Properties

Label 756.2.i.b
Level $756$
Weight $2$
Character orbit 756.i
Analytic conductor $6.037$
Analytic rank $0$
Dimension $14$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 756 = 2^{2} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 756.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(6.03669039281\)
Analytic rank: \(0\)
Dimension: \(14\)
Relative dimension: \(7\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} - \cdots)\)
Defining polynomial: \(x^{14} - 5 x^{12} - 3 x^{11} + 7 x^{10} + 30 x^{9} - 117 x^{7} + 270 x^{5} + 189 x^{4} - 243 x^{3} - 1215 x^{2} + 2187\)
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 3^{7} \)
Twist minimal: no (minimal twist has level 252)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{13}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q -\beta_{3} q^{5} + ( \beta_{5} + \beta_{12} ) q^{7} +O(q^{10})\) \( q -\beta_{3} q^{5} + ( \beta_{5} + \beta_{12} ) q^{7} + \beta_{13} q^{11} -\beta_{11} q^{13} + ( -\beta_{1} + \beta_{5} - \beta_{6} + \beta_{9} + \beta_{12} ) q^{17} + ( 1 - \beta_{1} - \beta_{7} - \beta_{13} ) q^{19} + ( \beta_{2} - \beta_{5} + \beta_{8} - \beta_{9} - \beta_{10} ) q^{23} + ( \beta_{5} - \beta_{6} - 2 \beta_{7} - \beta_{10} + \beta_{13} ) q^{25} + ( -\beta_{1} + \beta_{2} - \beta_{3} + \beta_{5} + \beta_{10} ) q^{29} + ( 2 + \beta_{2} - \beta_{4} - \beta_{5} - \beta_{6} - 2 \beta_{9} - \beta_{10} + \beta_{11} - \beta_{12} + 2 \beta_{13} ) q^{31} + ( 3 - 2 \beta_{1} - \beta_{3} - 2 \beta_{6} - \beta_{10} + \beta_{11} ) q^{35} + ( 2 - 2 \beta_{1} + \beta_{4} + \beta_{5} - \beta_{6} + \beta_{8} - \beta_{10} + \beta_{13} ) q^{37} + ( 4 - 4 \beta_{1} - \beta_{4} + \beta_{6} - \beta_{8} + \beta_{12} ) q^{41} + ( \beta_{1} + \beta_{3} + \beta_{9} ) q^{43} + ( -1 + \beta_{2} + \beta_{5} + \beta_{6} + \beta_{10} + \beta_{11} + \beta_{12} ) q^{47} + ( -2 + 2 \beta_{1} - \beta_{3} + \beta_{4} + \beta_{5} + \beta_{6} - \beta_{7} + \beta_{8} - \beta_{9} - \beta_{11} + \beta_{12} ) q^{49} + ( 3 \beta_{1} + \beta_{2} - \beta_{3} - 2 \beta_{6} - 2 \beta_{10} + 2 \beta_{12} ) q^{53} + ( -2 - \beta_{2} + 2 \beta_{3} - \beta_{4} - 2 \beta_{7} + \beta_{10} - \beta_{11} + \beta_{12} ) q^{55} + ( -3 - 2 \beta_{2} + \beta_{3} + \beta_{5} + \beta_{6} - \beta_{7} + \beta_{9} - 2 \beta_{11} - \beta_{13} ) q^{59} + ( 1 - \beta_{3} + \beta_{5} + \beta_{6} + \beta_{7} - \beta_{9} + \beta_{13} ) q^{61} + ( 2 - \beta_{3} - 2 \beta_{4} - \beta_{5} - \beta_{6} + \beta_{7} - \beta_{9} + 2 \beta_{10} + 2 \beta_{12} + \beta_{13} ) q^{65} + ( -2 - \beta_{3} + \beta_{4} + \beta_{5} + \beta_{6} + \beta_{7} + \beta_{9} - \beta_{13} ) q^{67} + ( -\beta_{2} + \beta_{3} - \beta_{5} - \beta_{6} - \beta_{7} + \beta_{9} - \beta_{11} - \beta_{13} ) q^{71} + ( 4 \beta_{1} + \beta_{2} - \beta_{3} - \beta_{5} + \beta_{8} - \beta_{10} ) q^{73} + ( 3 - \beta_{1} - \beta_{3} + \beta_{4} + \beta_{5} + \beta_{6} + 2 \beta_{7} + \beta_{9} + \beta_{11} + \beta_{13} ) q^{77} + ( 2 - \beta_{3} + \beta_{4} - 2 \beta_{5} - 2 \beta_{6} + \beta_{7} + \beta_{9} - \beta_{10} - \beta_{12} - \beta_{13} ) q^{79} + ( 2 \beta_{1} - \beta_{2} + \beta_{3} + 3 \beta_{6} - 2 \beta_{8} + 3 \beta_{10} - 3 \beta_{12} ) q^{83} + ( 3 - 3 \beta_{1} - \beta_{4} - \beta_{6} - 2 \beta_{7} - \beta_{8} + \beta_{11} - \beta_{12} ) q^{85} + ( 2 - 2 \beta_{1} + 2 \beta_{5} - 2 \beta_{6} - \beta_{7} - 2 \beta_{10} ) q^{89} + ( -3 + \beta_{1} - \beta_{2} - 3 \beta_{3} + \beta_{4} + 2 \beta_{6} + 3 \beta_{7} - \beta_{8} + \beta_{9} + \beta_{10} - \beta_{11} + \beta_{12} - 2 \beta_{13} ) q^{91} + ( -3 + \beta_{2} - \beta_{3} + \beta_{4} + \beta_{7} - \beta_{9} - 2 \beta_{10} + \beta_{11} - 2 \beta_{12} + \beta_{13} ) q^{95} + ( -2 \beta_{1} + \beta_{2} + \beta_{3} + \beta_{6} + \beta_{8} - \beta_{9} + \beta_{10} - \beta_{12} ) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q + 2 q^{5} + 6 q^{7} + O(q^{10}) \) \( 14 q + 2 q^{5} + 6 q^{7} - 2 q^{11} + 2 q^{13} - 2 q^{17} + 7 q^{19} - 11 q^{23} - 9 q^{25} - q^{29} + 2 q^{31} + 19 q^{35} + 10 q^{37} + 33 q^{41} + 7 q^{43} - 6 q^{47} - 4 q^{49} + 15 q^{53} - 28 q^{55} - 28 q^{59} + 20 q^{61} + 30 q^{65} - 12 q^{67} - 2 q^{71} + 21 q^{73} + 47 q^{77} + 20 q^{79} + 25 q^{83} + 8 q^{85} + 6 q^{89} + 2 q^{91} - 56 q^{95} - 18 q^{97} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{14} - 5 x^{12} - 3 x^{11} + 7 x^{10} + 30 x^{9} - 117 x^{7} + 270 x^{5} + 189 x^{4} - 243 x^{3} - 1215 x^{2} + 2187\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\((\)\( -35 \nu^{13} + 72 \nu^{12} + 157 \nu^{11} + 312 \nu^{10} - 290 \nu^{9} - 1383 \nu^{8} + 1143 \nu^{7} + 3393 \nu^{6} - 2025 \nu^{5} - 8802 \nu^{4} - 9288 \nu^{3} + 23814 \nu^{2} + 63180 \nu - 3645 \)\()/43011\)
