Properties

Label 1764.2.j.g.589.1
Level $1764$
Weight $2$
Character 1764.589
Analytic conductor $14.086$
Analytic rank $0$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1764,2,Mod(589,1764)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1764.589"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1764, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 2, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1764 = 2^{2} \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1764.j (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [14,0,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.0856109166\)
Analytic rank: \(0\)
Dimension: \(14\)
Relative dimension: \(7\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} - 5x^{12} - 3x^{11} + 7x^{10} + 30x^{9} - 117x^{7} + 270x^{5} + 189x^{4} - 243x^{3} - 1215x^{2} + 2187 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 3^{5} \)
Twist minimal: no (minimal twist has level 252)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 589.1
Root \(1.13119 - 1.31165i\) of defining polynomial
Character \(\chi\) \(=\) 1764.589
Dual form 1764.2.j.g.1177.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.70151 - 0.323812i) q^{3} +(0.764702 - 1.32450i) q^{5} +(2.79029 + 1.10194i) q^{9} +(-0.417818 - 0.723682i) q^{11} +(1.81222 - 3.13886i) q^{13} +(-1.73004 + 2.00604i) q^{15} -0.602113 q^{17} -1.69377 q^{19} +(3.07202 - 5.32090i) q^{23} +(1.33046 + 2.30443i) q^{25} +(-4.39090 - 2.77849i) q^{27} +(4.99671 + 8.65455i) q^{29} +(1.65421 - 2.86517i) q^{31} +(0.476586 + 1.36665i) q^{33} -8.79691 q^{37} +(-4.09992 + 4.75399i) q^{39} +(3.51718 - 6.09194i) q^{41} +(0.846884 + 1.46685i) q^{43} +(3.59326 - 2.85309i) q^{45} +(-4.23200 - 7.33004i) q^{47} +(1.02450 + 0.194971i) q^{51} +7.99232 q^{53} -1.27803 q^{55} +(2.88197 + 0.548462i) q^{57} +(-0.0652138 + 0.112954i) q^{59} +(2.38343 + 4.12822i) q^{61} +(-2.77162 - 4.80059i) q^{65} +(1.12166 - 1.94278i) q^{67} +(-6.95006 + 8.05882i) q^{69} -9.39130 q^{71} +4.50909 q^{73} +(-1.51760 - 4.35183i) q^{75} +(-7.87120 - 13.6333i) q^{79} +(6.57146 + 6.14947i) q^{81} +(-3.16210 - 5.47692i) q^{83} +(-0.460438 + 0.797501i) q^{85} +(-5.69951 - 16.3438i) q^{87} +1.06236 q^{89} +(-3.74243 + 4.33947i) q^{93} +(-1.29523 + 2.24340i) q^{95} +(-7.76364 - 13.4470i) q^{97} +(-0.368380 - 2.47969i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q - 3 q^{3} - 2 q^{5} - 5 q^{9} + 2 q^{11} + 2 q^{13} + 7 q^{15} - 4 q^{17} - 14 q^{19} + 11 q^{23} - 9 q^{25} + 9 q^{27} + q^{29} - q^{31} - q^{33} - 20 q^{37} + 22 q^{39} - 33 q^{41} + 7 q^{43}+ \cdots + 7 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1764\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(883\) \(1081\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.70151 0.323812i −0.982369 0.186953i
\(4\) 0 0
\(5\) 0.764702 1.32450i 0.341985 0.592336i −0.642816 0.766021i \(-0.722234\pi\)
0.984801 + 0.173685i \(0.0555674\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 2.79029 + 1.10194i 0.930097 + 0.367313i
\(10\) 0 0
\(11\) −0.417818 0.723682i −0.125977 0.218198i 0.796137 0.605116i \(-0.206873\pi\)
−0.922114 + 0.386917i \(0.873540\pi\)
\(12\) 0 0
\(13\) 1.81222 3.13886i 0.502620 0.870563i −0.497375 0.867535i \(-0.665703\pi\)
0.999995 0.00302796i \(-0.000963830\pi\)
\(14\) 0 0
\(15\) −1.73004 + 2.00604i −0.446694 + 0.517957i
\(16\) 0 0
\(17\) −0.602113 −0.146034 −0.0730170 0.997331i \(-0.523263\pi\)
−0.0730170 + 0.997331i \(0.523263\pi\)
\(18\) 0 0
\(19\) −1.69377 −0.388577 −0.194289 0.980944i \(-0.562240\pi\)
−0.194289 + 0.980944i \(0.562240\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 3.07202 5.32090i 0.640561 1.10948i −0.344746 0.938696i \(-0.612035\pi\)
0.985308 0.170789i \(-0.0546316\pi\)
\(24\) 0 0
\(25\) 1.33046 + 2.30443i 0.266092 + 0.460885i
\(26\) 0 0
\(27\) −4.39090 2.77849i −0.845028 0.534721i
\(28\) 0 0
\(29\) 4.99671 + 8.65455i 0.927865 + 1.60711i 0.786888 + 0.617096i \(0.211691\pi\)
0.140977 + 0.990013i \(0.454976\pi\)
\(30\) 0 0
\(31\) 1.65421 2.86517i 0.297104 0.514599i −0.678368 0.734722i \(-0.737312\pi\)
0.975472 + 0.220123i \(0.0706458\pi\)
\(32\) 0 0
\(33\) 0.476586 + 1.36665i 0.0829630 + 0.237903i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −8.79691 −1.44620 −0.723102 0.690741i \(-0.757284\pi\)
−0.723102 + 0.690741i \(0.757284\pi\)
\(38\) 0 0
\(39\) −4.09992 + 4.75399i −0.656513 + 0.761248i
\(40\) 0 0
\(41\) 3.51718 6.09194i 0.549291 0.951401i −0.449032 0.893516i \(-0.648231\pi\)
0.998323 0.0578850i \(-0.0184357\pi\)
\(42\) 0 0
\(43\) 0.846884 + 1.46685i 0.129149 + 0.223692i 0.923347 0.383967i \(-0.125442\pi\)
−0.794198 + 0.607659i \(0.792109\pi\)
\(44\) 0 0
\(45\) 3.59326 2.85309i 0.535652 0.425314i
\(46\) 0 0
\(47\) −4.23200 7.33004i −0.617301 1.06920i −0.989976 0.141235i \(-0.954893\pi\)
0.372675 0.927962i \(-0.378441\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 1.02450 + 0.194971i 0.143459 + 0.0273015i
\(52\) 0 0
\(53\) 7.99232 1.09783 0.548915 0.835878i \(-0.315041\pi\)
0.548915 + 0.835878i \(0.315041\pi\)
\(54\) 0 0
\(55\) −1.27803 −0.172329
\(56\) 0 0
\(57\) 2.88197 + 0.548462i 0.381726 + 0.0726456i
\(58\) 0 0
\(59\) −0.0652138 + 0.112954i −0.00849011 + 0.0147053i −0.870239 0.492629i \(-0.836036\pi\)
0.861749 + 0.507335i \(0.169369\pi\)
\(60\) 0 0
\(61\) 2.38343 + 4.12822i 0.305166 + 0.528564i 0.977298 0.211868i \(-0.0679546\pi\)
