 0 0
\(167\) −12.2299 21.1828i −0.946378 1.63917i −0.752968 0.658057i \(-0.771379\pi\)
−0.193410 0.981118i \(-0.561955\pi\)
\(168\) 0 0
\(169\) −0.0569772 + 0.0986874i −0.00438286 + 0.00759134i
\(170\) 0 0
\(171\) 2.08035 + 0.182055i 0.159088 + 0.0139221i
\(172\) 0 0
\(173\) 19.7560 1.50202 0.751010 0.660290i \(-0.229567\pi\)
0.751010 + 0.660290i \(0.229567\pi\)
\(174\) 0 0
\(175\) −10.7081 0.951784i −0.809459 0.0719481i
\(176\) 0 0
\(177\) −3.81977 7.33792i −0.287112 0.551552i
\(178\) 0 0
\(179\) −6.32439 + 10.9542i −0.472707 + 0.818753i −0.999512 0.0312332i \(-0.990057\pi\)
0.526805 + 0.849986i \(0.323390\pi\)
\(180\) 0 0
\(181\) 12.5654 0.933975 0.466988 0.884264i \(-0.345339\pi\)
0.466988 + 0.884264i \(0.345339\pi\)
\(182\) 0 0
\(183\) 3.93938 + 7.56770i 0.291208 + 0.559421i
\(184\) 0 0
\(185\) −1.65408 −0.121610
\(186\) 0 0
\(187\) −5.09695 −0.372726
\(188\) 0 0
\(189\) 9.30221 10.1227i 0.676636 0.736318i
\(190\) 0 0
\(191\) −7.40632 −0.535903 −0.267951 0.963432i \(-0.586347\pi\)
−0.267951 + 0.963432i \(0.586347\pi\)
\(192\) 0 0
\(193\) −1.62787 −0.117177 −0.0585885 0.998282i \(-0.518660\pi\)
−0.0585885 + 0.998282i \(0.518660\pi\)
\(194\) 0 0
\(195\) −2.80308 5.38481i −0.200732 0.385614i
\(196\) 0 0
\(197\) −8.27125 −0.589302 −0.294651 0.955605i \(-0.595203\pi\)
−0.294651 + 0.955605i \(0.595203\pi\)
\(198\) 0 0
\(199\) 5.34411 9.25627i 0.378834 0.656159i −0.612059 0.790812i \(-0.709659\pi\)
0.990893 + 0.134653i \(0.0429919\pi\)
\(200\) 0 0
\(201\) −4.65513 8.94267i −0.328347 0.630767i
\(202\) 0 0
\(203\) 7.46322 + 16.0630i 0.523815 + 1.12740i
\(204\) 0 0
\(205\) 7.01587 0.490010
\(206\) 0 0
\(207\) −8.16199 17.5045i −0.567298 1.21665i
\(208\) 0 0
\(209\) −0.253466 + 0.439015i −0.0175326 + 0.0303673i
\(210\) 0 0
\(211\) −11.2725 19.5246i −0.776034 1.34413i −0.934211 0.356720i \(-0.883895\pi\)
0.158178 0.987411i \(-0.449438\pi\)
\(212\) 0 0
\(213\) 0.243465 + 0.467704i 0.0166819 + 0.0320466i
\(214\) 0 0
\(215\) −0.336863 0.583464i −0.0229739 0.0397919i
\(216\) 0 0
\(217\) −13.9376 + 19.8464i −0.946145 + 1.34726i
\(218\) 0 0
\(219\) 18.4765 + 0.806914i 1.24853 + 0.0545262i
\(220\) 0 0
\(221\) 25.3455 1.70492
\(222\) 0 0
\(223\) 3.70093 6.41020i 0.247832 0.429258i −0.715092 0.699031i \(-0.753615\pi\)
0.962924 + 0.269772i \(0.0869484\pi\)
\(224\) 0 0
\(225\) −12.1433 1.06269i −0.809556 0.0708458i
\(226\) 0 0
\(227\) 0.299086 + 0.518033i 0.0198511 + 0.0343831i 0.875780 0.482710i \(-0.160347\pi\)
−0.855929 + 0.517093i \(0.827014\pi\)
\(228\) 0 0
\(229\) 2.01858 3.49629i 0.133392 0.231041i −0.791590 0.611052i \(-0.790747\pi\)
0.924982 + 0.380011i \(0.124080\pi\)
\(230\) 0 0
\(231\) 1.27280 + 3.08498i 0.0837439 + 0.202977i
\(232\) 0 0
\(233\) −5.59754 9.69523i −0.366707 0.635155i 0.622341 0.782746i \(-0.286182\pi\)
−0.989049 + 0.147591i \(0.952848\pi\)
\(234\) 0 0
\(235\) −3.70805 + 6.42254i −0.241887 + 0.418960i
\(236\) 0 0
\(237\) −2.59033 4.97611i −0.168260 0.323233i
\(238\) 0 0
\(239\) −12.8171 22.1999i −0.829069 1.43599i −0.898769 0.438421i \(-0.855538\pi\)
0.0697006 0.997568i \(-0.477796\pi\)
\(240\) 0 0
\(241\) 3.29590 + 5.70866i 0.212307 + 0.367727i 0.952436 0.304738i \(-0.0985688\pi\)
−0.740129 + 0.672465i \(0.765236\pi\)
\(242\) 0 0
\(243\) 10.5321 11.4924i 0.675633 0.737238i
\(244\) 0 0
\(245\) 6.66879 + 1.19494i 0.426053 + 0.0763419i
\(246\) 0 0
\(247\) 1.26040 2.18308i 0.0801975 0.138906i
\(248\) 0 0
\(249\) 2.14140 + 0.0935204i 0.135706 + 0.00592661i
\(250\) 0 0
\(251\) 25.0438 1.58075 0.790374 0.612624i \(-0.209886\pi\)
0.790374 + 0.612624i \(0.209886\pi\)
\(252\) 0 0
\(253\) 4.68840 0.294757
\(254\) 0 0
\(255\) −6.30420 + 9.89537i −0.394785 + 0.619672i
\(256\) 0 0
\(257\) 9.07036 15.7103i 0.565794 0.979984i −0.431182 0.902265i \(-0.641903\pi\)
0.996975 0.0777184i \(-0.0247635\pi\)
\(258\) 0 0
\(259\) −4.50387 0.400322i −0.279857 0.0248748i
\(260\) 0 0
\(261\) 8.48729 + 18.2021i 0.525350 + 1.12668i
\(262\) 0 0
\(263\) −6.40438 11.0927i −0.394911 0.684006i 0.598179 0.801363i \(-0.295891\pi\)
−0.993090 + 0.117357i \(0.962558\pi\)
\(264\) 0 0
\(265\) 1.99028 + 3.44726i 0.122262 + 0.211763i
\(266\) 0 0
\(267\) 10.7709 16.9065i 0.659170 1.03466i
\(268\) 0 0
\(269\) −14.4412 + 25.0129i −0.880497 + 1.52507i −0.0297079 + 0.999559i \(0.509458\pi\)
−0.850789 + 0.525507i \(0.823876\pi\)
\(270\) 0 0
\(271\) 4.59579 + 7.96015i 0.279175 + 0.483544i 0.971180 0.238348i \(-0.0766059\pi\)
−0.692005 + 0.721892i \(0.743273\pi\)
