Properties

Label 756.2.i.b.613.3
Level $756$
Weight $2$
Character 756.613
Analytic conductor $6.037$
Analytic rank $0$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [756,2,Mod(37,756)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(756, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 2, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("756.37"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 756 = 2^{2} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 756.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [14] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.03669039281\)
Analytic rank: \(0\)
Dimension: \(14\)
Relative dimension: \(7\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} - 5x^{12} - 3x^{11} + 7x^{10} + 30x^{9} - 117x^{7} + 270x^{5} + 189x^{4} - 243x^{3} - 1215x^{2} + 2187 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 3^{7} \)
Twist minimal: no (minimal twist has level 252)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 613.3
Root \(1.13119 - 1.31165i\) of defining polynomial
Character \(\chi\) \(=\) 756.613
Dual form 756.2.i.b.37.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.764702 + 1.32450i) q^{5} +(-1.91978 - 1.82056i) q^{7} +(0.417818 + 0.723682i) q^{11} +(1.81222 + 3.13886i) q^{13} +(-0.301057 + 0.521446i) q^{17} +(0.846884 + 1.46685i) q^{19} +(-3.07202 + 5.32090i) q^{23} +(1.33046 + 2.30443i) q^{25} +(-4.99671 + 8.65455i) q^{29} -3.30841 q^{31} +(3.87940 - 1.15057i) q^{35} +(4.39846 + 7.61835i) q^{37} +(-3.51718 - 6.09194i) q^{41} +(0.846884 - 1.46685i) q^{43} -8.46401 q^{47} +(0.371118 + 6.99016i) q^{49} +(3.99616 - 6.92155i) q^{53} -1.27803 q^{55} -0.130428 q^{59} -4.76685 q^{61} -5.54324 q^{65} -2.24332 q^{67} +9.39130 q^{71} +(-2.25454 + 3.90498i) q^{73} +(0.515388 - 2.14997i) q^{77} +15.7424 q^{79} +(3.16210 - 5.47692i) q^{83} +(-0.460438 - 0.797501i) q^{85} +(0.531180 + 0.920030i) q^{89} +(2.23542 - 9.32519i) q^{91} -2.59046 q^{95} +(-7.76364 + 13.4470i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q + 2 q^{5} + 6 q^{7} - 2 q^{11} + 2 q^{13} - 2 q^{17} + 7 q^{19} - 11 q^{23} - 9 q^{25} - q^{29} + 2 q^{31} + 19 q^{35} + 10 q^{37} + 33 q^{41} + 7 q^{43} - 6 q^{47} - 4 q^{49} + 15 q^{53} - 28 q^{55}+ \cdots - 18 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/756\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(325\) \(379\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −0.764702 + 1.32450i −0.341985 + 0.592336i −0.984801 0.173685i \(-0.944433\pi\)
0.642816 + 0.766021i \(0.277766\pi\)
\(6\) 0 0
\(7\) −1.91978 1.82056i −0.725609 0.688107i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 0.417818 + 0.723682i 0.125977 + 0.218198i 0.922114 0.386917i \(-0.126460\pi\)
−0.796137 + 0.605116i \(0.793127\pi\)
\(12\) 0 0
\(13\) 1.81222 + 3.13886i 0.502620 + 0.870563i 0.999995 + 0.00302796i \(0.000963830\pi\)
−0.497375 + 0.867535i \(0.665703\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −0.301057 + 0.521446i −0.0730170 + 0.126469i −0.900222 0.435431i \(-0.856596\pi\)
0.827205 + 0.561900i \(0.189929\pi\)
\(18\) 0 0
\(19\) 0.846884 + 1.46685i 0.194289 + 0.336518i 0.946667 0.322213i \(-0.104427\pi\)
−0.752379 + 0.658731i \(0.771094\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −3.07202 + 5.32090i −0.640561 + 1.10948i 0.344746 + 0.938696i \(0.387965\pi\)
−0.985308 + 0.170789i \(0.945368\pi\)
\(24\) 0 0
\(25\) 1.33046 + 2.30443i 0.266092 + 0.460885i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −4.99671 + 8.65455i −0.927865 + 1.60711i −0.140977 + 0.990013i \(0.545024\pi\)
−0.786888 + 0.617096i \(0.788309\pi\)
\(30\) 0 0
\(31\) −3.30841 −0.594208 −0.297104 0.954845i \(-0.596021\pi\)
−0.297104 + 0.954845i \(0.596021\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 3.87940 1.15057i 0.655738 0.194482i
\(36\) 0 0
\(37\) 4.39846 + 7.61835i 0.723102 + 1.25245i 0.959751 + 0.280854i \(0.0906177\pi\)
−0.236649 + 0.971595i \(0.576049\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −3.51718 6.09194i −0.549291 0.951401i −0.998323 0.0578850i \(-0.981564\pi\)
0.449032 0.893516i \(-0.351769\pi\)
\(42\) 0 0
\(43\) 0.846884 1.46685i 0.129149 0.223692i −0.794198 0.607659i \(-0.792109\pi\)
0.923347 + 0.383967i \(0.125442\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −8.46401 −1.23460 −0.617301 0.786727i \(-0.711774\pi\)
−0.617301 + 0.786727i \(0.711774\pi\)
\(48\) 0 0
\(49\) 0.371118 + 6.99016i 0.0530168 + 0.998594i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 3.99616 6.92155i 0.548915 0.950748i −0.449434 0.893313i \(-0.648374\pi\)
0.998349 0.0574350i \(-0.0182922\pi\)
\(54\) 0 0
\(55\) −1.27803 −0.172329
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −0.130428 −0.0169802 −0.00849011 0.999964i \(-0.502703\pi\)
−0.00849011 + 0.999964i \(0.502703\pi\)
\(60\) 0 0
\(61\) −4.76685 −0.610333 −0.305166 0.952299i \(-0.598712\pi\)
−0.305166 + 0.952299i \(0.598712\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −5.54324 −0.687554
\(66\) 0 0