\(\beta_{2}\)\(=\)\((\)\( 10 \nu^{13} - 45 \nu^{12} + 196 \nu^{11} + 249 \nu^{10} + 136 \nu^{9} + 84 \nu^{8} - 2274 \nu^{7} + 324 \nu^{6} + 8694 \nu^{5} - 5292 \nu^{4} - 4104 \nu^{3} - 11502 \nu^{2} + 9072 \nu + 140940 \)\()/14337\)
\(\beta_{3}\)\(=\)\((\)\( 26 \nu^{13} + 7 \nu^{12} - 70 \nu^{11} - 266 \nu^{10} - 301 \nu^{9} + 955 \nu^{8} + 846 \nu^{7} - 2529 \nu^{6} - 2574 \nu^{5} - 864 \nu^{4} + 14985 \nu^{3} + 11124 \nu^{2} - 48438 \nu - 30618 \)\()/14337\)
\(\beta_{4}\)\(=\)\((\)\( 25 \nu^{13} + 294 \nu^{12} + 109 \nu^{11} - 924 \nu^{10} - 1715 \nu^{9} - 351 \nu^{8} + 7785 \nu^{7} + 2772 \nu^{6} - 18036 \nu^{5} - 18279 \nu^{4} + 25056 \nu^{3} + 96876 \nu^{2} + 92583 \nu - 218700 \)\()/43011\)
\(\beta_{5}\)\(=\)\((\)\( 56 \nu^{13} - 441 \nu^{12} + 62 \nu^{11} + 1227 \nu^{10} + 761 \nu^{9} - 165 \nu^{8} - 8622 \nu^{7} - 1638 \nu^{6} + 26190 \nu^{5} - 2538 \nu^{4} - 35424 \nu^{3} - 61722 \nu^{2} - 22113 \nu + 293058 \)\()/43011\)
\(\beta_{6}\)\(=\)\((\)\( -44 \nu^{13} + 78 \nu^{12} + 145 \nu^{11} - 150 \nu^{10} - 392 \nu^{9} - 387 \nu^{8} + 1428 \nu^{7} + 2601 \nu^{6} - 5895 \nu^{5} - 2997 \nu^{4} + 9612 \nu^{3} + 14418 \nu^{2} + 15633 \nu - 48114 \)\()/14337\)
\(\beta_{7}\)\(=\)\((\)\( -73 \nu^{13} - 360 \nu^{12} - 40 \nu^{11} + 804 \nu^{10} + 1703 \nu^{9} - 417 \nu^{8} - 8694 \nu^{7} + 1413 \nu^{6} + 19845 \nu^{5} - 2295 \nu^{4} - 32022 \nu^{3} - 98901 \nu^{2} - 11178 \nu + 239841 \)\()/43011\)
\(\beta_{8}\)\(=\)\((\)\( -73 \nu^{13} + 69 \nu^{12} - 28 \nu^{11} + 36 \nu^{10} - 373 \nu^{9} - 1446 \nu^{8} + 2154 \nu^{7} + 3609 \nu^{6} - 4428 \nu^{5} - 405 \nu^{4} - 6831 \nu^{3} + 6156 \nu^{2} + 15633 \nu - 121257 \)\()/14337\)
\(\beta_{9}\)\(=\)\((\)\( -142 \nu^{13} - 351 \nu^{12} + 386 \nu^{11} + 1398 \nu^{10} + 869 \nu^{9} - 2478 \nu^{8} - 4455 \nu^{7} + 10485 \nu^{6} + 22356 \nu^{5} - 16389 \nu^{4} - 46764 \nu^{3} - 43011 \nu^{2} + 54432 \nu + 187353 \)\()/43011\)
\(\beta_{10}\)\(=\)\((\)\( 49 \nu^{13} + 125 \nu^{12} - 77 \nu^{11} - 313 \nu^{10} - 368 \nu^{9} + 140 \nu^{8} + 2352 \nu^{7} - 1557 \nu^{6} - 5805 \nu^{5} + 1998 \nu^{4} + 12177 \nu^{3} + 27027 \nu^{2} - 4050 \nu - 68283 \)\()/14337\)