\(272\) 0 0
\(273\) −6.32921 15.3406i −0.383061 0.928456i
\(274\) 0 0
\(275\) 1.47952 2.56260i 0.0892183 0.154531i
\(276\) 0 0
\(277\) 1.95778 + 3.39098i 0.117632 + 0.203744i 0.918829 0.394656i \(-0.129136\pi\)
−0.801197 + 0.598401i \(0.795803\pi\)
\(278\) 0 0
\(279\) −15.7731 + 22.5252i −0.944309 + 1.34855i
\(280\) 0 0
\(281\) 7.64654 13.2442i 0.456154 0.790082i −0.542600 0.839991i \(-0.682560\pi\)
0.998754 + 0.0499093i \(0.0158932\pi\)
\(282\) 0 0
\(283\) 24.9779 1.48478 0.742392 0.669966i \(-0.233691\pi\)
0.742392 + 0.669966i \(0.233691\pi\)
\(284\) 0 0
\(285\) 0.538816 + 1.03508i 0.0319167 + 0.0613131i
\(286\) 0 0
\(287\) 19.1034 + 1.69799i 1.12764 + 0.100229i
\(288\) 0 0
\(289\) −15.9928 27.7003i −0.940751 1.62943i
\(290\) 0 0
\(291\) 4.60056 + 0.200918i 0.269689 + 0.0117780i
\(292\) 0 0
\(293\) −4.08092 7.06835i −0.238410 0.412938i 0.721848 0.692051i \(-0.243293\pi\)
−0.960258 + 0.279114i \(0.909959\pi\)
\(294\) 0 0
\(295\) 2.31133 4.00334i 0.134571 0.233084i
\(296\) 0 0
\(297\) 1.44798 + 3.49607i 0.0840202 + 0.202863i
\(298\) 0 0
\(299\) −23.3139 −1.34828
\(300\) 0 0
\(301\) −0.776028 1.67023i −0.0447295 0.0962706i
\(302\) 0 0
\(303\) 1.50201 2.35762i 0.0862880 0.135442i
\(304\) 0 0
\(305\) −2.38371 + 4.12870i −0.136491 + 0.236409i
\(306\) 0 0
\(307\) 18.0692 1.03126 0.515631 0.856811i \(-0.327558\pi\)
0.515631 + 0.856811i \(0.327558\pi\)
\(308\) 0 0
\(309\) −18.7578 0.819199i −1.06709 0.0466026i
\(310\) 0 0
\(311\) −10.0077 −0.567484 −0.283742 0.958901i \(-0.591576\pi\)
−0.283742 + 0.958901i \(0.591576\pi\)
\(312\) 0 0
\(313\) 2.99065 0.169041 0.0845207 0.996422i \(-0.473064\pi\)
0.0845207 + 0.996422i \(0.473064\pi\)
\(314\) 0 0
\(315\) 7.56353 + 1.34464i 0.426157 + 0.0757617i
\(316\) 0 0
\(317\) −23.8492 −1.33951 −0.669754 0.742583i \(-0.733600\pi\)
−0.669754 + 0.742583i \(0.733600\pi\)
\(318\) 0 0
\(319\) −4.87526 −0.272962
\(320\) 0 0
\(321\) −9.26235 + 14.5386i −0.516974 + 0.811466i
\(322\) 0 0
\(323\) −4.87199 −0.271085
\(324\) 0 0
\(325\) −7.35717 + 12.7430i −0.408102 + 0.706854i
\(326\) 0 0
\(327\) −32.1105 1.40235i −1.77572 0.0775500i
\(328\) 0 0
\(329\) −11.6510 + 16.5904i −0.642340 + 0.914658i
\(330\) 0 0
\(331\) −16.0377 −0.881513 −0.440757 0.897627i \(-0.645290\pi\)
−0.440757 + 0.897627i \(0.645290\pi\)
\(332\) 0 0
\(333\) −5.10752 0.446968i −0.279890 0.0244937i
\(334\) 0 0
\(335\) 2.81680 4.87884i 0.153898 0.266560i
\(336\) 0 0
\(337\) 16.8985 + 29.2691i 0.920520 + 1.59439i 0.798613 + 0.601845i \(0.205568\pi\)
0.121907 + 0.992542i \(0.461099\pi\)
\(338\) 0 0
\(339\) −10.7178 + 16.8231i −0.582110 + 0.913706i
\(340\) 0 0
\(341\) −3.33761 5.78092i −0.180742 0.313054i
\(342\) 0 0
\(343\) 17.8691 + 4.86767i 0.964842 + 0.262829i
\(344\) 0 0
\(345\) 5.79889 9.10220i 0.312201 0.490046i
\(346\) 0 0
\(347\) 35.3274 1.89647 0.948237 0.317562i \(-0.102864\pi\)
0.948237 + 0.317562i \(0.102864\pi\)
\(348\) 0 0
\(349\) −5.75344 + 9.96526i −0.307975 + 0.533428i −0.977919 0.208983i \(-0.932985\pi\)
0.669944 + 0.742411i \(0.266318\pi\)
\(350\) 0 0
\(351\) −7.20033 17.3848i −0.384325 0.927933i
\(352\) 0 0
\(353\) −12.4432 21.5522i −0.662283 1.14711i −0.980014 0.198926i \(-0.936254\pi\)
0.317732 0.948181i \(-0.397079\pi\)
\(354\) 0 0
\(355\) −0.147320 + 0.255165i −0.00781891 + 0.0135427i
\(356\) 0 0
\(357\) −19.5605 + 25.4182i −1.03525 + 1.34527i
\(358\) 0 0
\(359\) 9.22681 + 15.9813i 0.486972 + 0.843461i 0.999888 0.0149785i \(-0.00476798\pi\)
−0.512916 + 0.858439i \(0.671435\pi\)
\(360\) 0 0
\(361\) 9.25772 16.0348i 0.487249 0.843939i
\(362\) 0 0
\(363\) 18.1167 + 0.791202i 0.950881 + 0.0415273i
\(364\) 0 0
\(365\) 5.16718 + 8.94982i 0.270463 + 0.468455i
\(366\) 0 0
\(367\) 9.10688 + 15.7736i 0.475375 + 0.823374i 0.999602 0.0282046i \(-0.00897899\pi\)
−0.524227 + 0.851579i \(0.675646\pi\)
\(368\) 0 0
\(369\) 21.6638 + 1.89584i 1.12777 + 0.0986936i
\(370\) 0 0
\(371\) 4.58498 + 9.86817i 0.238040 + 0.512330i
\(372\) 0 0
\(373\) 9.09995 15.7616i 0.471177 0.816103i −0.528279 0.849071i \(-0.677162\pi\)
0.999456 + 0.0329676i \(0.0104958\pi\)
\(374\) 0 0
\(375\) −7.01539 13.4768i −0.362273 0.695940i
\(376\) 0 0
\(377\) 24.2431 1.24858
\(378\) 0 0
\(379\) −24.1061 −1.23825 −0.619124 0.785293i \(-0.712512\pi\)
−0.619124 + 0.785293i \(0.712512\pi\)
\(380\) 0 0
\(381\) 7.25359 + 13.9344i 0.371613 + 0.713882i
\(382\) 0 0
\(383\) 3.21847 5.57455i 0.164456 0.284846i −0.772006 0.635615i \(-0.780746\pi\)