\(67\) −2.24332 −0.274066 −0.137033 0.990567i \(-0.543757\pi\)
−0.137033 + 0.990567i \(0.543757\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 9.39130 1.11454 0.557271 0.830331i \(-0.311848\pi\)
0.557271 + 0.830331i \(0.311848\pi\)
\(72\) 0 0
\(73\) −2.25454 + 3.90498i −0.263874 + 0.457044i −0.967268 0.253757i \(-0.918334\pi\)
0.703394 + 0.710800i \(0.251667\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0.515388 2.14997i 0.0587339 0.245012i
\(78\) 0 0
\(79\) 15.7424 1.77116 0.885580 0.464488i \(-0.153761\pi\)
0.885580 + 0.464488i \(0.153761\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 3.16210 5.47692i 0.347085 0.601170i −0.638645 0.769502i \(-0.720505\pi\)
0.985730 + 0.168332i \(0.0538380\pi\)
\(84\) 0 0
\(85\) −0.460438 0.797501i −0.0499415 0.0865011i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0.531180 + 0.920030i 0.0563049 + 0.0975230i 0.892804 0.450445i \(-0.148735\pi\)
−0.836499 + 0.547968i \(0.815401\pi\)
\(90\) 0 0
\(91\) 2.23542 9.32519i 0.234335 0.977545i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −2.59046 −0.265775
\(96\) 0 0
\(97\) −7.76364 + 13.4470i −0.788279 + 1.36534i 0.138742 + 0.990329i \(0.455694\pi\)
−0.927021 + 0.375010i \(0.877639\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 9.75757 + 16.9006i 0.970914 + 1.68167i 0.692807 + 0.721123i \(0.256374\pi\)
0.278107 + 0.960550i \(0.410293\pi\)
\(102\) 0 0
\(103\) 0.911770 1.57923i 0.0898394 0.155606i −0.817604 0.575781i \(-0.804698\pi\)
0.907443 + 0.420175i \(0.138031\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 5.27078 + 9.12926i 0.509546 + 0.882559i 0.999939 + 0.0110578i \(0.00351989\pi\)
−0.490393 + 0.871501i \(0.663147\pi\)
\(108\) 0 0
\(109\) 6.30442 10.9196i 0.603854 1.04591i −0.388377 0.921501i \(-0.626964\pi\)
0.992231 0.124406i \(-0.0397025\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −7.76452 13.4485i −0.730424 1.26513i −0.956702 0.291069i \(-0.905989\pi\)
0.226278 0.974063i \(-0.427344\pi\)
\(114\) 0 0
\(115\) −4.69837 8.13781i −0.438125 0.758855i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 1.52729 0.452969i 0.140006 0.0415236i
\(120\) 0 0
\(121\) 5.15086 8.92154i 0.468260 0.811050i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −11.7166 −1.04797
\(126\) 0 0
\(127\) −10.8966 −0.966919 −0.483460 0.875367i \(-0.660620\pi\)
−0.483460 + 0.875367i \(0.660620\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 9.73088 16.8544i 0.850191 1.47257i −0.0308446 0.999524i \(-0.509820\pi\)
0.881036 0.473050i \(-0.156847\pi\)
\(132\) 0 0
\(133\) 1.04465 4.35783i 0.0905827 0.377872i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 6.13833 + 10.6319i 0.524433 + 0.908344i 0.999595 + 0.0284461i \(0.00905590\pi\)
−0.475163 + 0.879898i \(0.657611\pi\)
\(138\) 0 0
\(139\) −6.44692 11.1664i −0.546821 0.947121i −0.998490 0.0549357i \(-0.982505\pi\)
0.451669 0.892185i \(-0.350829\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −1.51436 + 2.62295i −0.126637 + 0.219342i
\(144\) 0 0
\(145\) −7.64198 13.2363i −0.634632 1.09922i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −9.03267 + 15.6451i −0.739986 + 1.28169i 0.212516 + 0.977158i \(0.431834\pi\)
−0.952501 + 0.304535i \(0.901499\pi\)
\(150\) 0 0
\(151\) −4.29891 7.44593i −0.349840 0.605941i 0.636381 0.771375i \(-0.280431\pi\)
−0.986221 + 0.165434i \(0.947097\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 2.52995 4.38200i 0.203210 0.351971i
\(156\) 0 0
\(157\) 3.19366 0.254882 0.127441 0.991846i \(-0.459324\pi\)
0.127441 + 0.991846i \(0.459324\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 15.5846 4.62216i 1.22824 0.364277i
\(162\) 0 0
\(163\) 2.04809 + 3.54740i 0.160419 + 0.277854i 0.935019 0.354598i \(-0.115382\pi\)
−0.774600 + 0.632451i \(0.782049\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −8.24859 14.2870i −0.638295 1.10556i −0.985807 0.167883i \(-0.946307\pi\)
0.347512 0.937676i \(-0.387027\pi\)
\(168\) 0 0
\(169\) −0.0682984 + 0.118296i −0.00525372 + 0.00909971i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 12.8213 0.974782 0.487391 0.873184i \(-0.337949\pi\)
0.487391 + 0.873184i \(0.337949\pi\)
\(174\) 0 0
\(175\) 1.64115 6.84618i 0.124060 0.517522i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 11.8750 20.5680i 0.887576 1.53733i 0.0448441 0.998994i \(-0.485721\pi\)
0.842732 0.538333i \(-0.180946\pi\)
\(180\) 0 0
\(181\) −16.0244 −1.19108 −0.595542 0.803324i \(-0.703063\pi\)
−0.595542 + 0.803324i \(0.703063\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −13.4540 −0.989161
\(186\) 0 0
\(187\) −0.503148 −0.0367938
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 10.8095 0.782148 0.391074 0.920359i \(-0.372104\pi\)
0.391074 + 0.920359i \(0.372104\pi\)
\(192\) 0 0
\(193\) 0.750260 0.0540049 0.0270025 0.999635i \(-0.491404\pi\)
0.0270025 + 0.999635i \(0.491404\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −10.3186 −0.735169 −0.367584 0.929990i \(-0.619815\pi\)
−0.367584 + 0.929990i \(0.619815\pi\)
\(198\) 0 0
\(199\) −2.85430 + 4.94379i −0.202336 + 0.350456i −0.949281 0.314430i \(-0.898187\pi\)