−0.672132 + 0.740431i \(0.734621\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −2.77162 4.80059i −0.343777 0.595440i
\(66\) 0 0
\(67\) 1.12166 1.94278i 0.137033 0.237348i −0.789339 0.613957i \(-0.789577\pi\)
0.926372 + 0.376609i \(0.122910\pi\)
\(68\) 0 0
\(69\) −6.95006 + 8.05882i −0.836689 + 0.970168i
\(70\) 0 0
\(71\) −9.39130 −1.11454 −0.557271 0.830331i \(-0.688152\pi\)
−0.557271 + 0.830331i \(0.688152\pi\)
\(72\) 0 0
\(73\) 4.50909 0.527749 0.263874 0.964557i \(-0.415000\pi\)
0.263874 + 0.964557i \(0.415000\pi\)
\(74\) 0 0
\(75\) −1.51760 4.35183i −0.175237 0.502506i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −7.87120 13.6333i −0.885580 1.53387i −0.845048 0.534691i \(-0.820428\pi\)
−0.0405317 0.999178i \(-0.512905\pi\)
\(80\) 0 0
\(81\) 6.57146 + 6.14947i 0.730162 + 0.683274i
\(82\) 0 0
\(83\) −3.16210 5.47692i −0.347085 0.601170i 0.638645 0.769502i \(-0.279495\pi\)
−0.985730 + 0.168332i \(0.946162\pi\)
\(84\) 0 0
\(85\) −0.460438 + 0.797501i −0.0499415 + 0.0865011i
\(86\) 0 0
\(87\) −5.69951 16.3438i −0.611052 1.75224i
\(88\) 0 0
\(89\) 1.06236 0.112610 0.0563049 0.998414i \(-0.482068\pi\)
0.0563049 + 0.998414i \(0.482068\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −3.74243 + 4.33947i −0.388072 + 0.449982i
\(94\) 0 0
\(95\) −1.29523 + 2.24340i −0.132888 + 0.230168i
\(96\) 0 0
\(97\) −7.76364 13.4470i −0.788279 1.36534i −0.927021 0.375010i \(-0.877639\pi\)
0.138742 0.990329i \(-0.455694\pi\)
\(98\) 0 0
\(99\) −0.368380 2.47969i −0.0370236 0.249219i
\(100\) 0 0
\(101\) −9.75757 16.9006i −0.970914 1.68167i −0.692807 0.721123i \(-0.743626\pi\)
−0.278107 0.960550i \(-0.589707\pi\)
\(102\) 0 0
\(103\) 0.911770 1.57923i 0.0898394 0.155606i −0.817604 0.575781i \(-0.804698\pi\)
0.907443 + 0.420175i \(0.138031\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 10.5416 1.01909 0.509546 0.860444i \(-0.329813\pi\)
0.509546 + 0.860444i \(0.329813\pi\)
\(108\) 0 0
\(109\) −12.6088 −1.20771 −0.603854 0.797095i \(-0.706369\pi\)
−0.603854 + 0.797095i \(0.706369\pi\)
\(110\) 0 0
\(111\) 14.9681 + 2.84854i 1.42071 + 0.270372i
\(112\) 0 0
\(113\) 7.76452 13.4485i 0.730424 1.26513i −0.226278 0.974063i \(-0.572656\pi\)
0.956702 0.291069i \(-0.0940110\pi\)
\(114\) 0 0
\(115\) −4.69837 8.13781i −0.438125 0.758855i
\(116\) 0 0
\(117\) 8.51546 6.76138i 0.787255 0.625090i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 5.15086 8.92154i 0.468260 0.811050i
\(122\) 0 0
\(123\) −7.95717 + 9.22660i −0.717474 + 0.831935i
\(124\) 0 0
\(125\) 11.7166 1.04797
\(126\) 0 0
\(127\) −10.8966 −0.966919 −0.483460 0.875367i \(-0.660620\pi\)
−0.483460 + 0.875367i \(0.660620\pi\)
\(128\) 0 0
\(129\) −0.966002 2.77009i −0.0850517 0.243893i
\(130\) 0 0
\(131\) −9.73088 + 16.8544i −0.850191 + 1.47257i 0.0308446 + 0.999524i \(0.490180\pi\)
−0.881036 + 0.473050i \(0.843153\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −7.03785 + 3.69104i −0.605722 + 0.317674i
\(136\) 0 0
\(137\) −6.13833 10.6319i −0.524433 0.908344i −0.999595 0.0284461i \(-0.990944\pi\)
0.475163 0.879898i \(-0.342389\pi\)
\(138\) 0 0
\(139\) −6.44692 + 11.1664i −0.546821 + 0.947121i 0.451669 + 0.892185i \(0.350829\pi\)
−0.998490 + 0.0549357i \(0.982505\pi\)
\(140\) 0 0
\(141\) 4.82725 + 13.8425i 0.406528 + 1.16575i
\(142\) 0 0
\(143\) −3.02872 −0.253274
\(144\) 0 0
\(145\) 15.2840 1.26926
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 9.03267 15.6451i 0.739986 1.28169i −0.212516 0.977158i \(-0.568166\pi\)
0.952501 0.304535i \(-0.0985010\pi\)
\(150\) 0 0
\(151\) −4.29891 7.44593i −0.349840 0.605941i 0.636381 0.771375i \(-0.280431\pi\)
−0.986221 + 0.165434i \(0.947097\pi\)
\(152\) 0 0
\(153\) −1.68007 0.663493i −0.135826 0.0536402i
\(154\) 0 0
\(155\) −2.52995 4.38200i −0.203210 0.351971i
\(156\) 0 0
\(157\) −1.59683 + 2.76579i −0.127441 + 0.220734i −0.922684 0.385556i \(-0.874010\pi\)
0.795244 + 0.606290i \(0.207343\pi\)
\(158\) 0 0
\(159\) −13.5990 2.58801i −1.07847 0.205242i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −4.09618 −0.320838 −0.160419 0.987049i \(-0.551284\pi\)
−0.160419 + 0.987049i \(0.551284\pi\)
\(164\) 0 0
\(165\) 2.17458 + 0.413840i 0.169291 + 0.0322174i
\(166\) 0 0
\(167\) 8.24859 14.2870i 0.638295 1.10556i −0.347512 0.937676i \(-0.612973\pi\)
0.985807 0.167883i \(-0.0536932\pi\)
\(168\) 0 0
\(169\) −0.0682984 0.118296i −0.00525372 0.00909971i
\(170\) 0 0
\(171\) −4.72611 1.86643i −0.361414 0.142730i
\(172\) 0 0
\(173\) 6.41063 + 11.1035i 0.487391 + 0.844186i 0.999895 0.0144987i \(-0.00461525\pi\)
−0.512504 + 0.858685i \(0.671282\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0.147538 0.171075i 0.0110896 0.0128588i
\(178\) 0 0
\(179\) 23.7499 1.77515 0.887576 0.460661i \(-0.152388\pi\)
0.887576 + 0.460661i \(0.152388\pi\)
\(180\) 0 0
\(181\) −16.0244 −1.19108 −0.595542 0.803324i \(-0.703063\pi\)
−0.595542 + 0.803324i \(0.703063\pi\)
\(182\) 0 0
\(183\) −2.71867 7.79599i −0.200970 0.576296i
\(184\) 0 0
\(185\) −6.72702 + 11.6515i −0.494580 + 0.856638i
\(186\) 0 0
\(187\) 0.251574 + 0.435739i 0.0183969 + 0.0318644i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 5.40475 + 9.36130i 0.391074 + 0.677360i 0.992591 0.121500i \(-0.0387703\pi\)
−0.601517 + 0.798860i \(0.705437\pi\)
\(192\) 0 0
\(193\) −0.375130 + 0.649745i −0.0270025 + 0.0467696i −0.879211 0.476433i \(-0.841930\pi\)
0.852208 + 0.523203i \(0.175263\pi\)
\(194\) 0 0
\(195\) 3.16146 + 9.06574i 0.226397 + 0.649211i
\(196\) 0 0
\(197\) 10.3186 0.735169 0.367584 0.929990i \(-0.380185\pi\)