0.936462 + 0.350769i \(0.114080\pi\)
\(384\) 0 0
\(385\) −1.07173 + 1.52609i −0.0546205 + 0.0777767i
\(386\) 0 0
\(387\) −0.882511 1.89267i −0.0448606 0.0962096i
\(388\) 0 0
\(389\) −16.9299 29.3234i −0.858379 1.48676i −0.873475 0.486869i \(-0.838139\pi\)
0.0150964 0.999886i \(-0.495194\pi\)
\(390\) 0 0
\(391\) 22.5295 + 39.0223i 1.13937 + 1.97344i
\(392\) 0 0
\(393\) −22.6425 0.988853i −1.14216 0.0498810i
\(394\) 0 0
\(395\) 1.56740 2.71481i 0.0788643 0.136597i
\(396\) 0 0
\(397\) −0.808630 1.40059i −0.0405840 0.0702935i 0.845020 0.534735i \(-0.179588\pi\)
−0.885604 + 0.464441i \(0.846255\pi\)
\(398\) 0 0
\(399\) 1.21662 + 2.94882i 0.0609071 + 0.147626i
\(400\) 0 0
\(401\) −2.87691 + 4.98296i −0.143666 + 0.248837i −0.928874 0.370395i \(-0.879222\pi\)
0.785208 + 0.619232i \(0.212556\pi\)
\(402\) 0 0
\(403\) 16.5969 + 28.7466i 0.826749 + 1.43197i
\(404\) 0 0
\(405\) 8.57831 + 1.51300i 0.426260 + 0.0751813i
\(406\) 0 0
\(407\) 0.622289 1.07784i 0.0308457 0.0534263i
\(408\) 0 0
\(409\) −5.77262 −0.285438 −0.142719 0.989763i \(-0.545584\pi\)
−0.142719 + 0.989763i \(0.545584\pi\)
\(410\) 0 0
\(411\) −18.6841 + 29.3274i −0.921618 + 1.44661i
\(412\) 0 0
\(413\) 7.26237 10.3412i 0.357358 0.508859i
\(414\) 0 0
\(415\) 0.598871 + 1.03727i 0.0293974 + 0.0509178i
\(416\) 0 0
\(417\) −0.628806 + 0.987002i −0.0307927 + 0.0483337i
\(418\) 0 0
\(419\) −9.29032 16.0913i −0.453862 0.786111i 0.544760 0.838592i \(-0.316621\pi\)
−0.998622 + 0.0524804i \(0.983287\pi\)
\(420\) 0 0
\(421\) −8.05788 + 13.9567i −0.392717 + 0.680206i −0.992807 0.119727i \(-0.961798\pi\)
0.600090 + 0.799933i \(0.295131\pi\)
\(422\) 0 0
\(423\) −13.1854 + 18.8297i −0.641094 + 0.915532i
\(424\) 0 0
\(425\) 28.4386 1.37947
\(426\) 0 0
\(427\) −7.48979 + 10.6651i −0.362456 + 0.516119i
\(428\) 0 0
\(429\) 4.56342 + 0.199296i 0.220324 + 0.00962210i
\(430\) 0 0
\(431\) 1.82664 3.16383i 0.0879860 0.152396i −0.818674 0.574259i \(-0.805290\pi\)
0.906660 + 0.421863i \(0.138624\pi\)
\(432\) 0 0
\(433\) 12.6697 0.608865 0.304432 0.952534i \(-0.401533\pi\)
0.304432 + 0.952534i \(0.401533\pi\)
\(434\) 0 0
\(435\) −6.03000 + 9.46496i −0.289116 + 0.453810i
\(436\) 0 0
\(437\) 4.48147 0.214378
\(438\) 0 0
\(439\) 11.7162 0.559183 0.279592 0.960119i \(-0.409801\pi\)
0.279592 + 0.960119i \(0.409801\pi\)
\(440\) 0 0
\(441\) 20.2692 + 5.49182i 0.965199 + 0.261515i
\(442\) 0 0
\(443\) −29.7470 −1.41332 −0.706661 0.707552i \(-0.749799\pi\)
−0.706661 + 0.707552i \(0.749799\pi\)
\(444\) 0 0
\(445\) 11.2016 0.531006
\(446\) 0 0
\(447\) −37.2188 1.62544i −1.76039 0.0768806i
\(448\) 0 0
\(449\) 11.0193 0.520034 0.260017 0.965604i \(-0.416272\pi\)
0.260017 + 0.965604i \(0.416272\pi\)
\(450\) 0 0
\(451\) −2.63947 + 4.57170i −0.124288 + 0.215273i
\(452\) 0 0
\(453\) 13.1877 20.7000i 0.619612 0.972572i
\(454\) 0 0
\(455\) 5.32937 7.58875i 0.249845 0.355766i
\(456\) 0 0
\(457\) 0.516448 0.0241584 0.0120792 0.999927i \(-0.496155\pi\)
0.0120792 + 0.999927i \(0.496155\pi\)
\(458\) 0 0
\(459\) −22.1402 + 28.8517i −1.03342 + 1.34668i
\(460\) 0 0
\(461\) −3.54962 + 6.14813i −0.165322 + 0.286347i −0.936770 0.349946i \(-0.886200\pi\)
0.771447 + 0.636293i \(0.219533\pi\)
\(462\) 0 0
\(463\) −4.91148 8.50693i −0.228256 0.395351i 0.729035 0.684476i \(-0.239969\pi\)
−0.957291 + 0.289125i \(0.906636\pi\)
\(464\) 0 0
\(465\) −15.3514 0.670433i −0.711904 0.0310906i
\(466\) 0 0
\(467\) −4.79604 8.30698i −0.221934 0.384401i 0.733461 0.679731i \(-0.237904\pi\)
−0.955395 + 0.295330i \(0.904570\pi\)
\(468\) 0 0
\(469\) 8.85061 12.6028i 0.408683 0.581943i
\(470\) 0 0
\(471\) −12.7936 24.5770i −0.589498 1.13245i
\(472\) 0 0
\(473\) 0.506931 0.0233087
\(474\) 0 0
\(475\) 1.41422 2.44950i 0.0648887 0.112391i
\(476\) 0 0
\(477\) 5.21411 + 11.1824i 0.238738 + 0.512005i
\(478\) 0 0
\(479\) −8.13621 14.0923i −0.371753 0.643895i 0.618082 0.786113i \(-0.287910\pi\)
−0.989835 + 0.142218i \(0.954576\pi\)
\(480\) 0 0
\(481\) −3.09444 + 5.35973i −0.141094 + 0.244383i
\(482\) 0 0
\(483\) 17.9926 23.3808i 0.818692 1.06386i
\(484\) 0 0
\(485\) 1.28660 + 2.22846i 0.0584217 + 0.101189i
\(486\) 0 0
\(487\) −9.50511 + 16.4633i −0.430718 + 0.746025i −0.996935 0.0782307i \(-0.975073\pi\)
0.566217 + 0.824256i \(0.308406\pi\)
\(488\) 0 0
\(489\) 18.7812 29.4798i 0.849314 1.33312i
\(490\) 0 0
\(491\) 2.55413 + 4.42387i 0.115266 + 0.199647i 0.917886 0.396844i \(-0.129895\pi\)
−0.802620 + 0.596491i \(0.796561\pi\)
\(492\) 0 0
\(493\) −23.4274 40.5775i −1.05512 1.82752i