0.746945 + 0.664886i \(0.231520\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 25.3487 7.51803i 1.77913 0.527662i
\(204\) 0 0
\(205\) 10.7584 0.751398
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −0.707687 + 1.22575i −0.0489517 + 0.0847869i
\(210\) 0 0
\(211\) 2.73050 + 4.72937i 0.187976 + 0.325583i 0.944575 0.328295i \(-0.106474\pi\)
−0.756600 + 0.653878i \(0.773141\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 1.29523 + 2.24340i 0.0883338 + 0.152999i
\(216\) 0 0
\(217\) 6.35143 + 6.02316i 0.431163 + 0.408879i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −2.18233 −0.146799
\(222\) 0 0
\(223\) −9.00530 + 15.5976i −0.603040 + 1.04450i 0.389318 + 0.921103i \(0.372711\pi\)
−0.992358 + 0.123392i \(0.960623\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −9.08699 15.7391i −0.603125 1.04464i −0.992345 0.123498i \(-0.960589\pi\)
0.389220 0.921145i \(-0.372745\pi\)
\(228\) 0 0
\(229\) 7.71391 13.3609i 0.509750 0.882912i −0.490186 0.871618i \(-0.663071\pi\)
0.999936 0.0112949i \(-0.00359534\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 3.20892 + 5.55801i 0.210223 + 0.364117i 0.951784 0.306768i \(-0.0992476\pi\)
−0.741561 + 0.670885i \(0.765914\pi\)
\(234\) 0 0
\(235\) 6.47244 11.2106i 0.422216 0.731299i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 2.33317 + 4.04118i 0.150920 + 0.261402i 0.931566 0.363572i \(-0.118443\pi\)
−0.780646 + 0.624974i \(0.785110\pi\)
\(240\) 0 0
\(241\) 9.42858 + 16.3308i 0.607348 + 1.05196i 0.991676 + 0.128761i \(0.0411000\pi\)
−0.384327 + 0.923197i \(0.625567\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −9.54228 4.85384i −0.609634 0.310100i
\(246\) 0 0
\(247\) −3.06948 + 5.31650i −0.195307 + 0.338281i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −15.7016 −0.991074 −0.495537 0.868587i \(-0.665029\pi\)
−0.495537 + 0.868587i \(0.665029\pi\)
\(252\) 0 0
\(253\) −5.13419 −0.322784
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 4.60892 7.98289i 0.287497 0.497959i −0.685715 0.727870i \(-0.740510\pi\)
0.973212 + 0.229911i \(0.0738436\pi\)
\(258\) 0 0
\(259\) 5.42560 22.6332i 0.337130 1.40636i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0.241311 + 0.417962i 0.0148799 + 0.0257727i 0.873369 0.487058i \(-0.161930\pi\)
−0.858490 + 0.512831i \(0.828597\pi\)
\(264\) 0 0
\(265\) 6.11174 + 10.5859i 0.375442 + 0.650284i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 3.94288 6.82927i 0.240402 0.416388i −0.720427 0.693531i \(-0.756054\pi\)
0.960829 + 0.277143i \(0.0893875\pi\)
\(270\) 0 0
\(271\) 12.7947 + 22.1610i 0.777220 + 1.34618i 0.933538 + 0.358478i \(0.116704\pi\)
−0.156318 + 0.987707i \(0.549963\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −1.11178 + 1.92566i −0.0670429 + 0.116122i
\(276\) 0 0
\(277\) −4.18466 7.24804i −0.251432 0.435492i 0.712489 0.701684i \(-0.247568\pi\)
−0.963920 + 0.266191i \(0.914235\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 0.551848 0.955828i 0.0329205 0.0570199i −0.849096 0.528239i \(-0.822853\pi\)
0.882016 + 0.471219i \(0.156186\pi\)
\(282\) 0 0
\(283\) 2.90738 0.172826 0.0864128 0.996259i \(-0.472460\pi\)
0.0864128 + 0.996259i \(0.472460\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −4.33852 + 18.0984i −0.256095 + 1.06832i
\(288\) 0 0
\(289\) 8.31873 + 14.4085i 0.489337 + 0.847557i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 12.4381 + 21.5434i 0.726642 + 1.25858i 0.958295 + 0.285782i \(0.0922532\pi\)
−0.231653 + 0.972798i \(0.574413\pi\)
\(294\) 0 0
\(295\) 0.0997383 0.172752i 0.00580699 0.0100580i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −22.2688 −1.28784
\(300\) 0 0
\(301\) −4.29631 + 1.27422i −0.247635 + 0.0734448i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 3.64522 6.31371i 0.208725 0.361522i
\(306\) 0 0
\(307\) −23.7968 −1.35816 −0.679078 0.734066i \(-0.737620\pi\)
−0.679078 + 0.734066i \(0.737620\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −18.7135 −1.06115 −0.530574 0.847639i \(-0.678024\pi\)
−0.530574 + 0.847639i \(0.678024\pi\)
\(312\) 0 0
\(313\) −19.3159 −1.09180 −0.545901 0.837850i \(-0.683812\pi\)
−0.545901 + 0.837850i \(0.683812\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 1.79508 0.100822 0.0504110 0.998729i \(-0.483947\pi\)
0.0504110 + 0.998729i \(0.483947\pi\)
\(318\) 0 0
\(319\) −8.35085 −0.467558
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −1.01984 −0.0567455
\(324\) 0 0
\(325\) −4.82218 + 8.35226i −0.267487 + 0.463300i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 16.2490 + 15.4092i 0.895838 + 0.849539i
\(330\) 0 0
\(331\) −14.1367 −0.777021 −0.388511 0.921444i \(-0.627010\pi\)
−0.388511 + 0.921444i \(0.627010\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 1.71547 2.97129i 0.0937264 0.162339i
\(336\) 0 0
\(337\) −2.94072 5.09348i −0.160191 0.277459i 0.774746 0.632273i \(-0.217878\pi\)
−0.934937 + 0.354813i \(0.884544\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −1.38231 2.39424i −0.0748565 0.129655i
\(342\) 0 0