\(\beta_{11}\)\(=\)\((\)\( -281 \nu^{13} - 6 \nu^{12} + 208 \nu^{11} + 657 \nu^{10} - 500 \nu^{9} - 6555 \nu^{8} + 4806 \nu^{7} + 12870 \nu^{6} - 10800 \nu^{5} - 15849 \nu^{4} - 54972 \nu^{3} + 54756 \nu^{2} + 152361 \nu - 334611 \)\()/43011\)
\(\beta_{12}\)\(=\)\((\)\( 179 \nu^{13} + 471 \nu^{12} - 769 \nu^{11} - 2352 \nu^{10} - 763 \nu^{9} + 5184 \nu^{8} + 9288 \nu^{7} - 16785 \nu^{6} - 31266 \nu^{5} + 33021 \nu^{4} + 101142 \nu^{3} + 55485 \nu^{2} - 162081 \nu - 324405 \)\()/43011\)
\(\beta_{13}\)\(=\)\((\)\( 443 \nu^{13} + 546 \nu^{12} - 1099 \nu^{11} - 2736 \nu^{10} - 2092 \nu^{9} + 8283 \nu^{8} + 12042 \nu^{7} - 22779 \nu^{6} - 30429 \nu^{5} + 40473 \nu^{4} + 140022 \nu^{3} + 146934 \nu^{2} - 253692 \nu - 414072 \)\()/43011\)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\((\)\(\beta_{12} - \beta_{10} + \beta_{5} + \beta_{4} - \beta_{3} + \beta_{1} - 1\)\()/3\)
\(\nu^{2}\)\(=\)\((\)\(2 \beta_{13} - 2 \beta_{12} + 2 \beta_{11} - \beta_{10} - \beta_{9} - \beta_{8} + \beta_{7} - 2 \beta_{5} - \beta_{4} + \beta_{2} + 4\)\()/3\)
\(\nu^{3}\)\(=\)\((\)\(4 \beta_{12} + 2 \beta_{10} + 3 \beta_{9} + 3 \beta_{7} + 3 \beta_{6} + 4 \beta_{5} + \beta_{4} - \beta_{3} + 4 \beta_{1} - 4\)\()/3\)
\(\nu^{4}\)\(=\)\((\)\(2 \beta_{13} + 2 \beta_{11} - 3 \beta_{10} - \beta_{9} - 4 \beta_{7} + 2 \beta_{6} + 2 \beta_{5} - 2 \beta_{4} - 5 \beta_{3} + \beta_{2} - 7 \beta_{1} + 9\)\()/3\)
\(\nu^{5}\)\(=\)\((\)\(3 \beta_{13} + 3 \beta_{12} + 3 \beta_{11} - 3 \beta_{10} + 3 \beta_{9} + 4 \beta_{8} + \beta_{7} - 4 \beta_{6} - \beta_{5} + 3 \beta_{4} - 3 \beta_{3} + 9 \beta_{2} - 6 \beta_{1} - 11\)\()/3\)
\(\nu^{6}\)\(=\)\((\)\(8 \beta_{13} - 19 \beta_{12} - 7 \beta_{11} + 7 \beta_{10} + 5 \beta_{9} + \beta_{8} + 9 \beta_{7} + 7 \beta_{6} - 12 \beta_{5} - 4 \beta_{3} - 8 \beta_{2} - 17 \beta_{1} + 23\)\()/3\)
\(\nu^{7}\)\(=\)\((\)\(-21 \beta_{13} + 32 \beta_{12} - 12 \beta_{11} + 7 \beta_{10} + 39 \beta_{9} + 2 \beta_{8} - 34 \beta_{7} - 14 \beta_{6} + 12 \beta_{5} + 8 \beta_{4} + \beta_{3} - 9 \beta_{2} - 4 \beta_{1} + 18\)\()/3\)
\(\nu^{8}\)\(=\)\((\)\(17 \beta_{13} - 26 \beta_{12} - 22 \beta_{11} - 85 \beta_{10} - 13 \beta_{9} - \beta_{8} - 32 \beta_{7} - 27 \beta_{6} - 44 \beta_{5} + 2 \beta_{4} - 11 \beta_{2} + 51 \beta_{1} - 50\)\()/3\)