0.367584 + 0.929990i \(0.380185\pi\)
\(198\) 0 0
\(199\) 5.70859 0.404671 0.202336 0.979316i \(-0.435147\pi\)
0.202336 + 0.979316i \(0.435147\pi\)
\(200\) 0 0
\(201\) −2.53762 + 2.94245i −0.178990 + 0.207544i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −5.37919 9.31704i −0.375699 0.650730i
\(206\) 0 0
\(207\) 14.4352 11.4617i 1.00331 0.796642i
\(208\) 0 0
\(209\) 0.707687 + 1.22575i 0.0489517 + 0.0847869i
\(210\) 0 0
\(211\) 2.73050 4.72937i 0.187976 0.325583i −0.756600 0.653878i \(-0.773141\pi\)
0.944575 + 0.328295i \(0.106474\pi\)
\(212\) 0 0
\(213\) 15.9794 + 3.04101i 1.09489 + 0.208367i
\(214\) 0 0
\(215\) 2.59046 0.176668
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −7.67227 1.46010i −0.518444 0.0986641i
\(220\) 0 0
\(221\) −1.09116 + 1.88995i −0.0733996 + 0.127132i
\(222\) 0 0
\(223\) −9.00530 15.5976i −0.603040 1.04450i −0.992358 0.123392i \(-0.960623\pi\)
0.389318 0.921103i \(-0.372711\pi\)
\(224\) 0 0
\(225\) 1.17304 + 7.89611i 0.0782024 + 0.526407i
\(226\) 0 0
\(227\) 9.08699 + 15.7391i 0.603125 + 1.04464i 0.992345 + 0.123498i \(0.0394113\pi\)
−0.389220 + 0.921145i \(0.627255\pi\)
\(228\) 0 0
\(229\) 7.71391 13.3609i 0.509750 0.882912i −0.490186 0.871618i \(-0.663071\pi\)
0.999936 0.0112949i \(-0.00359534\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 6.41783 0.420446 0.210223 0.977653i \(-0.432581\pi\)
0.210223 + 0.977653i \(0.432581\pi\)
\(234\) 0 0
\(235\) −12.9449 −0.844431
\(236\) 0 0
\(237\) 8.97832 + 25.7461i 0.583205 + 1.67239i
\(238\) 0 0
\(239\) −2.33317 + 4.04118i −0.150920 + 0.261402i −0.931566 0.363572i \(-0.881557\pi\)
0.780646 + 0.624974i \(0.214890\pi\)
\(240\) 0 0
\(241\) 9.42858 + 16.3308i 0.607348 + 1.05196i 0.991676 + 0.128761i \(0.0411000\pi\)
−0.384327 + 0.923197i \(0.625567\pi\)
\(242\) 0 0
\(243\) −9.19015 12.5913i −0.589548 0.807733i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −3.06948 + 5.31650i −0.195307 + 0.338281i
\(248\) 0 0
\(249\) 3.60686 + 10.3430i 0.228576 + 0.655459i
\(250\) 0 0
\(251\) 15.7016 0.991074 0.495537 0.868587i \(-0.334971\pi\)
0.495537 + 0.868587i \(0.334971\pi\)
\(252\) 0 0
\(253\) −5.13419 −0.322784
\(254\) 0 0
\(255\) 1.04168 1.20786i 0.0652326 0.0756393i
\(256\) 0 0
\(257\) −4.60892 + 7.98289i −0.287497 + 0.497959i −0.973212 0.229911i \(-0.926156\pi\)
0.685715 + 0.727870i \(0.259490\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 4.40548 + 29.6548i 0.272692 + 1.83558i
\(262\) 0 0
\(263\) −0.241311 0.417962i −0.0148799 0.0257727i 0.858490 0.512831i \(-0.171403\pi\)
−0.873369 + 0.487058i \(0.838070\pi\)
\(264\) 0 0
\(265\) 6.11174 10.5859i 0.375442 0.650284i
\(266\) 0 0
\(267\) −1.80762 0.344004i −0.110624 0.0210527i
\(268\) 0 0
\(269\) 7.88576 0.480803 0.240402 0.970674i \(-0.422721\pi\)
0.240402 + 0.970674i \(0.422721\pi\)
\(270\) 0 0
\(271\) −25.5893 −1.55444 −0.777220 0.629229i \(-0.783371\pi\)
−0.777220 + 0.629229i \(0.783371\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 1.11178 1.92566i 0.0670429 0.116122i
\(276\) 0 0
\(277\) −4.18466 7.24804i −0.251432 0.435492i 0.712489 0.701684i \(-0.247568\pi\)
−0.963920 + 0.266191i \(0.914235\pi\)
\(278\) 0 0
\(279\) 7.77296 6.17182i 0.465355 0.369497i
\(280\) 0 0
\(281\) −0.551848 0.955828i −0.0329205 0.0570199i 0.849096 0.528239i \(-0.177147\pi\)
−0.882016 + 0.471219i \(0.843814\pi\)
\(282\) 0 0
\(283\) −1.45369 + 2.51786i −0.0864128 + 0.149671i −0.905992 0.423294i \(-0.860874\pi\)
0.819580 + 0.572965i \(0.194207\pi\)
\(284\) 0 0
\(285\) 2.93029 3.39777i 0.173575 0.201266i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −16.6375 −0.978674
\(290\) 0 0
\(291\) 8.85564 + 25.3942i 0.519127 + 1.48864i
\(292\) 0 0
\(293\) −12.4381 + 21.5434i −0.726642 + 1.25858i 0.231653 + 0.972798i \(0.425587\pi\)
−0.958295 + 0.285782i \(0.907747\pi\)
\(294\) 0 0
\(295\) 0.0997383 + 0.172752i 0.00580699 + 0.0100580i
\(296\) 0 0
\(297\) −0.176150 + 4.33852i −0.0102213 + 0.251746i
\(298\) 0 0
\(299\) −11.1344 19.2853i −0.643918 1.11530i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 11.1300 + 31.9162i 0.639403 + 1.83354i
\(304\) 0 0
\(305\) 7.29045 0.417450
\(306\) 0 0
\(307\) −23.7968 −1.35816 −0.679078 0.734066i \(-0.737620\pi\)
−0.679078 + 0.734066i \(0.737620\pi\)
\(308\) 0 0
\(309\) −2.06276 + 2.39184i −0.117346 + 0.136067i
\(310\) 0 0
\(311\) −9.35677 + 16.2064i −0.530574 + 0.918981i 0.468790 + 0.883310i \(0.344690\pi\)
−0.999364 + 0.0356711i \(0.988643\pi\)
\(312\) 0 0
\(313\) 9.65797 + 16.7281i 0.545901 + 0.945527i 0.998550 + 0.0538387i \(0.0171457\pi\)
−0.452649 + 0.891689i \(0.649521\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0.897542 + 1.55459i 0.0504110 + 0.0873144i 0.890130 0.455707i \(-0.150614\pi\)
−0.839719 + 0.543021i \(0.817280\pi\)
\(318\) 0 0
\(319\) 4.17543 7.23205i 0.233779 0.404917i
\(320\) 0 0
\(321\) −17.9366 3.41348i −1.00112 0.190522i
\(322\) 0 0
\(323\) 1.01984 0.0567455
\(324\) 0 0
\(325\) 9.64436 0.534973
\(326\) 0 0
\(327\) 21.4541 + 4.08289i 1.18642 + 0.225785i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 7.06833 + 12.2427i 0.388511 + 0.672920i 0.992249 0.124262i \(-0.0396563\pi\)
−0.603739 + 0.797182i \(0.706323\pi\)
\(332\) 0 0
\(333\) −24.5460 9.69367i −1.34511 0.531210i
\(334\) 0 0
\(335\) −1.71547 2.97129i −0.0937264 0.162339i
\(336\) 0 0
\(337\) −2.94072 + 5.09348i −0.160191 + 0.277459i −0.934937 0.354813i \(-0.884544\pi\)
0.774746 + 0.632273i \(0.217878\pi\)