\(494\) 0 0
\(495\) −1.21287 + 1.73208i −0.0545145 + 0.0778510i
\(496\) 0 0
\(497\) −0.462889 + 0.659130i −0.0207634 + 0.0295660i
\(498\) 0 0
\(499\) 14.2638 24.7056i 0.638536 1.10598i −0.347219 0.937784i \(-0.612874\pi\)
0.985754 0.168192i \(-0.0537928\pi\)
\(500\) 0 0
\(501\) 22.7634 35.7305i 1.01700 1.59632i
\(502\) 0 0
\(503\) 4.05885 0.180975 0.0904877 0.995898i \(-0.471157\pi\)
0.0904877 + 0.995898i \(0.471157\pi\)
\(504\) 0 0
\(505\) 1.56206 0.0695108
\(506\) 0 0
\(507\) −0.197187 0.00861164i −0.00875738 0.000382456i
\(508\) 0 0
\(509\) −8.63023 + 14.9480i −0.382528 + 0.662558i −0.991423 0.130693i \(-0.958280\pi\)
0.608895 + 0.793251i \(0.291613\pi\)
\(510\) 0 0
\(511\) 11.9036 + 25.6199i 0.526584 + 1.13336i
\(512\) 0 0
\(513\) 1.38407 + 3.34176i 0.0611081 + 0.147542i
\(514\) 0 0
\(515\) −5.24585 9.08608i −0.231160 0.400380i
\(516\) 0 0
\(517\) −2.79005 4.83250i −0.122706 0.212533i
\(518\) 0 0
\(519\) 15.7999 + 30.3523i 0.693541 + 1.33232i
\(520\) 0 0
\(521\) −17.0525 + 29.5358i −0.747083 + 1.29399i 0.202132 + 0.979358i \(0.435213\pi\)
−0.949215 + 0.314628i \(0.898120\pi\)
\(522\) 0 0
\(523\) −9.44847 16.3652i −0.413153 0.715602i 0.582080 0.813132i \(-0.302239\pi\)
−0.995233 + 0.0975299i \(0.968906\pi\)
\(524\) 0 0
\(525\) −7.10160 17.2127i −0.309939 0.751225i
\(526\) 0 0
\(527\) 32.0770 55.5589i 1.39729 2.42019i
\(528\) 0 0
\(529\) −9.22366 15.9758i −0.401029 0.694602i
\(530\) 0 0
\(531\) 8.21878 11.7371i 0.356665 0.509345i
\(532\) 0 0
\(533\) 13.1252 22.7336i 0.568517 0.984701i
\(534\) 0 0
\(535\) −9.63269 −0.416457
\(536\) 0 0
\(537\) −21.8875 0.955880i −0.944514 0.0412493i
\(538\) 0 0
\(539\) −3.28754 + 3.89598i −0.141605 + 0.167812i
\(540\) 0 0
\(541\) 0.564117 + 0.977080i 0.0242533 + 0.0420080i 0.877897 0.478849i \(-0.158946\pi\)
−0.853644 + 0.520857i \(0.825613\pi\)
\(542\) 0 0
\(543\) 10.0492 + 19.3049i 0.431252 + 0.828451i
\(544\) 0 0
\(545\) −8.98012 15.5540i −0.384666 0.666261i
\(546\) 0 0
\(547\) 15.8427 27.4404i 0.677386 1.17327i −0.298380 0.954447i \(-0.596446\pi\)
0.975765 0.218819i \(-0.0702205\pi\)
\(548\) 0 0
\(549\) −8.47615 + 12.1046i −0.361753 + 0.516612i
\(550\) 0 0
\(551\) −4.66008 −0.198526
\(552\) 0 0
\(553\) 4.92488 7.01277i 0.209427 0.298213i
\(554\) 0 0
\(555\) −1.32286 2.54126i −0.0561522 0.107870i
\(556\) 0 0
\(557\) −13.8135 + 23.9257i −0.585298 + 1.01377i 0.409540 + 0.912292i \(0.365689\pi\)
−0.994838 + 0.101474i \(0.967644\pi\)
\(558\) 0 0
\(559\) −2.52080 −0.106619
\(560\) 0 0
\(561\) −4.07631 7.83074i −0.172102 0.330614i
\(562\) 0 0
\(563\) 1.84137 0.0776045 0.0388022 0.999247i \(-0.487646\pi\)
0.0388022 + 0.999247i \(0.487646\pi\)
\(564\) 0 0
\(565\) −11.1463 −0.468929
\(566\) 0 0
\(567\) 22.9916 + 6.19584i 0.965555 + 0.260201i
\(568\) 0 0
\(569\) −11.5105 −0.482545 −0.241272 0.970457i \(-0.577565\pi\)
−0.241272 + 0.970457i \(0.577565\pi\)
\(570\) 0 0
\(571\) −8.70524 −0.364303 −0.182152 0.983270i \(-0.558306\pi\)
−0.182152 + 0.983270i \(0.558306\pi\)
\(572\) 0 0
\(573\) −5.92324 11.3788i −0.247447 0.475354i
\(574\) 0 0
\(575\) −26.1591 −1.09091
\(576\) 0 0
\(577\) −7.24358 + 12.5462i −0.301554 + 0.522307i −0.976488 0.215571i \(-0.930839\pi\)
0.674934 + 0.737878i \(0.264172\pi\)
\(578\) 0 0
\(579\) −1.30190 2.50100i −0.0541051 0.103938i
\(580\) 0 0
\(581\) 1.37961 + 2.96932i 0.0572359 + 0.123188i
\(582\) 0 0
\(583\) −2.99508 −0.124044
\(584\) 0 0
\(585\) 6.03122 8.61305i 0.249360 0.356106i
\(586\) 0 0
\(587\) −14.3695 + 24.8886i −0.593091 + 1.02726i 0.400722 + 0.916200i \(0.368759\pi\)
−0.993813 + 0.111065i \(0.964574\pi\)
\(588\) 0 0
\(589\) −3.19030 5.52576i −0.131454 0.227685i
\(590\) 0 0
\(591\) −6.61497 12.7076i −0.272103 0.522720i
\(592\) 0 0
\(593\) 6.82328 + 11.8183i 0.280199 + 0.485318i 0.971434 0.237312i \(-0.0762663\pi\)
−0.691235 + 0.722630i \(0.742933\pi\)
\(594\) 0 0
\(595\) −17.8519 1.58676i −0.731858 0.0650506i
\(596\) 0 0
\(597\) 18.4949 + 0.807718i 0.756946 + 0.0330577i
\(598\) 0 0
\(599\) 5.29170 0.216213 0.108106 0.994139i \(-0.465521\pi\)
0.108106 + 0.994139i \(0.465521\pi\)
\(600\) 0 0
\(601\) 17.0522 29.5353i 0.695574 1.20477i −0.274412 0.961612i \(-0.588483\pi\)
0.969987 0.243158i \(-0.0781834\pi\)
\(602\) 0 0
\(603\) 10.0162 14.3039i 0.407890 0.582499i
\(604\) 0 0
\(605\) 5.06657 + 8.77555i 0.205985 + 0.356777i
\(606\) 0 0
\(607\) 4.52232 7.83289i 0.183555 0.317927i −0.759533 0.650468i \(-0.774573\pi\)
0.943089 + 0.332541i \(0.107906\pi\)