\(\nu^{9}\)\(=\)\((\)\(-9 \beta_{13} + \beta_{12} + 18 \beta_{11} + 86 \beta_{10} + 75 \beta_{9} - 69 \beta_{8} + 42 \beta_{7} - 9 \beta_{6} - 92 \beta_{5} - 47 \beta_{4} + 11 \beta_{3} - 18 \beta_{2} + 10 \beta_{1} - 115\)\()/3\)
\(\nu^{10}\)\(=\)\((\)\(-16 \beta_{13} + 72 \beta_{12} - 79 \beta_{11} - 48 \beta_{10} + 62 \beta_{9} + 9 \beta_{8} - 58 \beta_{7} + 2 \beta_{6} + 74 \beta_{5} - 74 \beta_{4} + 31 \beta_{3} - 80 \beta_{2} + 470 \beta_{1} - 306\)\()/3\)
\(\nu^{11}\)\(=\)\((\)\(-150 \beta_{13} + 57 \beta_{12} + 12 \beta_{11} + 105 \beta_{10} + 66 \beta_{9} - 122 \beta_{8} - 332 \beta_{7} + 77 \beta_{6} + 26 \beta_{5} - 114 \beta_{4} + 15 \beta_{3} + 27 \beta_{2} - 348 \beta_{1} - 650\)\()/3\)
\(\nu^{12}\)\(=\)\((\)\(134 \beta_{13} - 280 \beta_{12} - 97 \beta_{11} - 56 \beta_{10} - 328 \beta_{9} + 199 \beta_{8} + 198 \beta_{7} - 200 \beta_{6} - 534 \beta_{5} - 252 \beta_{4} + 77 \beta_{3} + 271 \beta_{2} + 604 \beta_{1} - 598\)\()/3\)
\(\nu^{13}\)\(=\)\((\)\(-363 \beta_{13} - 247 \beta_{12} - 516 \beta_{11} + 1393 \beta_{10} + 426 \beta_{9} - 196 \beta_{8} - 88 \beta_{7} + 247 \beta_{6} + 345 \beta_{5} + 71 \beta_{4} - 53 \beta_{3} - 612 \beta_{2} - 841 \beta_{1} - 1089\)\()/3\)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/756\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(325\) \(379\)
\(\chi(n)\) \(-1 + \beta_{1}\) \(-1 + \beta_{1}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
37.1
−1.58203 + 0.705117i
−0.473632 1.66604i
1.13119 + 1.31165i
1.64515 0.541745i
−1.73040 0.0755709i
1.68442 + 0.403398i
−0.674693 + 1.59524i
−1.58203 0.705117i
−0.473632 + 1.66604i
1.13119 1.31165i
1.64515 + 0.541745i
−1.73040 + 0.0755709i
1.68442 0.403398i
−0.674693 1.59524i
0 0 0 −1.26013 2.18261i 0 0.527655 + 2.59260i 0 0 0
37.2 0 0 0 −0.951504 1.64805i 0 2.11495 1.58965i 0 0 0
37.3 0 0 0 −0.764702 1.32450i 0 −1.91978 + 1.82056i 0 0 0
37.4 0 0 0 −0.381918 0.661502i 0 2.62892 + 0.297968i 0 0 0
37.5 0 0 0 0.483929 + 0.838189i 0 −1.52054 2.16517i 0 0 0
37.6 0 0 0 1.80173 + 3.12069i 0 −1.02133 2.44067i 0 0 0
37.7 0 0 0 2.07260 + 3.58985i 0 2.19013 + 1.48437i 0 0 0
613.1 0 0 0 −1.26013 + 2.18261i 0 0.527655 2.59260i 0 0 0
613.2 0 0 0 −0.951504 + 1.64805i 0 2.11495 + 1.58965i 0 0 0
613.3 0 0 0 −0.764702 + 1.32450i 0 −1.91978 1.82056i 0 0 0
613.4 0 0 0 −0.381918 + 0.661502i 0 2.62892 0.297968i 0 0 0