\(338\) 0 0
\(339\) −17.5662 + 20.3686i −0.954066 + 1.10627i
\(340\) 0 0
\(341\) −2.76463 −0.149713
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 5.35921 + 15.3680i 0.288530 + 0.827384i
\(346\) 0 0
\(347\) 3.17593 5.50087i 0.170493 0.295302i −0.768099 0.640331i \(-0.778797\pi\)
0.938592 + 0.345028i \(0.112131\pi\)
\(348\) 0 0
\(349\) 10.4321 + 18.0689i 0.558416 + 0.967205i 0.997629 + 0.0688222i \(0.0219241\pi\)
−0.439213 + 0.898383i \(0.644743\pi\)
\(350\) 0 0
\(351\) −16.6786 + 8.74717i −0.890237 + 0.466889i
\(352\) 0 0
\(353\) 1.07115 + 1.85528i 0.0570114 + 0.0987466i 0.893123 0.449813i \(-0.148510\pi\)
−0.836111 + 0.548560i \(0.815176\pi\)
\(354\) 0 0
\(355\) −7.18155 + 12.4388i −0.381157 + 0.660183i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 21.2396 1.12098 0.560492 0.828160i \(-0.310612\pi\)
0.560492 + 0.828160i \(0.310612\pi\)
\(360\) 0 0
\(361\) −16.1311 −0.849008
\(362\) 0 0
\(363\) −11.6531 + 13.5122i −0.611632 + 0.709207i
\(364\) 0 0
\(365\) 3.44811 5.97230i 0.180482 0.312605i
\(366\) 0 0
\(367\) 16.2053 + 28.0685i 0.845912 + 1.46516i 0.884827 + 0.465919i \(0.154276\pi\)
−0.0389156 + 0.999243i \(0.512390\pi\)
\(368\) 0 0
\(369\) 16.5269 13.1226i 0.860357 0.683133i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −16.8101 + 29.1159i −0.870393 + 1.50756i −0.00880173 + 0.999961i \(0.502802\pi\)
−0.861591 + 0.507603i \(0.830532\pi\)
\(374\) 0 0
\(375\) −19.9360 3.79399i −1.02949 0.195921i
\(376\) 0 0
\(377\) 36.2206 1.86545
\(378\) 0 0
\(379\) 28.2829 1.45279 0.726396 0.687276i \(-0.241194\pi\)
0.726396 + 0.687276i \(0.241194\pi\)
\(380\) 0 0
\(381\) 18.5407 + 3.52846i 0.949871 + 0.180768i
\(382\) 0 0
\(383\) 5.09473 8.82434i 0.260329 0.450903i −0.706001 0.708211i \(-0.749502\pi\)
0.966329 + 0.257309i \(0.0828357\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0.746678 + 5.02614i 0.0379558 + 0.255493i
\(388\) 0 0
\(389\) −5.22525 9.05040i −0.264931 0.458873i 0.702615 0.711570i \(-0.252016\pi\)
−0.967545 + 0.252697i \(0.918682\pi\)
\(390\) 0 0
\(391\) −1.84971 + 3.20379i −0.0935437 + 0.162022i
\(392\) 0 0
\(393\) 22.0149 25.5270i 1.11050 1.28767i
\(394\) 0 0
\(395\) −24.0765 −1.21142
\(396\) 0 0
\(397\) 14.5007 0.727767 0.363884 0.931444i \(-0.381451\pi\)
0.363884 + 0.931444i \(0.381451\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 12.7071 22.0094i 0.634563 1.09909i −0.352045 0.935983i \(-0.614514\pi\)
0.986608 0.163112i \(-0.0521531\pi\)
\(402\) 0 0
\(403\) −5.99558 10.3846i −0.298661 0.517296i
\(404\) 0 0
\(405\) 13.1702 4.00141i 0.654432 0.198831i
\(406\) 0 0
\(407\) 3.67551 + 6.36617i 0.182188 + 0.315559i
\(408\) 0 0
\(409\) −6.19535 + 10.7307i −0.306340 + 0.530597i −0.977559 0.210663i \(-0.932438\pi\)
0.671219 + 0.741259i \(0.265771\pi\)
\(410\) 0 0
\(411\) 7.00171 + 20.0780i 0.345369 + 0.990373i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −9.67226 −0.474792
\(416\) 0 0
\(417\) 14.5853 16.9122i 0.714247 0.828193i
\(418\) 0 0
\(419\) −15.3596 + 26.6036i −0.750365 + 1.29967i 0.197281 + 0.980347i \(0.436789\pi\)
−0.947646 + 0.319323i \(0.896545\pi\)
\(420\) 0 0
\(421\) −2.88912 5.00410i −0.140807 0.243885i 0.786994 0.616961i \(-0.211636\pi\)
−0.927801 + 0.373076i \(0.878303\pi\)
\(422\) 0 0
\(423\) −3.73126 25.1164i −0.181420 1.22120i
\(424\) 0 0
\(425\) −0.801089 1.38753i −0.0388585 0.0673049i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 5.15340 + 0.980734i 0.248809 + 0.0473503i
\(430\) 0 0
\(431\) 0.420556 0.0202575 0.0101287 0.999949i \(-0.496776\pi\)
0.0101287 + 0.999949i \(0.496776\pi\)
\(432\) 0 0
\(433\) 30.8208 1.48115 0.740576 0.671972i \(-0.234553\pi\)
0.740576 + 0.671972i \(0.234553\pi\)
\(434\) 0 0
\(435\) −26.0059 4.94913i −1.24689 0.237293i
\(436\) 0 0
\(437\) −5.20330 + 9.01237i −0.248907 + 0.431120i
\(438\) 0 0
\(439\) −1.50590 2.60830i −0.0718729 0.124488i 0.827849 0.560951i \(-0.189564\pi\)
−0.899722 + 0.436463i \(0.856231\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 9.22141 + 15.9719i 0.438122 + 0.758850i 0.997545 0.0700326i \(-0.0223103\pi\)
−0.559422 + 0.828883i \(0.688977\pi\)
\(444\) 0 0
\(445\) 0.812388 1.40710i 0.0385109 0.0667028i
\(446\) 0 0
\(447\) −20.4353 + 23.6954i −0.966555 + 1.12075i
\(448\) 0 0
\(449\) −6.80998 −0.321383 −0.160691 0.987005i \(-0.551372\pi\)
−0.160691 + 0.987005i \(0.551372\pi\)
\(450\) 0 0
\(451\) −5.87817 −0.276792
\(452\) 0 0
\(453\) 4.90357 + 14.0614i 0.230390 + 0.660661i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −6.18283 10.7090i −0.289220 0.500944i 0.684403 0.729103i \(-0.260063\pi\)
−0.973624 + 0.228159i \(0.926729\pi\)
\(458\) 0 0
\(459\) 2.64382 + 1.67297i 0.123403 + 0.0780875i
\(460\) 0 0
\(461\) −16.3651 28.3453i −0.762201 1.32017i −0.941714 0.336415i \(-0.890786\pi\)
0.179513 0.983756i \(-0.442548\pi\)
\(462\) 0 0
\(463\) 9.61023 16.6454i 0.446625 0.773577i −0.551539 0.834149i \(-0.685959\pi\)
0.998164 + 0.0605719i \(0.0192924\pi\)
\(464\) 0 0
\(465\) 2.88580 + 8.27526i 0.133826 + 0.383756i
\(466\) 0 0
\(467\) −3.01711 −0.139615 −0.0698075 0.997560i \(-0.522239\pi\)
−0.0698075 + 0.997560i \(0.522239\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 3.61262 4.18896i 0.166461 0.193017i
\(472\) 0 0
\(473\) 0.707687 1.22575i 0.0325395 0.0563600i
\(474\) 0 0
\(475\) −2.25349 3.90316i −0.103397 0.179089i
\(476\) 0 0
\(477\) 22.3009 + 8.80705i 1.02109 + 0.403247i
\(478\) 0 0
\(479\) 12.9486 + 22.4276i 0.591635 + 1.02474i 0.994012 + 0.109269i \(0.0348509\pi\)