\(608\) 0 0
\(609\) −18.7097 + 24.3126i −0.758155 + 0.985196i
\(610\) 0 0
\(611\) 13.8740 + 24.0305i 0.561282 + 0.972169i
\(612\) 0 0
\(613\) 5.97889 10.3557i 0.241485 0.418264i −0.719653 0.694334i \(-0.755699\pi\)
0.961137 + 0.276070i \(0.0890322\pi\)
\(614\) 0 0
\(615\) 5.61098 + 10.7789i 0.226256 + 0.434647i
\(616\) 0 0
\(617\) 5.13220 + 8.88923i 0.206615 + 0.357867i 0.950646 0.310278i \(-0.100422\pi\)
−0.744031 + 0.668145i \(0.767089\pi\)
\(618\) 0 0
\(619\) 21.7803 + 37.7245i 0.875423 + 1.51628i 0.856312 + 0.516460i \(0.172750\pi\)
0.0191114 + 0.999817i \(0.493916\pi\)
\(620\) 0 0
\(621\) 20.3656 26.5390i 0.817243 1.06498i
\(622\) 0 0
\(623\) 30.5006 + 2.71102i 1.22198 + 0.108615i
\(624\) 0 0
\(625\) −5.91314 + 10.2419i −0.236526 + 0.409674i
\(626\) 0 0
\(627\) −0.877194 0.0383093i −0.0350318 0.00152992i
\(628\) 0 0
\(629\) 11.9613 0.476929
\(630\) 0 0
\(631\) 19.3703 0.771119 0.385559 0.922683i \(-0.374008\pi\)
0.385559 + 0.922683i \(0.374008\pi\)
\(632\) 0 0
\(633\) 20.9815 32.9336i 0.833941 1.30899i
\(634\) 0 0
\(635\) −4.38912 + 7.60218i −0.174177 + 0.301684i
\(636\) 0 0
\(637\) 16.3479 19.3734i 0.647727 0.767604i
\(638\) 0 0
\(639\) −0.523849 + 0.748097i −0.0207231 + 0.0295943i
\(640\) 0 0
\(641\) −2.25008 3.89725i −0.0888728 0.153932i 0.818162 0.574988i \(-0.194993\pi\)
−0.907035 + 0.421055i \(0.861660\pi\)
\(642\) 0 0
\(643\) −20.9045 36.2077i −0.824394 1.42789i −0.902381 0.430939i \(-0.858183\pi\)
0.0779869 0.996954i \(-0.475151\pi\)
\(644\) 0 0
\(645\) 0.627001 0.984170i 0.0246882 0.0387517i
\(646\) 0 0
\(647\) 11.9381 20.6773i 0.469334 0.812910i −0.530052 0.847965i \(-0.677827\pi\)
0.999385 + 0.0350555i \(0.0111608\pi\)
\(648\) 0 0
\(649\) 1.73911 + 3.01223i 0.0682661 + 0.118240i
\(650\) 0 0
\(651\) −41.6378 5.54087i −1.63191 0.217164i
\(652\) 0 0
\(653\) 4.16674 7.21700i 0.163057 0.282423i −0.772907 0.634520i \(-0.781198\pi\)
0.935964 + 0.352097i \(0.114531\pi\)
\(654\) 0 0
\(655\) −6.33226 10.9678i −0.247422 0.428547i
\(656\) 0 0
\(657\) 13.5369 + 29.0318i 0.528126 + 1.13264i
\(658\) 0 0
\(659\) −20.2488 + 35.0719i −0.788781 + 1.36621i 0.137933 + 0.990442i \(0.455954\pi\)
−0.926714 + 0.375767i \(0.877379\pi\)
\(660\) 0 0
\(661\) −7.77118 −0.302264 −0.151132 0.988514i \(-0.548292\pi\)
−0.151132 + 0.988514i \(0.548292\pi\)
\(662\) 0 0
\(663\) 20.2702 + 38.9397i 0.787228 + 1.51229i
\(664\) 0 0
\(665\) −1.02443 + 1.45873i −0.0397256 + 0.0565672i
\(666\) 0 0
\(667\) 21.5496 + 37.3250i 0.834404 + 1.44523i
\(668\) 0 0
\(669\) 12.8082 + 0.559365i 0.495193 + 0.0216263i
\(670\) 0 0
\(671\) −1.79357 3.10656i −0.0692400 0.119927i
\(672\) 0 0
\(673\) −22.7830 + 39.4614i −0.878221 + 1.52112i −0.0249302 + 0.999689i \(0.507936\pi\)
−0.853291 + 0.521435i \(0.825397\pi\)
\(674\) 0 0
\(675\) −8.07903 19.5064i −0.310962 0.750802i
\(676\) 0 0
\(677\) 13.0904 0.503106 0.251553 0.967844i \(-0.419059\pi\)
0.251553 + 0.967844i \(0.419059\pi\)
\(678\) 0 0
\(679\) 2.96394 + 6.37923i 0.113745 + 0.244812i
\(680\) 0 0
\(681\) −0.556688 + 0.873803i −0.0213323 + 0.0334842i
\(682\) 0 0
\(683\) −12.6506 + 21.9114i −0.484060 + 0.838417i −0.999832 0.0183087i \(-0.994172\pi\)
0.515772 + 0.856726i \(0.327505\pi\)
\(684\) 0 0
\(685\) −19.4311 −0.742425
\(686\) 0 0
\(687\) 6.98592 + 0.305092i 0.266529 + 0.0116400i
\(688\) 0 0
\(689\) 14.8936 0.567400
\(690\) 0 0
\(691\) −24.4031 −0.928339 −0.464170 0.885746i \(-0.653647\pi\)
−0.464170 + 0.885746i \(0.653647\pi\)
\(692\) 0 0
\(693\) −3.72171 + 4.42270i −0.141376 + 0.168004i
\(694\) 0 0
\(695\) −0.653947 −0.0248056
\(696\) 0 0
\(697\) −50.7346 −1.92171
\(698\) 0 0
\(699\) 10.4187 16.3536i 0.394070 0.618551i
\(700\) 0 0
\(701\) −18.4137 −0.695476 −0.347738 0.937592i \(-0.613050\pi\)
−0.347738 + 0.937592i \(0.613050\pi\)
\(702\) 0 0
\(703\) 0.594823 1.03026i 0.0224342 0.0388571i
\(704\) 0 0
\(705\) −12.8328 0.560442i −0.483313 0.0211075i
\(706\) 0 0
\(707\) 4.25331 + 0.378052i 0.159962 + 0.0142181i
\(708\) 0 0
\(709\) −13.3300 −0.500619 −0.250310 0.968166i \(-0.580532\pi\)
−0.250310 + 0.968166i \(0.580532\pi\)
\(710\) 0 0
\(711\) 5.57346 7.95933i 0.209021 0.298498i
\(712\) 0 0
\(713\) −29.5058 + 51.1056i −1.10500 + 1.91392i
\(714\) 0 0
\(715\) 1.27622 + 2.21047i 0.0477278 + 0.0826671i
\(716\) 0 0
\(717\) 23.8564 37.4461i 0.890933 1.39845i
\(718\) 0 0
\(719\) −7.84705 13.5915i −0.292646 0.506877i 0.681789 0.731549i \(-0.261202\pi\)
−0.974434 + 0.224672i \(0.927869\pi\)
\(720\) 0 0