\(343\) 12.0135 14.0952i 0.648670 0.761070i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 6.35186 0.340986 0.170493 0.985359i \(-0.445464\pi\)
0.170493 + 0.985359i \(0.445464\pi\)
\(348\) 0 0
\(349\) 10.4321 18.0689i 0.558416 0.967205i −0.439213 0.898383i \(-0.644743\pi\)
0.997629 0.0688222i \(-0.0219241\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −1.07115 1.85528i −0.0570114 0.0987466i 0.836111 0.548560i \(-0.184824\pi\)
−0.893123 + 0.449813i \(0.851490\pi\)
\(354\) 0 0
\(355\) −7.18155 + 12.4388i −0.381157 + 0.660183i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 10.6198 + 18.3940i 0.560492 + 0.970800i 0.997454 + 0.0713198i \(0.0227211\pi\)
−0.436962 + 0.899480i \(0.643946\pi\)
\(360\) 0 0
\(361\) 8.06557 13.9700i 0.424504 0.735262i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −3.44811 5.97230i −0.180482 0.312605i
\(366\) 0 0
\(367\) 16.2053 + 28.0685i 0.845912 + 1.46516i 0.884827 + 0.465919i \(0.154276\pi\)
−0.0389156 + 0.999243i \(0.512390\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −20.2729 + 6.01261i −1.05251 + 0.312159i
\(372\) 0 0
\(373\) −16.8101 + 29.1159i −0.870393 + 1.50756i −0.00880173 + 0.999961i \(0.502802\pi\)
−0.861591 + 0.507603i \(0.830532\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −36.2206 −1.86545
\(378\) 0 0
\(379\) 28.2829 1.45279 0.726396 0.687276i \(-0.241194\pi\)
0.726396 + 0.687276i \(0.241194\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −5.09473 + 8.82434i −0.260329 + 0.450903i −0.966329 0.257309i \(-0.917164\pi\)
0.706001 + 0.708211i \(0.250498\pi\)
\(384\) 0 0
\(385\) 2.45353 + 2.32672i 0.125043 + 0.118581i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 5.22525 + 9.05040i 0.264931 + 0.458873i 0.967545 0.252697i \(-0.0813176\pi\)
−0.702615 + 0.711570i \(0.747984\pi\)
\(390\) 0 0
\(391\) −1.84971 3.20379i −0.0935437 0.162022i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −12.0383 + 20.8509i −0.605710 + 1.04912i
\(396\) 0 0
\(397\) −7.25033 12.5579i −0.363884 0.630265i 0.624713 0.780855i \(-0.285216\pi\)
−0.988596 + 0.150590i \(0.951883\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −12.7071 + 22.0094i −0.634563 + 1.09909i 0.352045 + 0.935983i \(0.385486\pi\)
−0.986608 + 0.163112i \(0.947847\pi\)
\(402\) 0 0
\(403\) −5.99558 10.3846i −0.298661 0.517296i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −3.67551 + 6.36617i −0.182188 + 0.315559i
\(408\) 0 0
\(409\) 12.3907 0.612680 0.306340 0.951922i \(-0.400896\pi\)
0.306340 + 0.951922i \(0.400896\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0.250392 + 0.237451i 0.0123210 + 0.0116842i
\(414\) 0 0
\(415\) 4.83613 + 8.37642i 0.237396 + 0.411182i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 15.3596 + 26.6036i 0.750365 + 1.29967i 0.947646 + 0.319323i \(0.103455\pi\)
−0.197281 + 0.980347i \(0.563211\pi\)
\(420\) 0 0
\(421\) −2.88912 + 5.00410i −0.140807 + 0.243885i −0.927801 0.373076i \(-0.878303\pi\)
0.786994 + 0.616961i \(0.211636\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −1.60218 −0.0777170
\(426\) 0 0
\(427\) 9.15131 + 8.67834i 0.442863 + 0.419975i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0.210278 0.364212i 0.0101287 0.0175435i −0.860917 0.508746i \(-0.830109\pi\)
0.871045 + 0.491203i \(0.163443\pi\)
\(432\) 0 0
\(433\) 30.8208 1.48115 0.740576 0.671972i \(-0.234553\pi\)
0.740576 + 0.671972i \(0.234553\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −10.4066 −0.497815
\(438\) 0 0
\(439\) 3.01181 0.143746 0.0718729 0.997414i \(-0.477102\pi\)
0.0718729 + 0.997414i \(0.477102\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 18.4428 0.876245 0.438122 0.898915i \(-0.355644\pi\)
0.438122 + 0.898915i \(0.355644\pi\)
\(444\) 0 0
\(445\) −1.62478 −0.0770218
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 6.80998 0.321383 0.160691 0.987005i \(-0.448628\pi\)
0.160691 + 0.987005i \(0.448628\pi\)
\(450\) 0 0
\(451\) 2.93908 5.09064i 0.138396 0.239709i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 10.6418 + 10.0918i 0.498896 + 0.473111i
\(456\) 0 0
\(457\) 12.3657 0.578441 0.289220 0.957263i \(-0.406604\pi\)
0.289220 + 0.957263i \(0.406604\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 16.3651 28.3453i 0.762201 1.32017i −0.179513 0.983756i \(-0.557452\pi\)
0.941714 0.336415i \(-0.109214\pi\)
\(462\) 0 0
\(463\) 9.61023 + 16.6454i 0.446625 + 0.773577i 0.998164 0.0605719i \(-0.0192924\pi\)
−0.551539 + 0.834149i \(0.685959\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −1.50855 2.61289i −0.0698075 0.120910i 0.829009 0.559235i \(-0.188905\pi\)
−0.898816 + 0.438325i \(0.855572\pi\)
\(468\) 0 0
\(469\) 4.30669 + 4.08411i 0.198864 + 0.188587i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 1.41537 0.0650790
\(474\) 0 0
\(475\) −2.25349 + 3.90316i −0.103397 + 0.179089i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −12.9486 22.4276i −0.591635 1.02474i −0.994012 0.109269i \(-0.965149\pi\)
0.402377 0.915474i \(-0.368184\pi\)
\(480\) 0 0