−0.402377 + 0.915474i \(0.631816\pi\)
\(480\) 0 0
\(481\) −15.9420 + 27.6123i −0.726891 + 1.25901i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −23.7475 −1.07832
\(486\) 0 0
\(487\) 41.7683 1.89270 0.946350 0.323143i \(-0.104739\pi\)
0.946350 + 0.323143i \(0.104739\pi\)
\(488\) 0 0
\(489\) 6.96970 + 1.32639i 0.315181 + 0.0599815i
\(490\) 0 0
\(491\) −13.9879 + 24.2278i −0.631265 + 1.09338i 0.356028 + 0.934475i \(0.384131\pi\)
−0.987293 + 0.158908i \(0.949203\pi\)
\(492\) 0 0
\(493\) −3.00858 5.21102i −0.135500 0.234693i
\(494\) 0 0
\(495\) −3.56606 1.40831i −0.160283 0.0632987i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 12.4748 21.6070i 0.558450 0.967264i −0.439176 0.898401i \(-0.644730\pi\)
0.997626 0.0688626i \(-0.0219370\pi\)
\(500\) 0 0
\(501\) −18.6614 + 21.6385i −0.833728 + 0.966736i
\(502\) 0 0
\(503\) 34.1966 1.52475 0.762376 0.647135i \(-0.224033\pi\)
0.762376 + 0.647135i \(0.224033\pi\)
\(504\) 0 0
\(505\) −29.8465 −1.32815
\(506\) 0 0
\(507\) 0.0779049 + 0.223398i 0.00345988 + 0.00992147i
\(508\) 0 0
\(509\) −6.84342 + 11.8532i −0.303329 + 0.525382i −0.976888 0.213752i \(-0.931432\pi\)
0.673559 + 0.739134i \(0.264765\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 7.43716 + 4.70612i 0.328359 + 0.207780i
\(514\) 0 0
\(515\) −1.39447 2.41528i −0.0614475 0.106430i
\(516\) 0 0
\(517\) −3.53641 + 6.12525i −0.155531 + 0.269388i
\(518\) 0 0
\(519\) −7.31231 20.9686i −0.320975 0.920422i
\(520\) 0 0
\(521\) 26.7496 1.17192 0.585960 0.810340i \(-0.300718\pi\)
0.585960 + 0.810340i \(0.300718\pi\)
\(522\) 0 0
\(523\) 21.2262 0.928158 0.464079 0.885794i \(-0.346385\pi\)
0.464079 + 0.885794i \(0.346385\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −0.996020 + 1.72516i −0.0433873 + 0.0751490i
\(528\) 0 0
\(529\) −7.37466 12.7733i −0.320637 0.555360i
\(530\) 0 0
\(531\) −0.306434 + 0.243312i −0.0132981 + 0.0105588i
\(532\) 0 0
\(533\) −12.7478 22.0799i −0.552170 0.956386i
\(534\) 0 0
\(535\) 8.06116 13.9623i 0.348514 0.603644i
\(536\) 0 0
\(537\) −40.4108 7.69050i −1.74385 0.331870i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −20.2537 −0.870776 −0.435388 0.900243i \(-0.643389\pi\)
−0.435388 + 0.900243i \(0.643389\pi\)
\(542\) 0 0
\(543\) 27.2657 + 5.18889i 1.17008 + 0.222676i
\(544\) 0 0
\(545\) −9.64201 + 16.7005i −0.413019 + 0.715369i
\(546\) 0 0
\(547\) −21.9668 38.0476i −0.939233 1.62680i −0.766906 0.641760i \(-0.778205\pi\)
−0.172327 0.985040i \(-0.555129\pi\)
\(548\) 0 0
\(549\) 2.10141 + 14.1453i 0.0896860 + 0.603707i
\(550\) 0 0
\(551\) −8.46326 14.6588i −0.360547 0.624486i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 15.2190 17.6470i 0.646011 0.749072i
\(556\) 0 0
\(557\) 8.90965 0.377514 0.188757 0.982024i \(-0.439554\pi\)
0.188757 + 0.982024i \(0.439554\pi\)
\(558\) 0 0
\(559\) 6.13897 0.259651
\(560\) 0 0
\(561\) −0.286959 0.822878i −0.0121154 0.0347419i
\(562\) 0 0
\(563\) 14.2096 24.6118i 0.598865 1.03726i −0.394124 0.919057i \(-0.628952\pi\)
0.992989 0.118207i \(-0.0377146\pi\)
\(564\) 0 0
\(565\) −11.8751 20.5683i −0.499589 0.865313i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 4.28948 + 7.42959i 0.179824 + 0.311465i 0.941820 0.336117i \(-0.109114\pi\)
−0.761996 + 0.647582i \(0.775780\pi\)
\(570\) 0 0
\(571\) −9.68861 + 16.7812i −0.405456 + 0.702270i −0.994374 0.105922i \(-0.966221\pi\)
0.588919 + 0.808192i \(0.299554\pi\)
\(572\) 0 0
\(573\) −6.16495 17.6785i −0.257545 0.738530i
\(574\) 0 0
\(575\) 16.3488 0.681793
\(576\) 0 0
\(577\) −1.16888 −0.0486612 −0.0243306 0.999704i \(-0.507745\pi\)
−0.0243306 + 0.999704i \(0.507745\pi\)
\(578\) 0 0
\(579\) 0.848684 0.984077i 0.0352701 0.0408969i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −3.33934 5.78390i −0.138301 0.239545i
\(584\) 0 0
\(585\) −2.44367 16.4492i −0.101033 0.680091i
\(586\) 0 0
\(587\) −15.5863 26.9963i −0.643316 1.11426i −0.984688 0.174327i \(-0.944225\pi\)
0.341372 0.939928i \(-0.389108\pi\)
\(588\) 0 0
\(589\) −2.80184 + 4.85293i −0.115448 + 0.199962i
\(590\) 0 0
\(591\) −17.5572 3.34128i −0.722207 0.137442i
\(592\) 0 0
\(593\) 30.3773 1.24745 0.623724 0.781645i \(-0.285619\pi\)
0.623724 + 0.781645i \(0.285619\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −9.71324 1.84851i −0.397537 0.0756545i
\(598\) 0 0
\(599\) 3.65379 6.32855i 0.149290 0.258577i −0.781675 0.623685i \(-0.785635\pi\)
0.930965 + 0.365108i \(0.118968\pi\)
\(600\) 0 0
\(601\) 4.61461 + 7.99274i 0.188234 + 0.326031i 0.944661 0.328047i \(-0.106390\pi\)
−0.756428 + 0.654077i \(0.773057\pi\)
\(602\) 0 0
\(603\) 5.27059 4.18491i 0.214635 0.170423i
\(604\) 0 0
\(605\) −7.87774 13.6446i −0.320276 0.554734i
\(606\) 0 0
\(607\) 8.53370 14.7808i 0.346372 0.599934i −0.639230 0.769016i \(-0.720747\pi\)
0.985602 + 0.169082i \(0.0540801\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −30.6773 −1.24107
\(612\) 0 0
\(613\) 0.786117 0.0317510 0.0158755 0.999874i \(-0.494946\pi\)
0.0158755 + 0.999874i \(0.494946\pi\)
\(614\) 0 0
\(615\) 6.13580 + 17.5949i 0.247419 + 0.709495i
\(616\) 0 0
\(617\) 23.7960 41.2159i 0.957991 1.65929i 0.230621 0.973044i \(-0.425924\pi\)
0.727370 0.686246i \(-0.240743\pi\)
\(618\) 0 0
\(619\) −9.48717 16.4323i −0.381321 0.660468i 0.609930 0.792455i \(-0.291198\pi\)
−0.991251 + 0.131987i \(0.957864\pi\)
\(620\) 0 0
\(621\) −28.2730 + 14.8279i −1.13456 + 0.595024i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 2.30744 3.99660i 0.0922976 0.159864i