\(721\) −12.0848 26.0099i −0.450062 0.968660i
\(722\) 0 0
\(723\) −6.13463 + 9.62920i −0.228150 + 0.358114i
\(724\) 0 0
\(725\) 27.2016 1.01024
\(726\) 0 0
\(727\) −12.8388 + 22.2374i −0.476163 + 0.824739i −0.999627 0.0273090i \(-0.991306\pi\)
0.523464 + 0.852048i \(0.324640\pi\)
\(728\) 0 0
\(729\) 26.0795 + 6.98992i 0.965908 + 0.258886i
\(730\) 0 0
\(731\) 2.43599 + 4.21926i 0.0900985 + 0.156055i
\(732\) 0 0
\(733\) −0.586541 + 1.01592i −0.0216644 + 0.0375238i −0.876654 0.481121i \(-0.840230\pi\)
0.854990 + 0.518645i \(0.173563\pi\)
\(734\) 0 0
\(735\) 3.49754 + 11.2013i 0.129009 + 0.413166i
\(736\) 0 0
\(737\) 2.11944 + 3.67098i 0.0780707 + 0.135222i
\(738\) 0 0
\(739\) 11.6114 20.1116i 0.427133 0.739816i −0.569484 0.822003i \(-0.692857\pi\)
0.996617 + 0.0821861i \(0.0261902\pi\)
\(740\) 0 0
\(741\) 4.36200 + 0.190499i 0.160242 + 0.00699817i
\(742\) 0 0
\(743\) 11.7846 + 20.4115i 0.432335 + 0.748826i 0.997074 0.0764439i \(-0.0243566\pi\)
−0.564739 + 0.825269i \(0.691023\pi\)
\(744\) 0 0
\(745\) −10.4087 18.0284i −0.381346 0.660510i
\(746\) 0 0
\(747\) 1.56892 + 3.36475i 0.0574036 + 0.123110i
\(748\) 0 0
\(749\) −26.2287 2.33131i −0.958375 0.0851844i
\(750\) 0 0
\(751\) −22.0531 + 38.1971i −0.804728 + 1.39383i 0.111746 + 0.993737i \(0.464356\pi\)
−0.916474 + 0.400093i \(0.868978\pi\)
\(752\) 0 0
\(753\) 20.0289 + 38.4762i 0.729892 + 1.40215i
\(754\) 0 0
\(755\) 13.7150 0.499139
\(756\) 0 0
\(757\) −2.71020 −0.0985040 −0.0492520 0.998786i \(-0.515684\pi\)
−0.0492520 + 0.998786i \(0.515684\pi\)
\(758\) 0 0
\(759\) 3.74957 + 7.20306i 0.136101 + 0.261455i
\(760\) 0 0
\(761\) −14.5248 + 25.1577i −0.526524 + 0.911966i 0.472999 + 0.881063i \(0.343172\pi\)
−0.999522 + 0.0309029i \(0.990162\pi\)
\(762\) 0 0
\(763\) −20.6874 44.5252i −0.748934 1.61192i
\(764\) 0 0
\(765\) −20.2446 1.77165i −0.731946 0.0640540i
\(766\) 0 0
\(767\) −8.64804 14.9788i −0.312263 0.540855i
\(768\) 0 0
\(769\) −5.25175 9.09629i −0.189383 0.328021i 0.755662 0.654962i \(-0.227315\pi\)
−0.945045 + 0.326941i \(0.893982\pi\)
\(770\) 0 0
\(771\) 31.3907 + 1.37091i 1.13051 + 0.0493722i
\(772\) 0 0
\(773\) −11.9230 + 20.6513i −0.428841 + 0.742774i −0.996771 0.0803029i \(-0.974411\pi\)
0.567930 + 0.823077i \(0.307745\pi\)
\(774\) 0 0
\(775\) 18.6223 + 32.2548i 0.668933 + 1.15863i
\(776\) 0 0
\(777\) −2.98695 7.23971i −0.107156 0.259723i
\(778\) 0 0
\(779\) −2.52297 + 4.36992i −0.0903949 + 0.156569i
\(780\) 0 0
\(781\) −0.110847 0.191993i −0.00396643 0.00687007i
\(782\) 0 0
\(783\) −21.1772 + 27.5968i −0.756813 + 0.986227i
\(784\) 0 0
\(785\) 7.74136 13.4084i 0.276301 0.478567i
\(786\) 0 0
\(787\) −4.39576 −0.156692 −0.0783460 0.996926i \(-0.524964\pi\)
−0.0783460 + 0.996926i \(0.524964\pi\)
\(788\) 0 0
\(789\) 11.9204 18.7109i 0.424379 0.666124i
\(790\) 0 0
\(791\) −30.3501 2.69764i −1.07912 0.0959171i
\(792\) 0 0
\(793\) 8.91885 + 15.4479i 0.316717 + 0.548571i
\(794\) 0 0
\(795\) −3.70449 + 5.81474i −0.131385 + 0.206227i
\(796\) 0 0
\(797\) −2.56236 4.43813i −0.0907633 0.157207i 0.817069 0.576540i \(-0.195597\pi\)
−0.907833 + 0.419333i \(0.862264\pi\)
\(798\) 0 0
\(799\) 26.8144 46.4440i 0.948627 1.64307i
\(800\) 0 0
\(801\) 34.5886 + 3.02691i 1.22213 + 0.106951i
\(802\) 0 0
\(803\) −7.77587 −0.274405
\(804\) 0 0
\(805\) 16.4210 + 1.45957i 0.578764 + 0.0514430i
\(806\) 0 0
\(807\) −49.9782 2.18267i −1.75932 0.0768338i
\(808\) 0 0
\(809\) −16.4612 + 28.5116i −0.578744 + 1.00241i 0.416880 + 0.908961i \(0.363123\pi\)
−0.995624 + 0.0934519i \(0.970210\pi\)
\(810\) 0 0
\(811\) −31.8830 −1.11956 −0.559781 0.828640i \(-0.689115\pi\)
−0.559781 + 0.828640i \(0.689115\pi\)
\(812\) 0 0
\(813\) −8.55412 + 13.4269i −0.300006 + 0.470903i
\(814\) 0 0
\(815\) 19.5321 0.684179
\(816\) 0 0
\(817\) 0.484556 0.0169525
\(818\) 0 0
\(819\) 18.5068 21.9926i 0.646681 0.768485i
\(820\) 0 0
\(821\) 34.2277 1.19456 0.597278 0.802034i \(-0.296249\pi\)
0.597278 + 0.802034i \(0.296249\pi\)
\(822\) 0 0
\(823\) 38.3732 1.33760 0.668802 0.743440i \(-0.266807\pi\)
0.668802 + 0.743440i \(0.266807\pi\)
\(824\) 0 0
\(825\) 5.12032 + 0.223617i 0.178267 + 0.00778535i
\(826\) 0 0
\(827\) 9.23903 0.321273 0.160636 0.987014i \(-0.448645\pi\)
0.160636 + 0.987014i \(0.448645\pi\)
\(828\) 0 0
\(829\) 20.8224 36.0654i 0.723191 1.25260i −0.236523 0.971626i \(-0.576008\pi\)
0.959714 0.280978i \(-0.0906589\pi\)
\(830\) 0 0
\(831\) −3.64401 + 5.71981i −0.126409 + 0.198418i
\(832\) 0 0
