Properties

Label 1764.2.j
Level $1764$
Weight $2$
Character orbit 1764.j
Rep. character $\chi_{1764}(589,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $82$
Newform subspaces $9$
Sturm bound $672$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1764 = 2^{2} \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1764.j (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 9 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 9 \)
Sturm bound: \(672\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1764, [\chi])\).

Total New Old
Modular forms 720 82 638
Cusp forms 624 82 542
Eisenstein series 96 0 96

Trace form

\( 82 q + q^{5} + 6 q^{9} + q^{11} - q^{13} - 17 q^{15} - 16 q^{17} - 4 q^{19} + q^{23} - 44 q^{25} - 15 q^{29} - q^{31} + q^{33} + 8 q^{37} + 17 q^{39} - 3 q^{41} + 5 q^{43} + q^{45} - 3 q^{47} + 20 q^{51}+ \cdots - 17 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1764, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1764.2.j.a 1764.j 9.c $2$ $14.086$ \(\Q(\sqrt{-3}) \) None 252.2.i.a \(0\) \(-3\) \(2\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1-\zeta_{6})q^{3}+2\zeta_{6}q^{5}+3\zeta_{6}q^{9}+\cdots\)
1764.2.j.b 1764.j 9.c $2$ $14.086$ \(\Q(\sqrt{-3}) \) None 36.2.e.a \(0\) \(0\) \(3\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1-2\zeta_{6})q^{3}+3\zeta_{6}q^{5}-3q^{9}+(-3+\cdots)q^{11}+\cdots\)
1764.2.j.c 1764.j 9.c $2$ $14.086$ \(\Q(\sqrt{-3}) \) None 252.2.i.a \(0\) \(3\) \(-2\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1+\zeta_{6})q^{3}-2\zeta_{6}q^{5}+3\zeta_{6}q^{9}+(-4+\cdots)q^{11}+\cdots\)
1764.2.j.d 1764.j 9.c $6$ $14.086$ 6.0.309123.1 None 252.2.j.b \(0\) \(-2\) \(-3\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1+\beta _{2}+\beta _{3}+\beta _{4})q^{3}+(\beta _{1}-\beta _{3}+\cdots)q^{5}+\cdots\)
1764.2.j.e 1764.j 9.c $6$ $14.086$ 6.0.309123.1 None 252.2.j.a \(0\) \(2\) \(1\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1-\beta _{1}-\beta _{2})q^{3}+(-\beta _{1}-\beta _{2}-\beta _{3}+\cdots)q^{5}+\cdots\)
1764.2.j.f 1764.j 9.c $12$ $14.086$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 1764.2.j.f \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+\beta _{2}q^{3}+(-\beta _{8}+\beta _{11})q^{5}+(\beta _{3}-\beta _{4}+\cdots)q^{9}+\cdots\)
1764.2.j.g 1764.j 9.c $14$ $14.086$ \(\mathbb{Q}[x]/(x^{14} - \cdots)\) None 252.2.i.b \(0\) \(-3\) \(-2\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q-\beta _{3}q^{3}+\beta _{5}q^{5}+(-\beta _{1}-\beta _{2}+\beta _{11}+\cdots)q^{9}+\cdots\)
1764.2.j.h 1764.j 9.c $14$ $14.086$ \(\mathbb{Q}[x]/(x^{14} - \cdots)\) None 252.2.i.b \(0\) \(3\) \(2\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+\beta _{3}q^{3}-\beta _{5}q^{5}+(-\beta _{1}-\beta _{2}+\beta _{11}+\cdots)q^{9}+\cdots\)
1764.2.j.i 1764.j 9.c $24$ $14.086$ None 1764.2.j.i \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{3}]$

Decomposition of \(S_{2}^{\mathrm{old}}(1764, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1764, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(18, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(36, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(63, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(126, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(252, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(441, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(882, [\chi])\)\(^{\oplus 2}\)