\(626\) 0 0
\(627\) −0.807226 2.31479i −0.0322375 0.0924437i
\(628\) 0 0
\(629\) 5.29674 0.211195
\(630\) 0 0
\(631\) 0.300343 0.0119565 0.00597823 0.999982i \(-0.498097\pi\)
0.00597823 + 0.999982i \(0.498097\pi\)
\(632\) 0 0
\(633\) −6.17741 + 7.16291i −0.245530 + 0.284700i
\(634\) 0 0
\(635\) −8.33267 + 14.4326i −0.330672 + 0.572741i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −26.2045 10.3486i −1.03663 0.409386i
\(640\) 0 0
\(641\) −14.0548 24.3436i −0.555131 0.961514i −0.997893 0.0648756i \(-0.979335\pi\)
0.442763 0.896639i \(-0.353998\pi\)
\(642\) 0 0
\(643\) −1.55289 + 2.68968i −0.0612399 + 0.106071i −0.895020 0.446026i \(-0.852839\pi\)
0.833780 + 0.552097i \(0.186172\pi\)
\(644\) 0 0
\(645\) −4.40770 0.838820i −0.173553 0.0330285i
\(646\) 0 0
\(647\) −46.7113 −1.83641 −0.918205 0.396105i \(-0.870362\pi\)
−0.918205 + 0.396105i \(0.870362\pi\)
\(648\) 0 0
\(649\) 0.108990 0.00427823
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 0.998764 1.72991i 0.0390847 0.0676966i −0.845821 0.533466i \(-0.820889\pi\)
0.884906 + 0.465770i \(0.154222\pi\)
\(654\) 0 0
\(655\) 14.8825 + 25.7772i 0.581506 + 1.00720i
\(656\) 0 0
\(657\) 12.5817 + 4.96874i 0.490858 + 0.193849i
\(658\) 0 0
\(659\) 8.37284 + 14.5022i 0.326160 + 0.564925i 0.981746 0.190195i \(-0.0609120\pi\)
−0.655587 + 0.755120i \(0.727579\pi\)
\(660\) 0 0
\(661\) −6.28870 + 10.8924i −0.244602 + 0.423664i −0.962020 0.272980i \(-0.911991\pi\)
0.717417 + 0.696644i \(0.245324\pi\)
\(662\) 0 0
\(663\) 2.46862 2.86244i 0.0958731 0.111168i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 61.4000 2.37742
\(668\) 0 0
\(669\) 10.2719 + 29.4556i 0.397136 + 1.13882i
\(670\) 0 0
\(671\) 1.99168 3.44969i 0.0768878 0.133174i
\(672\) 0 0
\(673\) 23.8175 + 41.2531i 0.918096 + 1.59019i 0.802304 + 0.596916i \(0.203607\pi\)
0.115792 + 0.993273i \(0.463059\pi\)
\(674\) 0 0
\(675\) 0.560917 13.8152i 0.0215897 0.531746i
\(676\) 0 0
\(677\) 4.54664 + 7.87500i 0.174741 + 0.302661i 0.940072 0.340977i \(-0.110758\pi\)
−0.765330 + 0.643638i \(0.777424\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −10.3651 29.7228i −0.397192 1.13898i
\(682\) 0 0
\(683\) −4.83348 −0.184948 −0.0924741 0.995715i \(-0.529478\pi\)
−0.0924741 + 0.995715i \(0.529478\pi\)
\(684\) 0 0
\(685\) −18.7760 −0.717393
\(686\) 0 0
\(687\) −17.4517 + 20.2359i −0.665825 + 0.772047i
\(688\) 0 0
\(689\) 14.4839 25.0868i 0.551791 0.955730i
\(690\) 0 0
\(691\) 5.39228 + 9.33969i 0.205132 + 0.355299i 0.950175 0.311718i \(-0.100904\pi\)
−0.745043 + 0.667017i \(0.767571\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 9.85995 + 17.0779i 0.374009 + 0.647803i
\(696\) 0 0
\(697\) −2.11774 + 3.66804i −0.0802152 + 0.138937i
\(698\) 0 0
\(699\) −10.9200 2.07817i −0.413033 0.0786036i
\(700\) 0 0
\(701\) −31.8393 −1.20255 −0.601276 0.799041i \(-0.705341\pi\)
−0.601276 + 0.799041i \(0.705341\pi\)
\(702\) 0 0
\(703\) 14.8999 0.561962
\(704\) 0 0
\(705\) 22.0259 + 4.19171i 0.829543 + 0.157869i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 13.6032 + 23.5614i 0.510879 + 0.884868i 0.999921 + 0.0126076i \(0.00401324\pi\)
−0.489042 + 0.872260i \(0.662653\pi\)
\(710\) 0 0
\(711\) −6.93985 46.7145i −0.260265 1.75193i
\(712\) 0 0
\(713\) −10.1635 17.6037i −0.380627 0.659265i
\(714\) 0 0
\(715\) −2.31607 + 4.01154i −0.0866160 + 0.150023i
\(716\) 0 0
\(717\) 5.27850 6.12060i 0.197129 0.228578i
\(718\) 0 0
\(719\) 28.9098 1.07815 0.539076 0.842257i \(-0.318773\pi\)
0.539076 + 0.842257i \(0.318773\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −10.7548 30.8401i −0.399974 1.14696i
\(724\) 0 0
\(725\) −13.2958 + 23.0291i −0.493795 + 0.855278i
\(726\) 0 0
\(727\) 4.29978 + 7.44744i 0.159470 + 0.276210i 0.934678 0.355496i \(-0.115688\pi\)
−0.775208 + 0.631706i \(0.782355\pi\)
\(728\) 0 0
\(729\) 11.5599 + 24.4002i 0.428146 + 0.903710i
\(730\) 0 0
\(731\) −0.509920 0.883208i −0.0188601 0.0326666i
\(732\) 0 0
\(733\) 22.7753 39.4480i 0.841225 1.45705i −0.0476340 0.998865i \(-0.515168\pi\)
0.888859 0.458180i \(-0.151499\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −1.87460 −0.0690519
\(738\) 0 0
\(739\) −12.6898 −0.466803 −0.233401 0.972380i \(-0.574986\pi\)
−0.233401 + 0.972380i \(0.574986\pi\)
\(740\) 0 0
\(741\) 6.94431 8.05216i 0.255106 0.295804i
\(742\) 0 0
\(743\) −5.04492 + 8.73806i −0.185080 + 0.320568i −0.943604 0.331078i \(-0.892588\pi\)
0.758523 + 0.651646i \(0.225921\pi\)
\(744\) 0 0
\(745\) −13.8146 23.9276i −0.506128 0.876640i
\(746\) 0 0
\(747\) −2.78795 18.7666i −0.102006 0.686635i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −2.50357 + 4.33631i −0.0913565 + 0.158234i −0.908082 0.418792i \(-0.862454\pi\)
0.816726 + 0.577026i \(0.195787\pi\)
\(752\) 0 0
\(753\) −26.7164 5.08435i −0.973601 0.185284i
\(754\) 0 0
\(755\) −13.1495 −0.478561
\(756\) 0 0
\(757\) 6.83620 0.248466 0.124233 0.992253i \(-0.460353\pi\)
0.124233 + 0.992253i \(0.460353\pi\)
\(758\) 0 0
\(759\) 8.73589 + 1.66251i 0.317093 + 0.0603453i
\(760\) 0 0
\(761\) −13.4377 + 23.2747i −0.487115 + 0.843708i −0.999890 0.0148147i \(-0.995284\pi\)
0.512775 + 0.858523i \(0.328618\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −2.16355 + 1.71789i −0.0782234 + 0.0621103i
\(766\) 0 0
\(767\) 0.236364 + 0.409394i 0.00853460 + 0.0147824i
\(768\) 0 0
\(769\) −2.00631 + 3.47503i −0.0723493 + 0.125313i −0.899931 0.436033i \(-0.856383\pi\)
0.827581 + 0.561346i \(0.189716\pi\)