613.5 0 0 0 0.483929 0.838189i 0 −1.52054 + 2.16517i 0 0 0
613.6 0 0 0 1.80173 3.12069i 0 −1.02133 + 2.44067i 0 0 0
613.7 0 0 0 2.07260 3.58985i 0 2.19013 1.48437i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 613.7
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
63.h even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 756.2.i.b 14
3.b odd 2 1 252.2.i.b 14
4.b odd 2 1 3024.2.q.j 14
7.b odd 2 1 5292.2.i.i 14
7.c even 3 1 756.2.l.b 14
7.c even 3 1 5292.2.j.h 14
7.d odd 6 1 5292.2.j.g 14
7.d odd 6 1 5292.2.l.i 14
9.c even 3 1 756.2.l.b 14
9.c even 3 1 2268.2.k.f 14
9.d odd 6 1 252.2.l.b yes 14
9.d odd 6 1 2268.2.k.e 14
12.b even 2 1 1008.2.q.j 14
21.c even 2 1 1764.2.i.i 14
21.g even 6 1 1764.2.j.h 14
21.g even 6 1 1764.2.l.i 14
21.h odd 6 1 252.2.l.b yes 14
21.h odd 6 1 1764.2.j.g 14
28.g odd 6 1 3024.2.t.j 14
36.f odd 6 1 3024.2.t.j 14
36.h even 6 1 1008.2.t.j 14
63.g even 3 1 2268.2.k.f 14
63.g even 3 1 5292.2.j.h 14
63.h even 3 1 inner 756.2.i.b 14
63.i even 6 1 1764.2.i.i 14
63.j odd 6 1 252.2.i.b 14
63.k odd 6 1 5292.2.j.g 14
63.l odd 6 1 5292.2.l.i 14
63.n odd 6 1 1764.2.j.g 14
63.n odd 6 1 2268.2.k.e 14
63.o even 6 1 1764.2.l.i 14
63.s even 6 1 1764.2.j.h 14
63.t odd 6 1 5292.2.i.i 14
84.n even 6 1 1008.2.t.j 14
252.u odd 6 1 3024.2.q.j 14
252.bb even 6 1 1008.2.q.j 14
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
252.2.i.b 14 3.b odd 2 1
252.2.i.b 14 63.j odd 6 1
252.2.l.b yes 14 9.d odd 6 1
252.2.l.b yes 14 21.h odd 6 1
756.2.i.b 14 1.a even 1 1 trivial
756.2.i.b 14 63.h even 3 1 inner
756.2.l.b 14 7.c even 3 1
756.2.l.b 14 9.c even 3 1
1008.2.q.j 14 12.b even 2 1
1008.2.q.j 14 252.bb even 6 1
1008.2.t.j 14 36.h even 6 1
1008.2.t.j 14 84.n even 6 1
1764.2.i.i 14 21.c even 2 1
1764.2.i.i 14 63.i even 6 1
1764.2.j.g 14 21.h odd 6 1
1764.2.j.g 14 63.n odd 6 1
1764.2.j.h 14 21.g even 6 1
1764.2.j.h 14 63.s even 6 1
1764.2.l.i 14 21.g even 6 1
1764.2.l.i 14 63.o even 6 1
2268.2.k.e 14 9.d odd 6 1
2268.2.k.e 14 63.n odd 6 1
2268.2.k.f 14 9.c even 3 1
2268.2.k.f 14 63.g even 3 1
3024.2.q.j 14 4.b odd 2 1
3024.2.q.j 14 252.u odd 6 1
3024.2.t.j 14 28.g odd 6 1
3024.2.t.j 14 36.f odd 6 1
5292.2.i.i 14 7.b odd 2 1
5292.2.i.i 14 63.t odd 6 1
5292.2.j.g 14 7.d odd 6 1
5292.2.j.g 14 63.k odd 6 1