\(481\) −15.9420 + 27.6123i −0.726891 + 1.25901i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −11.8738 20.5659i −0.539159 0.933851i
\(486\) 0 0
\(487\) −20.8841 + 36.1724i −0.946350 + 1.63913i −0.193326 + 0.981135i \(0.561927\pi\)
−0.753025 + 0.657992i \(0.771406\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 13.9879 + 24.2278i 0.631265 + 1.09338i 0.987293 + 0.158908i \(0.0507974\pi\)
−0.356028 + 0.934475i \(0.615869\pi\)
\(492\) 0 0
\(493\) −3.00858 5.21102i −0.135500 0.234693i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −18.0292 17.0974i −0.808722 0.766924i
\(498\) 0 0
\(499\) 12.4748 21.6070i 0.558450 0.967264i −0.439176 0.898401i \(-0.644730\pi\)
0.997626 0.0688626i \(-0.0219370\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −34.1966 −1.52475 −0.762376 0.647135i \(-0.775967\pi\)
−0.762376 + 0.647135i \(0.775967\pi\)
\(504\) 0 0
\(505\) −29.8465 −1.32815
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 6.84342 11.8532i 0.303329 0.525382i −0.673559 0.739134i \(-0.735235\pi\)
0.976888 + 0.213752i \(0.0685685\pi\)
\(510\) 0 0
\(511\) 11.4375 3.39218i 0.505965 0.150061i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 1.39447 + 2.41528i 0.0614475 + 0.106430i
\(516\) 0 0
\(517\) −3.53641 6.12525i −0.155531 0.269388i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 13.3748 23.1658i 0.585960 1.01491i −0.408795 0.912626i \(-0.634051\pi\)
0.994755 0.102286i \(-0.0326157\pi\)
\(522\) 0 0
\(523\) −10.6131 18.3824i −0.464079 0.803808i 0.535081 0.844801i \(-0.320281\pi\)
−0.999159 + 0.0409928i \(0.986948\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0.996020 1.72516i 0.0433873 0.0751490i
\(528\) 0 0
\(529\) −7.37466 12.7733i −0.320637 0.555360i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 12.7478 22.0799i 0.552170 0.956386i
\(534\) 0 0
\(535\) −16.1223 −0.697029
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −4.90359 + 3.18918i −0.211213 + 0.137368i
\(540\) 0 0
\(541\) 10.1269 + 17.5402i 0.435388 + 0.754114i 0.997327 0.0730646i \(-0.0232779\pi\)
−0.561939 + 0.827178i \(0.689945\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 9.64201 + 16.7005i 0.413019 + 0.715369i
\(546\) 0 0
\(547\) −21.9668 + 38.0476i −0.939233 + 1.62680i −0.172327 + 0.985040i \(0.555129\pi\)
−0.766906 + 0.641760i \(0.778205\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −16.9265 −0.721094
\(552\) 0 0
\(553\) −30.2220 28.6600i −1.28517 1.21875i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 4.45483 7.71599i 0.188757 0.326937i −0.756079 0.654480i \(-0.772887\pi\)
0.944836 + 0.327544i \(0.106221\pi\)
\(558\) 0 0
\(559\) 6.13897 0.259651
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 28.4193 1.19773 0.598865 0.800850i \(-0.295619\pi\)
0.598865 + 0.800850i \(0.295619\pi\)
\(564\) 0 0
\(565\) 23.7502 0.999177
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 8.57895 0.359648 0.179824 0.983699i \(-0.442447\pi\)
0.179824 + 0.983699i \(0.442447\pi\)
\(570\) 0 0
\(571\) 19.3772 0.810912 0.405456 0.914115i \(-0.367113\pi\)
0.405456 + 0.914115i \(0.367113\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −16.3488 −0.681793
\(576\) 0 0
\(577\) 0.584441 1.01228i 0.0243306 0.0421418i −0.853604 0.520923i \(-0.825588\pi\)
0.877934 + 0.478781i \(0.158921\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −16.0416 + 4.75769i −0.665517 + 0.197382i
\(582\) 0 0
\(583\) 6.67867 0.276602
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 15.5863 26.9963i 0.643316 1.11426i −0.341372 0.939928i \(-0.610892\pi\)
0.984688 0.174327i \(-0.0557750\pi\)
\(588\) 0 0
\(589\) −2.80184 4.85293i −0.115448 0.199962i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 15.1887 + 26.3075i 0.623724 + 1.08032i 0.988786 + 0.149338i \(0.0477143\pi\)
−0.365062 + 0.930983i \(0.618952\pi\)
\(594\) 0 0
\(595\) −0.567960 + 2.36928i −0.0232841 + 0.0971311i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 7.30758 0.298579 0.149290 0.988793i \(-0.452301\pi\)
0.149290 + 0.988793i \(0.452301\pi\)
\(600\) 0 0
\(601\) 4.61461 7.99274i 0.188234 0.326031i −0.756428 0.654077i \(-0.773057\pi\)
0.944661 + 0.328047i \(0.106390\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 7.87774 + 13.6446i 0.320276 + 0.554734i
\(606\) 0 0
\(607\) 8.53370 14.7808i 0.346372 0.599934i −0.639230 0.769016i \(-0.720747\pi\)
0.985602 + 0.169082i \(0.0540801\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −15.3387 26.5673i −0.620536 1.07480i
\(612\) 0 0
\(613\) −0.393059 + 0.680797i −0.0158755 + 0.0274972i −0.873854 0.486188i \(-0.838387\pi\)
0.857979 + 0.513686i \(0.171720\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −23.7960 41.2159i −0.957991 1.65929i −0.727370 0.686246i \(-0.759257\pi\)
−0.230621 0.973044i \(-0.574076\pi\)
\(618\) 0 0
\(619\) −9.48717 16.4323i −0.381321 0.660468i 0.609930 0.792455i \(-0.291198\pi\)
−0.991251 + 0.131987i \(0.957864\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0.655222 2.73330i 0.0262509 0.109507i
\(624\) 0 0
\(625\) 2.30744 3.99660i 0.0922976 0.159864i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −5.29674 −0.211195