\(770\) 0 0
\(771\) 10.4271 12.0906i 0.375523 0.435431i
\(772\) 0 0
\(773\) 27.3723 0.984512 0.492256 0.870451i \(-0.336172\pi\)
0.492256 + 0.870451i \(0.336172\pi\)
\(774\) 0 0
\(775\) 8.80343 0.316228
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −5.95729 + 10.3183i −0.213442 + 0.369693i
\(780\) 0 0
\(781\) 3.92385 + 6.79631i 0.140407 + 0.243191i
\(782\) 0 0
\(783\) 2.10659 51.8845i 0.0752834 1.85420i
\(784\) 0 0
\(785\) 2.44220 + 4.23001i 0.0871658 + 0.150976i
\(786\) 0 0
\(787\) 6.43636 11.1481i 0.229432 0.397387i −0.728208 0.685356i \(-0.759647\pi\)
0.957640 + 0.287969i \(0.0929799\pi\)
\(788\) 0 0
\(789\) 0.275252 + 0.789307i 0.00979923 + 0.0281001i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 17.2772 0.613531
\(794\) 0 0
\(795\) −13.8270 + 16.0329i −0.490394 + 0.568629i
\(796\) 0 0
\(797\) −8.71139 + 15.0886i −0.308573 + 0.534465i −0.978050 0.208368i \(-0.933185\pi\)
0.669477 + 0.742833i \(0.266518\pi\)
\(798\) 0 0
\(799\) 2.54815 + 4.41352i 0.0901469 + 0.156139i
\(800\) 0 0
\(801\) 2.96429 + 1.17066i 0.104738 + 0.0413631i
\(802\) 0 0
\(803\) −1.88398 3.26315i −0.0664842 0.115154i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −13.4177 2.55350i −0.472326 0.0898875i
\(808\) 0 0
\(809\) 6.08195 0.213830 0.106915 0.994268i \(-0.465903\pi\)
0.106915 + 0.994268i \(0.465903\pi\)
\(810\) 0 0
\(811\) 14.6219 0.513443 0.256722 0.966485i \(-0.417358\pi\)
0.256722 + 0.966485i \(0.417358\pi\)
\(812\) 0 0
\(813\) 43.5405 + 8.28612i 1.52703 + 0.290607i
\(814\) 0 0
\(815\) −3.13236 + 5.42540i −0.109722 + 0.190044i
\(816\) 0 0
\(817\) −1.43443 2.48450i −0.0501842 0.0869216i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 4.87162 + 8.43789i 0.170021 + 0.294484i 0.938427 0.345478i \(-0.112283\pi\)
−0.768406 + 0.639962i \(0.778950\pi\)
\(822\) 0 0
\(823\) −5.38983 + 9.33546i −0.187878 + 0.325414i −0.944542 0.328389i \(-0.893494\pi\)
0.756665 + 0.653803i \(0.226827\pi\)
\(824\) 0 0
\(825\) −2.51526 + 2.91653i −0.0875702 + 0.101541i
\(826\) 0 0
\(827\) 13.0521 0.453867 0.226933 0.973910i \(-0.427130\pi\)
0.226933 + 0.973910i \(0.427130\pi\)
\(828\) 0 0
\(829\) −49.1095 −1.70564 −0.852822 0.522201i \(-0.825111\pi\)
−0.852822 + 0.522201i \(0.825111\pi\)
\(830\) 0 0
\(831\) 4.77325 + 13.6877i 0.165582 + 0.474820i
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −12.6154 21.8506i −0.436575 0.756170i
\(836\) 0 0
\(837\) −15.2243 + 7.98446i −0.526229 + 0.275983i
\(838\) 0 0
\(839\) −12.0830 20.9284i −0.417151 0.722527i 0.578500 0.815682i \(-0.303638\pi\)
−0.995652 + 0.0931549i \(0.970305\pi\)
\(840\) 0 0
\(841\) −35.4341 + 61.3737i −1.22187 + 2.11633i
\(842\) 0 0
\(843\) 0.629468 + 1.80505i 0.0216800 + 0.0621692i
\(844\) 0 0
\(845\) −0.208912 −0.00718678
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 3.28878 3.81345i 0.112871 0.130877i
\(850\) 0 0
\(851\) −27.0243 + 46.8075i −0.926382 + 1.60454i
\(852\) 0 0
\(853\) 2.72681 + 4.72297i 0.0933641 + 0.161711i 0.908925 0.416960i \(-0.136905\pi\)
−0.815561 + 0.578672i \(0.803571\pi\)
\(854\) 0 0
\(855\) −6.08616 + 4.83248i −0.208142 + 0.165267i
\(856\) 0 0
\(857\) −16.4194 28.4393i −0.560876 0.971466i −0.997420 0.0717835i \(-0.977131\pi\)
0.436544 0.899683i \(-0.356202\pi\)
\(858\) 0 0
\(859\) −26.3299 + 45.6048i −0.898365 + 1.55601i −0.0687820 + 0.997632i \(0.521911\pi\)
−0.829583 + 0.558383i \(0.811422\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −48.8189 −1.66182 −0.830908 0.556410i \(-0.812178\pi\)
−0.830908 + 0.556410i \(0.812178\pi\)
\(864\) 0 0
\(865\) 19.6089 0.666722
\(866\) 0 0
\(867\) 28.3089 + 5.38740i 0.961419 + 0.182966i
\(868\) 0 0
\(869\) −6.57746 + 11.3925i −0.223125 + 0.386464i
\(870\) 0 0
\(871\) −4.06540 7.04148i −0.137751 0.238591i
\(872\) 0 0
\(873\) −6.84502 46.0762i −0.231669 1.55944i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 12.5373 21.7152i 0.423353 0.733269i −0.572912 0.819617i \(-0.694186\pi\)
0.996265 + 0.0863480i \(0.0275197\pi\)
\(878\) 0 0
\(879\) 28.1396 32.6288i 0.949125 1.10054i
\(880\) 0 0
\(881\) −16.2437 −0.547263 −0.273632 0.961835i \(-0.588225\pi\)
−0.273632 + 0.961835i \(0.588225\pi\)
\(882\) 0 0
\(883\) 29.7137 0.999945 0.499973 0.866041i \(-0.333343\pi\)
0.499973 + 0.866041i \(0.333343\pi\)
\(884\) 0 0
\(885\) −0.113767 0.326236i −0.00382423 0.0109663i
\(886\) 0 0
\(887\) 7.87353 13.6374i 0.264367 0.457897i −0.703030 0.711160i \(-0.748170\pi\)
0.967398 + 0.253262i \(0.0815036\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 1.70459 7.32500i 0.0571058 0.245397i
\(892\) 0 0
\(893\) 7.16803 + 12.4154i 0.239869 + 0.415465i
\(894\) 0 0
\(895\) 18.1616 31.4568i 0.607076 1.05149i
\(896\) 0 0
\(897\) 12.7005 + 36.4196i 0.424057 + 1.21602i
\(898\) 0 0
\(899\) 33.0623 1.10269
\(900\) 0 0
\(901\) −4.81228 −0.160320
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −12.2539 + 21.2244i −0.407333 + 0.705522i
\(906\) 0 0
\(907\) 1.29001 + 2.23437i 0.0428342 + 0.0741910i 0.886648 0.462446i \(-0.153028\pi\)
−0.843813 + 0.536637i \(0.819695\pi\)
\(908\) 0 0
\(909\) −8.60302 57.9099i −0.285344 1.92075i
\(910\) 0 0
\(911\) 23.2170 + 40.2130i 0.769214 + 1.33232i 0.937990 + 0.346663i \(0.112685\pi\)
−0.168776 + 0.985654i \(0.553981\pi\)
\(912\) 0 0
\(913\) −2.64236 + 4.57671i −0.0874495 + 0.151467i
\(914\) 0 0
\(915\) −12.4048 2.36073i −0.410090 0.0780434i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 5.68774 0.187621 0.0938106 0.995590i \(-0.470095\pi\)