\(833\) −48.2247 8.64110i −1.67089 0.299396i
\(834\) 0 0
\(835\) 23.6736 0.819259
\(836\) 0 0
\(837\) −47.2213 6.21846i −1.63221 0.214941i
\(838\) 0 0
\(839\) −15.4241 + 26.7154i −0.532500 + 0.922318i 0.466780 + 0.884374i \(0.345414\pi\)
−0.999280 + 0.0379439i \(0.987919\pi\)
\(840\) 0 0
\(841\) −7.90845 13.6978i −0.272705 0.472339i
\(842\) 0 0
\(843\) 26.4632 + 1.15571i 0.911439 + 0.0398048i
\(844\) 0 0
\(845\) −0.0551458 0.0955153i −0.00189707 0.00328583i
\(846\) 0 0
\(847\) 11.6718 + 25.1210i 0.401048 + 0.863168i
\(848\) 0 0
\(849\) 19.9762 + 38.3750i 0.685582 + 1.31703i
\(850\) 0 0
\(851\) −11.0026 −0.377163
\(852\) 0 0
\(853\) −11.4171 + 19.7750i −0.390913 + 0.677082i −0.992570 0.121673i \(-0.961174\pi\)
0.601657 + 0.798755i \(0.294507\pi\)
\(854\) 0 0
\(855\) −1.15934 + 1.65563i −0.0396485 + 0.0566212i
\(856\) 0 0
\(857\) 26.6720 + 46.1973i 0.911100 + 1.57807i 0.812513 + 0.582942i \(0.198099\pi\)
0.0985862 + 0.995129i \(0.468568\pi\)
\(858\) 0 0
\(859\) 11.5878 20.0707i 0.395372 0.684804i −0.597777 0.801663i \(-0.703949\pi\)
0.993149 + 0.116859i \(0.0372825\pi\)
\(860\) 0 0
\(861\) 12.6693 + 30.7076i 0.431769 + 1.04651i
\(862\) 0 0
\(863\) 4.58456 + 7.94069i 0.156060 + 0.270304i 0.933445 0.358722i \(-0.116787\pi\)
−0.777384 + 0.629026i \(0.783454\pi\)
\(864\) 0 0
\(865\) −9.56049 + 16.5593i −0.325067 + 0.563032i
\(866\) 0 0
\(867\) 29.7672 46.7240i 1.01095 1.58683i
\(868\) 0 0
\(869\) 1.17936 + 2.04270i 0.0400069 + 0.0692940i
\(870\) 0 0
\(871\) −10.5393 18.2546i −0.357111 0.618534i
\(872\) 0 0
\(873\) 3.37063 + 7.22878i 0.114079 + 0.244657i
\(874\) 0 0
\(875\) 13.3381 18.9927i 0.450909 0.642071i
\(876\) 0 0
\(877\) −18.6190 + 32.2490i −0.628718 + 1.08897i 0.359091 + 0.933303i \(0.383087\pi\)
−0.987809 + 0.155670i \(0.950247\pi\)
\(878\) 0 0
\(879\) 7.59578 11.9227i 0.256199 0.402142i
\(880\) 0 0
\(881\) 7.15345 0.241006 0.120503 0.992713i \(-0.461549\pi\)
0.120503 + 0.992713i \(0.461549\pi\)
\(882\) 0 0
\(883\) −39.8688 −1.34169 −0.670846 0.741596i \(-0.734069\pi\)
−0.670846 + 0.741596i \(0.734069\pi\)
\(884\) 0 0
\(885\) 7.99906 + 0.349339i 0.268885 + 0.0117429i
\(886\) 0 0
\(887\) 10.6755 18.4904i 0.358447 0.620848i −0.629255 0.777199i \(-0.716640\pi\)
0.987702 + 0.156351i \(0.0499731\pi\)
\(888\) 0 0
\(889\) −13.7910 + 19.6376i −0.462534 + 0.658624i
\(890\) 0 0
\(891\) −4.21319 + 5.02061i −0.141147 + 0.168197i
\(892\) 0 0
\(893\) −2.66690 4.61921i −0.0892445 0.154576i
\(894\) 0 0
\(895\) −6.12111 10.6021i −0.204606 0.354388i
\(896\) 0 0
\(897\) −18.6454 35.8185i −0.622552 1.19594i
\(898\) 0 0
\(899\) 30.6818 53.1424i 1.02329 1.77240i
\(900\) 0 0
\(901\) −14.3925 24.9285i −0.479483 0.830490i
\(902\) 0 0
\(903\) 1.94544 2.52803i 0.0647402 0.0841276i
\(904\) 0 0
\(905\) −6.08073 + 10.5321i −0.202130 + 0.350100i
\(906\) 0 0
\(907\) 11.3012 + 19.5742i 0.375250 + 0.649951i 0.990364 0.138486i \(-0.0442237\pi\)
−0.615115 + 0.788438i \(0.710890\pi\)
\(908\) 0 0
\(909\) 4.82338 + 0.422103i 0.159981 + 0.0140003i
\(910\) 0 0
\(911\) 12.7594 22.0999i 0.422738 0.732203i −0.573468 0.819228i \(-0.694402\pi\)
0.996206 + 0.0870243i \(0.0277358\pi\)
\(912\) 0 0
\(913\) −0.901215 −0.0298259
\(914\) 0 0
\(915\) −8.24954 0.360278i −0.272722 0.0119104i
\(916\) 0 0
\(917\) −14.5876 31.3965i −0.481723 1.03681i
\(918\) 0 0
\(919\) 5.71326 + 9.89566i 0.188463 + 0.326428i 0.944738 0.327826i \(-0.106316\pi\)
−0.756275 + 0.654254i \(0.772983\pi\)
\(920\) 0 0
\(921\) 14.4509 + 27.7607i 0.476173 + 0.914745i
\(922\) 0 0
\(923\) 0.551208 + 0.954721i 0.0181432 + 0.0314250i
\(924\) 0 0
\(925\) −3.47207 + 6.01381i −0.114161 + 0.197733i
\(926\) 0 0
\(927\) −13.7430 29.4738i −0.451380 0.968047i
\(928\) 0 0
\(929\) 13.5970 0.446104 0.223052 0.974807i \(-0.428398\pi\)
0.223052 + 0.974807i \(0.428398\pi\)
\(930\) 0 0
\(931\) −3.14244 + 3.72402i −0.102989 + 0.122050i
\(932\) 0 0
\(933\) −8.00369 15.3754i −0.262029 0.503367i
\(934\) 0 0
\(935\) 2.46656 4.27221i 0.0806652 0.139716i
\(936\) 0 0
\(937\) −11.1455 −0.364109 −0.182054 0.983288i \(-0.558275\pi\)
−0.182054 + 0.983288i \(0.558275\pi\)
\(938\) 0 0
\(939\) 2.39178 + 4.59470i 0.0780529 + 0.149942i
\(940\) 0 0
\(941\) 41.4621 1.35163 0.675813 0.737073i \(-0.263793\pi\)
0.675813 + 0.737073i \(0.263793\pi\)
\(942\) 0 0
\(943\) 46.6680 1.51972
\(944\) 0 0
\(945\) 3.98313 + 12.6957i 0.129571 + 0.412990i
\(946\) 0 0
\(947\) 42.5567 1.38291 0.691454 0.722421i \(-0.256971\pi\)
0.691454 + 0.722421i \(0.256971\pi\)