\(630\) 0 0
\(631\) 0.300343 0.0119565 0.00597823 0.999982i \(-0.498097\pi\)
0.00597823 + 0.999982i \(0.498097\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 8.33267 14.4326i 0.330672 0.572741i
\(636\) 0 0
\(637\) −21.2686 + 13.8326i −0.842692 + 0.548068i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 14.0548 + 24.3436i 0.555131 + 0.961514i 0.997893 + 0.0648756i \(0.0206651\pi\)
−0.442763 + 0.896639i \(0.646002\pi\)
\(642\) 0 0
\(643\) −1.55289 2.68968i −0.0612399 0.106071i 0.833780 0.552097i \(-0.186172\pi\)
−0.895020 + 0.446026i \(0.852839\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −23.3556 + 40.4532i −0.918205 + 1.59038i −0.116066 + 0.993242i \(0.537028\pi\)
−0.802140 + 0.597137i \(0.796305\pi\)
\(648\) 0 0
\(649\) −0.0544950 0.0943881i −0.00213912 0.00370506i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −0.998764 + 1.72991i −0.0390847 + 0.0676966i −0.884906 0.465770i \(-0.845778\pi\)
0.845821 + 0.533466i \(0.179111\pi\)
\(654\) 0 0
\(655\) 14.8825 + 25.7772i 0.581506 + 1.00720i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −8.37284 + 14.5022i −0.326160 + 0.564925i −0.981746 0.190195i \(-0.939088\pi\)
0.655587 + 0.755120i \(0.272421\pi\)
\(660\) 0 0
\(661\) 12.5774 0.489205 0.244602 0.969624i \(-0.421343\pi\)
0.244602 + 0.969624i \(0.421343\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 4.97311 + 4.71608i 0.192849 + 0.182882i
\(666\) 0 0
\(667\) −30.7000 53.1740i −1.18871 2.05890i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −1.99168 3.44969i −0.0768878 0.133174i
\(672\) 0 0
\(673\) 23.8175 41.2531i 0.918096 1.59019i 0.115792 0.993273i \(-0.463059\pi\)
0.802304 0.596916i \(-0.203607\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 9.09327 0.349483 0.174741 0.984614i \(-0.444091\pi\)
0.174741 + 0.984614i \(0.444091\pi\)
\(678\) 0 0
\(679\) 39.3856 11.6812i 1.51148 0.448282i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −2.41674 + 4.18592i −0.0924741 + 0.160170i −0.908552 0.417773i \(-0.862811\pi\)
0.816078 + 0.577942i \(0.196144\pi\)
\(684\) 0 0
\(685\) −18.7760 −0.717393
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 28.9677 1.10358
\(690\) 0 0
\(691\) −10.7846 −0.410264 −0.205132 0.978734i \(-0.565762\pi\)
−0.205132 + 0.978734i \(0.565762\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 19.7199 0.748018
\(696\) 0 0
\(697\) 4.23548 0.160430
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 31.8393 1.20255 0.601276 0.799041i \(-0.294659\pi\)
0.601276 + 0.799041i \(0.294659\pi\)
\(702\) 0 0
\(703\) −7.44997 + 12.9037i −0.280981 + 0.486673i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 12.0362 50.2097i 0.452667 1.88833i
\(708\) 0 0
\(709\) −27.2064 −1.02176 −0.510879 0.859653i \(-0.670680\pi\)
−0.510879 + 0.859653i \(0.670680\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 10.1635 17.6037i 0.380627 0.659265i
\(714\) 0 0
\(715\) −2.31607 4.01154i −0.0866160 0.150023i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 14.4549 + 25.0366i 0.539076 + 0.933707i 0.998954 + 0.0457252i \(0.0145598\pi\)
−0.459878 + 0.887982i \(0.652107\pi\)
\(720\) 0 0
\(721\) −4.62549 + 1.37185i −0.172262 + 0.0510902i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −26.5917 −0.987591
\(726\) 0 0
\(727\) 4.29978 7.44744i 0.159470 0.276210i −0.775208 0.631706i \(-0.782355\pi\)
0.934678 + 0.355496i \(0.115688\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 0.509920 + 0.883208i 0.0188601 + 0.0326666i
\(732\) 0 0
\(733\) 22.7753 39.4480i 0.841225 1.45705i −0.0476340 0.998865i \(-0.515168\pi\)
0.888859 0.458180i \(-0.151499\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −0.937301 1.62345i −0.0345259 0.0598007i
\(738\) 0 0
\(739\) 6.34491 10.9897i 0.233401 0.404263i −0.725405 0.688322i \(-0.758348\pi\)
0.958807 + 0.284059i \(0.0916811\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 5.04492 + 8.73806i 0.185080 + 0.320568i 0.943604 0.331078i \(-0.107412\pi\)
−0.758523 + 0.651646i \(0.774079\pi\)
\(744\) 0 0
\(745\) −13.8146 23.9276i −0.506128 0.876640i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 6.50163 27.1220i 0.237564 0.991015i
\(750\) 0 0
\(751\) −2.50357 + 4.33631i −0.0913565 + 0.158234i −0.908082 0.418792i \(-0.862454\pi\)
0.816726 + 0.577026i \(0.195787\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 13.1495 0.478561
\(756\) 0 0
\(757\) 6.83620 0.248466 0.124233 0.992253i \(-0.460353\pi\)
0.124233 + 0.992253i \(0.460353\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 13.4377 23.2747i 0.487115 0.843708i −0.512775 0.858523i \(-0.671382\pi\)
0.999890 + 0.0148147i \(0.00471582\pi\)
\(762\) 0 0
\(763\) −31.9829 + 9.48562i −1.15786 + 0.343403i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −0.236364 0.409394i −0.00853460 0.0147824i
\(768\) 0 0
\(769\) −2.00631 3.47503i −0.0723493 0.125313i 0.827581 0.561346i \(-0.189716\pi\)
−0.899931 + 0.436033i \(0.856383\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 13.6861 23.7051i 0.492256 0.852612i −0.507704 0.861531i \(-0.669506\pi\)