0.0938106 + 0.995590i \(0.470095\pi\)
\(920\) 0 0
\(921\) 40.4906 + 7.70569i 1.33421 + 0.253911i
\(922\) 0 0
\(923\) −17.0191 + 29.4780i −0.560191 + 0.970279i
\(924\) 0 0
\(925\) −11.7040 20.2718i −0.384824 0.666534i
\(926\) 0 0
\(927\) 4.28432 3.40180i 0.140716 0.111730i
\(928\) 0 0
\(929\) −23.9803 41.5350i −0.786767 1.36272i −0.927938 0.372734i \(-0.878420\pi\)
0.141172 0.989985i \(-0.454913\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 21.1685 24.5456i 0.693025 0.803586i
\(934\) 0 0
\(935\) 0.769516 0.0251659
\(936\) 0 0
\(937\) −25.3542 −0.828285 −0.414142 0.910212i \(-0.635918\pi\)
−0.414142 + 0.910212i \(0.635918\pi\)
\(938\) 0 0
\(939\) −11.0164 31.5904i −0.359507 1.03091i
\(940\) 0 0
\(941\) −1.25651 + 2.17634i −0.0409611 + 0.0709468i −0.885779 0.464107i \(-0.846375\pi\)
0.844818 + 0.535054i \(0.179709\pi\)
\(942\) 0 0
\(943\) −21.6097 37.4292i −0.703710 1.21886i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −7.26537 12.5840i −0.236093 0.408925i 0.723497 0.690328i \(-0.242534\pi\)
−0.959590 + 0.281403i \(0.909200\pi\)
\(948\) 0 0
\(949\) 8.17147 14.1534i 0.265257 0.459439i
\(950\) 0 0
\(951\) −1.02379 2.93579i −0.0331985 0.0951994i
\(952\) 0 0
\(953\) −36.5564 −1.18418 −0.592089 0.805873i \(-0.701697\pi\)
−0.592089 + 0.805873i \(0.701697\pi\)
\(954\) 0 0
\(955\) 16.5321 0.534966
\(956\) 0 0
\(957\) −9.44637 + 10.9534i −0.305358 + 0.354072i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 10.0272 + 17.3676i 0.323458 + 0.560246i
\(962\) 0 0
\(963\) 29.4140 + 11.6162i 0.947854 + 0.374326i
\(964\) 0 0
\(965\) 0.573726 + 0.993722i 0.0184689 + 0.0319890i
\(966\) 0 0
\(967\) 8.06111 13.9623i 0.259228 0.448996i −0.706807 0.707406i \(-0.749865\pi\)
0.966035 + 0.258410i \(0.0831986\pi\)
\(968\) 0 0
\(969\) −1.73527 0.330236i −0.0557450 0.0106087i
\(970\) 0 0
\(971\) −17.2020 −0.552038 −0.276019 0.961152i \(-0.589015\pi\)
−0.276019 + 0.961152i \(0.589015\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) −16.4100 3.12296i −0.525541 0.100015i
\(976\) 0 0
\(977\) −20.1225 + 34.8532i −0.643776 + 1.11505i 0.340806 + 0.940133i \(0.389300\pi\)
−0.984583 + 0.174920i \(0.944033\pi\)
\(978\) 0 0
\(979\) −0.443873 0.768810i −0.0141862 0.0245713i
\(980\) 0 0
\(981\) −35.1824 13.8942i −1.12329 0.443607i
\(982\) 0 0
\(983\) −10.2760 17.7985i −0.327753 0.567685i 0.654313 0.756224i \(-0.272958\pi\)
−0.982066 + 0.188539i \(0.939625\pi\)
\(984\) 0 0
\(985\) 7.89065 13.6670i 0.251417 0.435467i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 10.4066 0.330910
\(990\) 0 0
\(991\) 29.9744 0.952167 0.476083 0.879400i \(-0.342056\pi\)
0.476083 + 0.879400i \(0.342056\pi\)
\(992\) 0 0
\(993\) −8.06252 23.1199i −0.255856 0.733689i
\(994\) 0 0
\(995\) 4.36537 7.56105i 0.138392 0.239701i
\(996\) 0 0
\(997\) 6.01944 + 10.4260i 0.190638 + 0.330194i 0.945462 0.325733i \(-0.105611\pi\)
−0.754824 + 0.655927i \(0.772278\pi\)
\(998\) 0 0
\(999\) 38.6263 + 24.4422i 1.22208 + 0.773316i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1764.2.j.g.589.1 14
3.2 odd 2 5292.2.j.h.1765.3 14
7.2 even 3 252.2.l.b.193.5 yes 14
7.3 odd 6 1764.2.i.i.373.4 14
7.4 even 3 252.2.i.b.121.4 yes 14
7.5 odd 6 1764.2.l.i.949.3 14
7.6 odd 2 1764.2.j.h.589.7 14
9.2 odd 6 5292.2.j.h.3529.3 14
9.7 even 3 inner 1764.2.j.g.1177.1 14
21.2 odd 6 756.2.l.b.361.5 14
21.5 even 6 5292.2.l.i.361.3 14
21.11 odd 6 756.2.i.b.37.3 14
21.17 even 6 5292.2.i.i.1549.5 14
21.20 even 2 5292.2.j.g.1765.5 14
28.11 odd 6 1008.2.q.j.625.4 14
28.23 odd 6 1008.2.t.j.193.3 14
63.2 odd 6 756.2.i.b.613.3 14
63.4 even 3 2268.2.k.e.1297.5 14
63.11 odd 6 756.2.l.b.289.5 14
63.16 even 3 252.2.i.b.25.4 14
63.20 even 6 5292.2.j.g.3529.5 14
63.23 odd 6 2268.2.k.f.1621.3 14
63.25 even 3 252.2.l.b.205.5 yes 14
63.32 odd 6 2268.2.k.f.1297.3 14
63.34 odd 6 1764.2.j.h.1177.7 14
63.38 even 6 5292.2.l.i.3313.3 14
63.47 even 6 5292.2.i.i.2125.5 14
63.52 odd 6 1764.2.l.i.961.3 14
63.58 even 3 2268.2.k.e.1621.5 14
63.61 odd 6 1764.2.i.i.1537.4 14
84.11 even 6 3024.2.q.j.2305.3 14
84.23 even 6 3024.2.t.j.1873.5 14
252.11 even 6 3024.2.t.j.289.5 14
252.79 odd 6 1008.2.q.j.529.4 14
252.151 odd 6 1008.2.t.j.961.3 14
252.191 even 6 3024.2.q.j.2881.3 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
252.2.i.b.25.4 14 63.16 even 3
252.2.i.b.121.4 yes 14 7.4 even 3
252.2.l.b.193.5 yes 14 7.2 even 3
252.2.l.b.205.5 yes 14 63.25 even 3
756.2.i.b.37.3 14 21.11 odd 6
756.2.i.b.613.3 14 63.2 odd 6
756.2.l.b.289.5 14 63.11 odd 6
756.2.l.b.361.5 14 21.2 odd 6
1008.2.q.j.529.4 14 252.79 odd 6
1008.2.q.j.625.4 14 28.11 odd 6
1008.2.t.j.193.3 14 28.23 odd 6
1008.2.t.j.961.3 14 252.151 odd 6
1764.2.i.i.373.4 14 7.3 odd 6
1764.2.i.i.1537.4 14 63.61 odd 6
1764.2.j.g.589.1 14 1.1 even 1 trivial
1764.2.j.g.1177.1 14 9.7 even 3 inner
1764.2.j.h.589.7 14 7.6 odd 2
1764.2.j.h.1177.7 14 63.34 odd 6
1764.2.l.i.949.3 14 7.5 odd 6
1764.2.l.i.961.3 14 63.52 odd 6
2268.2.k.e.1297.5 14 63.4 even 3
2268.2.k.e.1621.5 14 63.58 even 3
2268.2.k.f.1297.3 14 63.32 odd 6
2268.2.k.f.1621.3 14 63.23 odd 6
3024.2.q.j.2305.3 14 84.11 even 6
3024.2.q.j.2881.3 14 252.191 even 6
3024.2.t.j.289.5 14 252.11 even 6
3024.2.t.j.1873.5 14 84.23 even 6
5292.2.i.i.1549.5 14 21.17 even 6
5292.2.i.i.2125.5 14 63.47 even 6
5292.2.j.g.1765.5 14 21.20 even 2
5292.2.j.g.3529.5 14 63.20 even 6
5292.2.j.h.1765.3 14 3.2 odd 2
5292.2.j.h.3529.3 14 9.2 odd 6
5292.2.l.i.361.3 14 21.5 even 6
5292.2.l.i.3313.3 14 63.38 even 6