L(s) = 1 | + (−0.764 + 1.32i)5-s + (−1.91 − 1.82i)7-s + (0.417 + 0.723i)11-s + (1.81 + 3.13i)13-s + (−0.301 + 0.521i)17-s + (0.846 + 1.46i)19-s + (−3.07 + 5.32i)23-s + (1.33 + 2.30i)25-s + (−4.99 + 8.65i)29-s − 3.30·31-s + (3.87 − 1.15i)35-s + (4.39 + 7.61i)37-s + (−3.51 − 6.09i)41-s + (0.846 − 1.46i)43-s − 8.46·47-s + ⋯ |
L(s) = 1 | + (−0.341 + 0.592i)5-s + (−0.725 − 0.688i)7-s + (0.125 + 0.218i)11-s + (0.502 + 0.870i)13-s + (−0.0730 + 0.126i)17-s + (0.194 + 0.336i)19-s + (−0.640 + 1.10i)23-s + (0.266 + 0.460i)25-s + (−0.927 + 1.60i)29-s − 0.594·31-s + (0.655 − 0.194i)35-s + (0.723 + 1.25i)37-s + (−0.549 − 0.951i)41-s + (0.129 − 0.223i)43-s − 1.23·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 756 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.236 - 0.971i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 756 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.236 - 0.971i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.587285 + 0.747156i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.587285 + 0.747156i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (1.91 + 1.82i)T \) |
good | 5 | \( 1 + (0.764 - 1.32i)T + (-2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (-0.417 - 0.723i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (-1.81 - 3.13i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (0.301 - 0.521i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-0.846 - 1.46i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (3.07 - 5.32i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (4.99 - 8.65i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + 3.30T + 31T^{2} \) |
| 37 | \( 1 + (-4.39 - 7.61i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (3.51 + 6.09i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-0.846 + 1.46i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + 8.46T + 47T^{2} \) |
| 53 | \( 1 + (-3.99 + 6.92i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + 0.130T + 59T^{2} \) |
| 61 | \( 1 + 4.76T + 61T^{2} \) |
| 67 | \( 1 + 2.24T + 67T^{2} \) |
| 71 | \( 1 - 9.39T + 71T^{2} \) |
| 73 | \( 1 + (2.25 - 3.90i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 - 15.7T + 79T^{2} \) |
| 83 | \( 1 + (-3.16 + 5.47i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + (-0.531 - 0.920i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (7.76 - 13.4i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.64501576344192723785164160938, −9.730986822687914805108822749864, −9.044983247220546366775170421258, −7.84087037904356593625789073115, −7.03766434543934896237341906969, −6.44843000108343415805963716180, −5.23241893182239538415662610610, −3.86036621168414099715835322268, −3.35485232113495621005798670329, −1.64214656146193573543574343418,
0.48555223655673893355612814431, 2.38542794262998263286487023901, 3.53991855369551025046908855450, 4.61791861164501097790330611484, 5.76398882279091003402622885222, 6.37565175699949634666016246896, 7.69338190111604016849666325284, 8.422361014990070773790278777455, 9.203991227962370981920175968832, 9.982718982321622428738875218584