0.999960 + 0.00891927i \(0.00283913\pi\)
\(774\) 0 0
\(775\) −4.40171 7.62399i −0.158114 0.273862i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 5.95729 10.3183i 0.213442 0.369693i
\(780\) 0 0
\(781\) 3.92385 + 6.79631i 0.140407 + 0.243191i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −2.44220 + 4.23001i −0.0871658 + 0.150976i
\(786\) 0 0
\(787\) −12.8727 −0.458863 −0.229432 0.973325i \(-0.573687\pi\)
−0.229432 + 0.973325i \(0.573687\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −9.57771 + 39.9540i −0.340544 + 1.42060i
\(792\) 0 0
\(793\) −8.63860 14.9625i −0.306766 0.531334i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 8.71139 + 15.0886i 0.308573 + 0.534465i 0.978050 0.208368i \(-0.0668152\pi\)
−0.669477 + 0.742833i \(0.733482\pi\)
\(798\) 0 0
\(799\) 2.54815 4.41352i 0.0901469 0.156139i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −3.76796 −0.132968
\(804\) 0 0
\(805\) −5.79554 + 24.1765i −0.204266 + 0.852109i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 3.04097 5.26712i 0.106915 0.185182i −0.807604 0.589725i \(-0.799236\pi\)
0.914519 + 0.404543i \(0.132569\pi\)
\(810\) 0 0
\(811\) 14.6219 0.513443 0.256722 0.966485i \(-0.417358\pi\)
0.256722 + 0.966485i \(0.417358\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −6.26472 −0.219443
\(816\) 0 0
\(817\) 2.86885 0.100368
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 9.74323 0.340041 0.170021 0.985441i \(-0.445617\pi\)
0.170021 + 0.985441i \(0.445617\pi\)
\(822\) 0 0
\(823\) 10.7797 0.375755 0.187878 0.982192i \(-0.439839\pi\)
0.187878 + 0.982192i \(0.439839\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −13.0521 −0.453867 −0.226933 0.973910i \(-0.572870\pi\)
−0.226933 + 0.973910i \(0.572870\pi\)
\(828\) 0 0
\(829\) 24.5548 42.5301i 0.852822 1.47713i −0.0258286 0.999666i \(-0.508222\pi\)
0.878651 0.477465i \(-0.158444\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −3.75671 1.91092i −0.130162 0.0662093i
\(834\) 0 0
\(835\) 25.2308 0.873149
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 12.0830 20.9284i 0.417151 0.722527i −0.578500 0.815682i \(-0.696362\pi\)
0.995652 + 0.0931549i \(0.0296952\pi\)
\(840\) 0 0
\(841\) −35.4341 61.3737i −1.22187 2.11633i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −0.104456 0.180923i −0.00359339 0.00622393i
\(846\) 0 0
\(847\) −26.1307 + 7.74997i −0.897862 + 0.266292i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −54.0487 −1.85276
\(852\) 0 0
\(853\) 2.72681 4.72297i 0.0933641 0.161711i −0.815561 0.578672i \(-0.803571\pi\)
0.908925 + 0.416960i \(0.136905\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 16.4194 + 28.4393i 0.560876 + 0.971466i 0.997420 + 0.0717835i \(0.0228691\pi\)
−0.436544 + 0.899683i \(0.643798\pi\)
\(858\) 0 0
\(859\) −26.3299 + 45.6048i −0.898365 + 1.55601i −0.0687820 + 0.997632i \(0.521911\pi\)
−0.829583 + 0.558383i \(0.811422\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −24.4095 42.2784i −0.830908 1.43917i −0.897319 0.441382i \(-0.854488\pi\)
0.0664116 0.997792i \(-0.478845\pi\)
\(864\) 0 0
\(865\) −9.80445 + 16.9818i −0.333361 + 0.577398i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 6.57746 + 11.3925i 0.223125 + 0.386464i
\(870\) 0 0
\(871\) −4.06540 7.04148i −0.137751 0.238591i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 22.4934 + 21.3309i 0.760416 + 0.721115i
\(876\) 0 0
\(877\) 12.5373 21.7152i 0.423353 0.733269i −0.572912 0.819617i \(-0.694186\pi\)
0.996265 + 0.0863480i \(0.0275197\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 16.2437 0.547263 0.273632 0.961835i \(-0.411775\pi\)
0.273632 + 0.961835i \(0.411775\pi\)
\(882\) 0 0
\(883\) 29.7137 0.999945 0.499973 0.866041i \(-0.333343\pi\)
0.499973 + 0.866041i \(0.333343\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −7.87353 + 13.6374i −0.264367 + 0.457897i −0.967398 0.253262i \(-0.918496\pi\)
0.703030 + 0.711160i \(0.251830\pi\)
\(888\) 0 0
\(889\) 20.9191 + 19.8380i 0.701605 + 0.665344i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −7.16803 12.4154i −0.239869 0.415465i
\(894\) 0 0
\(895\) 18.1616 + 31.4568i 0.607076 + 1.05149i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 16.5312 28.6328i 0.551345 0.954957i
\(900\) 0 0
\(901\) 2.40614 + 4.16756i 0.0801602 + 0.138842i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 12.2539 21.2244i 0.407333 0.705522i
\(906\) 0 0
\(907\) 1.29001 + 2.23437i 0.0428342 + 0.0741910i 0.886648 0.462446i \(-0.153028\pi\)
−0.843813 + 0.536637i \(0.819695\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −23.2170 + 40.2130i −0.769214 + 1.33232i 0.168776 + 0.985654i \(0.446019\pi\)
−0.937990 + 0.346663i \(0.887315\pi\)
\(912\) 0 0
\(913\) 5.28473 0.174899
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −49.3656 + 14.6411i −1.63020 + 0.483490i
\(918\) 0 0
\(919\) −2.84387 4.92572i −0.0938106 0.162485i 0.815301 0.579037i \(-0.196571\pi\)
−0.909112 + 0.416553i \(0.863238\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 17.0191 + 29.4780i 0.560191 + 0.970279i