5292.2.j.h 14 7.c even 3 1
5292.2.j.h 14 63.g even 3 1
5292.2.l.i 14 7.d odd 6 1
5292.2.l.i 14 63.l odd 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \(T_{5}^{14} - \cdots\) acting on \(S_{2}^{\mathrm{new}}(756, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{14} \)
$3$ \( T^{14} \)
$5$ \( 6561 + 8748 T + 18225 T^{2} + 12150 T^{3} + 21465 T^{4} + 14661 T^{5} + 13833 T^{6} + 4923 T^{7} + 2670 T^{8} + 357 T^{9} + 295 T^{10} + 16 T^{11} + 24 T^{12} - 2 T^{13} + T^{14} \)
$7$ \( 823543 - 705894 T + 336140 T^{2} - 184877 T^{3} + 105987 T^{4} - 47089 T^{5} + 18942 T^{6} - 7572 T^{7} + 2706 T^{8} - 961 T^{9} + 309 T^{10} - 77 T^{11} + 20 T^{12} - 6 T^{13} + T^{14} \)
$11$ \( 6561 - 17496 T + 40824 T^{2} - 43740 T^{3} + 48843 T^{4} - 23193 T^{5} + 27144 T^{6} - 7497 T^{7} + 12183 T^{8} + 2451 T^{9} + 1657 T^{10} + 68 T^{11} + 45 T^{12} + 2 T^{13} + T^{14} \)
$13$ \( 150626529 - 59904513 T + 57525819 T^{2} - 13891926 T^{3} + 11286787 T^{4} - 2477084 T^{5} + 1261032 T^{6} - 166125 T^{7} + 72459 T^{8} - 6792 T^{9} + 3006 T^{10} - 150 T^{11} + 66 T^{12} - 2 T^{13} + T^{14} \)
$17$ \( 6561 + 34992 T + 171315 T^{2} + 163782 T^{3} + 252315 T^{4} - 117693 T^{5} + 229455 T^{6} - 35055 T^{7} + 25764 T^{8} - 717 T^{9} + 2053 T^{10} - 40 T^{11} + 54 T^{12} + 2 T^{13} + T^{14} \)
$19$ \( 4084441 + 2718245 T + 6386590 T^{2} - 3636557 T^{3} + 4434668 T^{4} - 1055750 T^{5} + 592827 T^{6} - 107232 T^{7} + 52224 T^{8} - 7631 T^{9} + 2483 T^{10} - 284 T^{11} + 79 T^{12} - 7 T^{13} + T^{14} \)
$23$ \( 105822369 + 184425336 T + 244569294 T^{2} + 150895710 T^{3} + 77195754 T^{4} + 16527618 T^{5} + 6276375 T^{6} + 1215225 T^{7} + 339450 T^{8} + 46164 T^{9} + 8911 T^{10} + 932 T^{11} + 153 T^{12} + 11 T^{13} + T^{14} \)
$29$ \( 145660761 + 14663835 T + 120307599 T^{2} - 85897584 T^{3} + 91122165 T^{4} - 31944915 T^{5} + 11256606 T^{6} - 1678950 T^{7} + 388671 T^{8} - 35634 T^{9} + 9532 T^{10} - 461 T^{11} + 114 T^{12} + T^{13} + T^{14} \)
$31$ \( ( -117504 - 57600 T + 5737 T^{2} + 5003 T^{3} - 8 T^{4} - 131 T^{5} - T^{6} + T^{7} )^{2} \)
$37$ \( 1566893056 - 582676480 T + 616635136 T^{2} - 22905344 T^{3} + 108195008 T^{4} - 5679392 T^{5} + 9392352 T^{6} + 84720 T^{7} + 457224 T^{8} - 15644 T^{9} + 9977 T^{10} - 554 T^{11} + 175 T^{12} - 10 T^{13} + T^{14} \)