\(948\) 0 0
\(949\) 38.6669 1.25518
\(950\) 0 0
\(951\) −19.0735 36.6410i −0.618502 1.18816i
\(952\) 0 0
\(953\) 21.2114 0.687106 0.343553 0.939133i \(-0.388370\pi\)
0.343553 + 0.939133i \(0.388370\pi\)
\(954\) 0 0
\(955\) 3.58413 6.20790i 0.115980 0.200883i
\(956\) 0 0
\(957\) −3.89901 7.49014i −0.126037 0.242122i
\(958\) 0 0
\(959\) −52.9087 4.70275i −1.70851 0.151860i
\(960\) 0 0
\(961\) 53.0193 1.71030
\(962\) 0 0
\(963\) −29.7441 2.60296i −0.958490 0.0838793i
\(964\) 0 0
\(965\) 0.787775 1.36447i 0.0253594 0.0439237i
\(966\) 0 0
\(967\) −9.83257 17.0305i −0.316194 0.547664i 0.663496 0.748179i \(-0.269072\pi\)
−0.979691 + 0.200515i \(0.935738\pi\)
\(968\) 0 0
\(969\) −3.89639 7.48511i −0.125170 0.240456i
\(970\) 0 0
\(971\) −12.2892 21.2855i −0.394379 0.683084i 0.598643 0.801016i \(-0.295707\pi\)
−0.993022 + 0.117932i \(0.962374\pi\)
\(972\) 0 0
\(973\) −1.78062 0.158269i −0.0570841 0.00507387i
\(974\) 0 0
\(975\) −25.4617 1.11198i −0.815427 0.0356117i
\(976\) 0 0
\(977\) −47.4718 −1.51876 −0.759378 0.650650i \(-0.774497\pi\)
−0.759378 + 0.650650i \(0.774497\pi\)
\(978\) 0 0
\(979\) −4.21420 + 7.29920i −0.134686 + 0.233284i
\(980\) 0 0
\(981\) −23.5260 50.4548i −0.751129 1.61090i
\(982\) 0 0
\(983\) −13.7720 23.8538i −0.439258 0.760817i 0.558374 0.829589i \(-0.311425\pi\)
−0.997632 + 0.0687719i \(0.978092\pi\)
\(984\) 0 0
\(985\) 4.00269 6.93287i 0.127536 0.220900i
\(986\) 0 0
\(987\) −34.8067 4.63184i −1.10791 0.147433i
\(988\) 0 0
\(989\) −2.24073 3.88107i −0.0712512 0.123411i
\(990\) 0 0
\(991\) 19.2335 33.3135i 0.610973 1.05824i −0.380103 0.924944i \(-0.624112\pi\)
0.991077 0.133293i \(-0.0425551\pi\)
\(992\) 0 0
\(993\) −12.8262 24.6397i −0.407029 0.781917i
\(994\) 0 0
\(995\) 5.17233 + 8.95874i 0.163974 + 0.284011i
\(996\) 0 0
\(997\) 16.2272 + 28.1064i 0.513921 + 0.890138i 0.999870 + 0.0161503i \(0.00514103\pi\)
−0.485948 + 0.873988i \(0.661526\pi\)
\(998\) 0 0
\(999\) −3.39806 8.20444i −0.107510 0.259577i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 252.2.i.b.25.5 14
3.2 odd 2 756.2.i.b.613.5 14
4.3 odd 2 1008.2.q.j.529.3 14
7.2 even 3 252.2.l.b.205.1 yes 14
7.3 odd 6 1764.2.j.h.1177.2 14
7.4 even 3 1764.2.j.g.1177.6 14
7.5 odd 6 1764.2.l.i.961.7 14
7.6 odd 2 1764.2.i.i.1537.3 14
9.2 odd 6 2268.2.k.f.1621.5 14
9.4 even 3 252.2.l.b.193.1 yes 14
9.5 odd 6 756.2.l.b.361.3 14
9.7 even 3 2268.2.k.e.1621.3 14
12.11 even 2 3024.2.q.j.2881.5 14
21.2 odd 6 756.2.l.b.289.3 14
21.5 even 6 5292.2.l.i.3313.5 14
21.11 odd 6 5292.2.j.h.3529.5 14
21.17 even 6 5292.2.j.g.3529.3 14
21.20 even 2 5292.2.i.i.2125.3 14
28.23 odd 6 1008.2.t.j.961.7 14
36.23 even 6 3024.2.t.j.1873.3 14
36.31 odd 6 1008.2.t.j.193.7 14
63.2 odd 6 2268.2.k.f.1297.5 14
63.4 even 3 1764.2.j.g.589.6 14
63.5 even 6 5292.2.i.i.1549.3 14
63.13 odd 6 1764.2.l.i.949.7 14
63.16 even 3 2268.2.k.e.1297.3 14
63.23 odd 6 756.2.i.b.37.5 14
63.31 odd 6 1764.2.j.h.589.2 14
63.32 odd 6 5292.2.j.h.1765.5 14
63.40 odd 6 1764.2.i.i.373.3 14
63.41 even 6 5292.2.l.i.361.5 14
63.58 even 3 inner 252.2.i.b.121.5 yes 14
63.59 even 6 5292.2.j.g.1765.3 14
84.23 even 6 3024.2.t.j.289.3 14
252.23 even 6 3024.2.q.j.2305.5 14
252.247 odd 6 1008.2.q.j.625.3 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
252.2.i.b.25.5 14 1.1 even 1 trivial
252.2.i.b.121.5 yes 14 63.58 even 3 inner
252.2.l.b.193.1 yes 14 9.4 even 3
252.2.l.b.205.1 yes 14 7.2 even 3
756.2.i.b.37.5 14 63.23 odd 6
756.2.i.b.613.5 14 3.2 odd 2
756.2.l.b.289.3 14 21.2 odd 6
756.2.l.b.361.3 14 9.5 odd 6
1008.2.q.j.529.3 14 4.3 odd 2
1008.2.q.j.625.3 14 252.247 odd 6
1008.2.t.j.193.7 14 36.31 odd 6
1008.2.t.j.961.7 14 28.23 odd 6
1764.2.i.i.373.3 14 63.40 odd 6
1764.2.i.i.1537.3 14 7.6 odd 2
1764.2.j.g.589.6 14 63.4 even 3
1764.2.j.g.1177.6 14 7.4 even 3
1764.2.j.h.589.2 14 63.31 odd 6
1764.2.j.h.1177.2 14 7.3 odd 6
1764.2.l.i.949.7 14 63.13 odd 6
1764.2.l.i.961.7 14 7.5 odd 6
2268.2.k.e.1297.3 14 63.16 even 3
2268.2.k.e.1621.3 14 9.7 even 3
2268.2.k.f.1297.5 14 63.2 odd 6
2268.2.k.f.1621.5 14 9.2 odd 6
3024.2.q.j.2305.5 14 252.23 even 6
3024.2.q.j.2881.5 14 12.11 even 2
3024.2.t.j.289.3 14 84.23 even 6
3024.2.t.j.1873.3 14 36.23 even 6
5292.2.i.i.1549.3 14 63.5 even 6
5292.2.i.i.2125.3 14 21.20 even 2
5292.2.j.g.1765.3 14 63.59 even 6
5292.2.j.g.3529.3 14 21.17 even 6
5292.2.j.h.1765.5 14 63.32 odd 6
5292.2.j.h.3529.5 14 21.11 odd 6
5292.2.l.i.361.5 14 63.41 even 6
5292.2.l.i.3313.5 14 21.5 even 6