\(924\) 0 0
\(925\) −11.7040 + 20.2718i −0.384824 + 0.666534i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −47.9605 −1.57353 −0.786767 0.617251i \(-0.788246\pi\)
−0.786767 + 0.617251i \(0.788246\pi\)
\(930\) 0 0
\(931\) −9.93919 + 6.46422i −0.325744 + 0.211856i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0.384758 0.666421i 0.0125829 0.0217943i
\(936\) 0 0
\(937\) −25.3542 −0.828285 −0.414142 0.910212i \(-0.635918\pi\)
−0.414142 + 0.910212i \(0.635918\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −2.51303 −0.0819223 −0.0409611 0.999161i \(-0.513042\pi\)
−0.0409611 + 0.999161i \(0.513042\pi\)
\(942\) 0 0
\(943\) 43.2195 1.40742
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −14.5307 −0.472186 −0.236093 0.971731i \(-0.575867\pi\)
−0.236093 + 0.971731i \(0.575867\pi\)
\(948\) 0 0
\(949\) −16.3429 −0.530514
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 36.5564 1.18418 0.592089 0.805873i \(-0.298303\pi\)
0.592089 + 0.805873i \(0.298303\pi\)
\(954\) 0 0
\(955\) −8.26605 + 14.3172i −0.267483 + 0.463294i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 7.57177 31.5861i 0.244505 1.01997i
\(960\) 0 0
\(961\) −20.0544 −0.646917
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −0.573726 + 0.993722i −0.0184689 + 0.0319890i
\(966\) 0 0
\(967\) 8.06111 + 13.9623i 0.259228 + 0.448996i 0.966035 0.258410i \(-0.0831986\pi\)
−0.706807 + 0.707406i \(0.749865\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −8.60100 14.8974i −0.276019 0.478079i 0.694373 0.719616i \(-0.255682\pi\)
−0.970392 + 0.241537i \(0.922349\pi\)
\(972\) 0 0
\(973\) −7.95242 + 33.1740i −0.254943 + 1.06351i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −40.2450 −1.28755 −0.643776 0.765214i \(-0.722633\pi\)
−0.643776 + 0.765214i \(0.722633\pi\)
\(978\) 0 0
\(979\) −0.443873 + 0.768810i −0.0141862 + 0.0245713i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 10.2760 + 17.7985i 0.327753 + 0.567685i 0.982066 0.188539i \(-0.0603753\pi\)
−0.654313 + 0.756224i \(0.727042\pi\)
\(984\) 0 0
\(985\) 7.89065 13.6670i 0.251417 0.435467i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 5.20330 + 9.01237i 0.165455 + 0.286577i
\(990\) 0 0
\(991\) −14.9872 + 25.9586i −0.476083 + 0.824601i −0.999625 0.0273998i \(-0.991277\pi\)
0.523541 + 0.852000i \(0.324611\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −4.36537 7.56105i −0.138392 0.239701i
\(996\) 0 0
\(997\) 6.01944 + 10.4260i 0.190638 + 0.330194i 0.945462 0.325733i \(-0.105611\pi\)
−0.754824 + 0.655927i \(0.772278\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 756.2.i.b.613.3 14
3.2 odd 2 252.2.i.b.25.4 14
4.3 odd 2 3024.2.q.j.2881.3 14
7.2 even 3 756.2.l.b.289.5 14
7.3 odd 6 5292.2.j.g.3529.5 14
7.4 even 3 5292.2.j.h.3529.3 14
7.5 odd 6 5292.2.l.i.3313.3 14
7.6 odd 2 5292.2.i.i.2125.5 14
9.2 odd 6 2268.2.k.e.1621.5 14
9.4 even 3 756.2.l.b.361.5 14
9.5 odd 6 252.2.l.b.193.5 yes 14
9.7 even 3 2268.2.k.f.1621.3 14
12.11 even 2 1008.2.q.j.529.4 14
21.2 odd 6 252.2.l.b.205.5 yes 14
21.5 even 6 1764.2.l.i.961.3 14
21.11 odd 6 1764.2.j.g.1177.1 14
21.17 even 6 1764.2.j.h.1177.7 14
21.20 even 2 1764.2.i.i.1537.4 14
28.23 odd 6 3024.2.t.j.289.5 14
36.23 even 6 1008.2.t.j.193.3 14
36.31 odd 6 3024.2.t.j.1873.5 14
63.2 odd 6 2268.2.k.e.1297.5 14
63.4 even 3 5292.2.j.h.1765.3 14
63.5 even 6 1764.2.i.i.373.4 14
63.13 odd 6 5292.2.l.i.361.3 14
63.16 even 3 2268.2.k.f.1297.3 14
63.23 odd 6 252.2.i.b.121.4 yes 14
63.31 odd 6 5292.2.j.g.1765.5 14
63.32 odd 6 1764.2.j.g.589.1 14
63.40 odd 6 5292.2.i.i.1549.5 14
63.41 even 6 1764.2.l.i.949.3 14
63.58 even 3 inner 756.2.i.b.37.3 14
63.59 even 6 1764.2.j.h.589.7 14
84.23 even 6 1008.2.t.j.961.3 14
252.23 even 6 1008.2.q.j.625.4 14
252.247 odd 6 3024.2.q.j.2305.3 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
252.2.i.b.25.4 14 3.2 odd 2
252.2.i.b.121.4 yes 14 63.23 odd 6
252.2.l.b.193.5 yes 14 9.5 odd 6
252.2.l.b.205.5 yes 14 21.2 odd 6
756.2.i.b.37.3 14 63.58 even 3 inner
756.2.i.b.613.3 14 1.1 even 1 trivial
756.2.l.b.289.5 14 7.2 even 3
756.2.l.b.361.5 14 9.4 even 3
1008.2.q.j.529.4 14 12.11 even 2
1008.2.q.j.625.4 14 252.23 even 6
1008.2.t.j.193.3 14 36.23 even 6
1008.2.t.j.961.3 14 84.23 even 6
1764.2.i.i.373.4 14 63.5 even 6
1764.2.i.i.1537.4 14 21.20 even 2
1764.2.j.g.589.1 14 63.32 odd 6
1764.2.j.g.1177.1 14 21.11 odd 6
1764.2.j.h.589.7 14 63.59 even 6
1764.2.j.h.1177.7 14 21.17 even 6
1764.2.l.i.949.3 14 63.41 even 6
1764.2.l.i.961.3 14 21.5 even 6
2268.2.k.e.1297.5 14 63.2 odd 6
2268.2.k.e.1621.5 14 9.2 odd 6
2268.2.k.f.1297.3 14 63.16 even 3
2268.2.k.f.1621.3 14 9.7 even 3
3024.2.q.j.2305.3 14 252.247 odd 6
3024.2.q.j.2881.3 14 4.3 odd 2
3024.2.t.j.289.5 14 28.23 odd 6
3024.2.t.j.1873.5 14 36.31 odd 6
5292.2.i.i.1549.5 14 63.40 odd 6
5292.2.i.i.2125.5 14 7.6 odd 2
5292.2.j.g.1765.5 14 63.31 odd 6
5292.2.j.g.3529.5 14 7.3 odd 6
5292.2.j.h.1765.3 14 63.4 even 3
5292.2.j.h.3529.3 14 7.4 even 3
5292.2.l.i.361.3 14 63.13 odd 6
5292.2.l.i.3313.3 14 7.5 odd 6