$41$ \( 1108290681 + 5174719749 T + 27318068505 T^{2} - 15810186042 T^{3} + 6482676969 T^{4} - 1620277101 T^{5} + 339156396 T^{6} - 54852066 T^{7} + 8343351 T^{8} - 1058184 T^{9} + 122094 T^{10} - 10647 T^{11} + 750 T^{12} - 33 T^{13} + T^{14} \)
$43$ \( 4084441 + 2718245 T + 6386590 T^{2} - 3636557 T^{3} + 4434668 T^{4} - 1055750 T^{5} + 592827 T^{6} - 107232 T^{7} + 52224 T^{8} - 7631 T^{9} + 2483 T^{10} - 284 T^{11} + 79 T^{12} - 7 T^{13} + T^{14} \)
$47$ \( ( 11664 - 13608 T - 1215 T^{2} + 3132 T^{3} - 135 T^{4} - 105 T^{5} + 3 T^{6} + T^{7} )^{2} \)
$53$ \( 952401321 - 2277264051 T + 4569369084 T^{2} - 2291724495 T^{3} + 1102507524 T^{4} - 196816392 T^{5} + 74649195 T^{6} - 13241718 T^{7} + 3279960 T^{8} - 325539 T^{9} + 43173 T^{10} - 2412 T^{11} + 327 T^{12} - 15 T^{13} + T^{14} \)
$59$ \( ( -26244 - 192456 T + 68175 T^{2} + 7506 T^{3} - 2331 T^{4} - 176 T^{5} + 14 T^{6} + T^{7} )^{2} \)
$61$ \( ( -12192 + 22152 T - 9743 T^{2} - 358 T^{3} + 679 T^{4} - 50 T^{5} - 10 T^{6} + T^{7} )^{2} \)
$67$ \( ( 10816 + 10464 T - 647 T^{2} - 3650 T^{3} - 1298 T^{4} - 125 T^{5} + 6 T^{6} + T^{7} )^{2} \)
$71$ \( ( 972 + 1620 T - 4509 T^{2} + 2169 T^{3} - 9 T^{4} - 116 T^{5} + T^{6} + T^{7} )^{2} \)
$73$ \( 2748590329 - 132587883 T + 1197851843 T^{2} + 280079096 T^{3} + 449343003 T^{4} + 56145421 T^{5} + 29169996 T^{6} - 713634 T^{7} + 983931 T^{8} - 68306 T^{9} + 28230 T^{10} - 3133 T^{11} + 404 T^{12} - 21 T^{13} + T^{14} \)
$79$ \( ( -233232 - 123096 T + 24703 T^{2} + 17570 T^{3} + 970 T^{4} - 227 T^{5} - 10 T^{6} + T^{7} )^{2} \)
$83$ \( 901054679121 + 614158582239 T + 552490013322 T^{2} - 38563914105 T^{3} + 31939205499 T^{4} - 4248171090 T^{5} + 1673845947 T^{6} - 219863025 T^{7} + 33382563 T^{8} - 2232114 T^{9} + 196147 T^{10} - 9625 T^{11} + 738 T^{12} - 25 T^{13} + T^{14} \)
$89$ \( 16524331209 - 12932085294 T + 13851839079 T^{2} + 765782424 T^{3} + 1553505561 T^{4} - 61446195 T^{5} + 79129143 T^{6} - 1816587 T^{7} + 2286090 T^{8} - 125469 T^{9} + 34641 T^{10} - 900 T^{11} + 228 T^{12} - 6 T^{13} + T^{14} \)
$97$ \( 767677849 - 1012081296 T + 992279576 T^{2} - 522939832 T^{3} + 225655953 T^{4} - 52605197 T^{5} + 13339572 T^{6} - 1272273 T^{7} + 601413 T^{8} - 13043 T^{9} + 15987 T^{10} + 1448 T^{11} + 347 T^{12} + 18 T^{13} + T^{14} \)
show more
show less