Properties

Label 5292.2.j.h.1765.3
Level $5292$
Weight $2$
Character 5292.1765
Analytic conductor $42.257$
Analytic rank $0$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5292,2,Mod(1765,5292)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5292, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 2, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5292.1765"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 5292 = 2^{2} \cdot 3^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5292.j (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [14,0,0,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(42.2568327497\)
Analytic rank: \(0\)
Dimension: \(14\)
Relative dimension: \(7\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} - 5x^{12} - 3x^{11} + 7x^{10} + 30x^{9} - 117x^{7} + 270x^{5} + 189x^{4} - 243x^{3} - 1215x^{2} + 2187 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{25}]\)
Coefficient ring index: \( 3^{8} \)
Twist minimal: no (minimal twist has level 252)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 1765.3
Root \(1.13119 - 1.31165i\) of defining polynomial
Character \(\chi\) \(=\) 5292.1765
Dual form 5292.2.j.h.3529.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.764702 + 1.32450i) q^{5} +(0.417818 + 0.723682i) q^{11} +(1.81222 - 3.13886i) q^{13} +0.602113 q^{17} -1.69377 q^{19} +(-3.07202 + 5.32090i) q^{23} +(1.33046 + 2.30443i) q^{25} +(-4.99671 - 8.65455i) q^{29} +(1.65421 - 2.86517i) q^{31} -8.79691 q^{37} +(-3.51718 + 6.09194i) q^{41} +(0.846884 + 1.46685i) q^{43} +(4.23200 + 7.33004i) q^{47} -7.99232 q^{53} -1.27803 q^{55} +(0.0652138 - 0.112954i) q^{59} +(2.38343 + 4.12822i) q^{61} +(2.77162 + 4.80059i) q^{65} +(1.12166 - 1.94278i) q^{67} +9.39130 q^{71} +4.50909 q^{73} +(-7.87120 - 13.6333i) q^{79} +(3.16210 + 5.47692i) q^{83} +(-0.460438 + 0.797501i) q^{85} -1.06236 q^{89} +(1.29523 - 2.24340i) q^{95} +(-7.76364 - 13.4470i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q + 2 q^{5} - 2 q^{11} + 2 q^{13} + 4 q^{17} - 14 q^{19} - 11 q^{23} - 9 q^{25} - q^{29} - q^{31} - 20 q^{37} + 33 q^{41} + 7 q^{43} + 3 q^{47} - 30 q^{53} - 28 q^{55} + 14 q^{59} - 10 q^{61} - 15 q^{65}+ \cdots - 18 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/5292\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(1081\) \(2647\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −0.764702 + 1.32450i −0.341985 + 0.592336i −0.984801 0.173685i \(-0.944433\pi\)
0.642816 + 0.766021i \(0.277766\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 0.417818 + 0.723682i 0.125977 + 0.218198i 0.922114 0.386917i \(-0.126460\pi\)
−0.796137 + 0.605116i \(0.793127\pi\)
\(12\) 0 0
\(13\) 1.81222 3.13886i 0.502620 0.870563i −0.497375 0.867535i \(-0.665703\pi\)
0.999995 0.00302796i \(-0.000963830\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0.602113 0.146034 0.0730170 0.997331i \(-0.476737\pi\)
0.0730170 + 0.997331i \(0.476737\pi\)
\(18\) 0 0
\(19\) −1.69377 −0.388577 −0.194289 0.980944i \(-0.562240\pi\)
−0.194289 + 0.980944i \(0.562240\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −3.07202 + 5.32090i −0.640561 + 1.10948i 0.344746 + 0.938696i \(0.387965\pi\)
−0.985308 + 0.170789i \(0.945368\pi\)
\(24\) 0 0
\(25\) 1.33046 + 2.30443i 0.266092 + 0.460885i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −4.99671 8.65455i −0.927865 1.60711i −0.786888 0.617096i \(-0.788309\pi\)
−0.140977 0.990013i \(-0.545024\pi\)
\(30\) 0 0
\(31\) 1.65421 2.86517i 0.297104 0.514599i −0.678368 0.734722i \(-0.737312\pi\)
0.975472 + 0.220123i \(0.0706458\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −8.79691 −1.44620 −0.723102 0.690741i \(-0.757284\pi\)
−0.723102 + 0.690741i \(0.757284\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −3.51718 + 6.09194i −0.549291 + 0.951401i 0.449032 + 0.893516i \(0.351769\pi\)
−0.998323 + 0.0578850i \(0.981564\pi\)
\(42\) 0 0
\(43\) 0.846884 + 1.46685i 0.129149 + 0.223692i 0.923347 0.383967i \(-0.125442\pi\)
−0.794198 + 0.607659i \(0.792109\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 4.23200 + 7.33004i 0.617301 + 1.06920i 0.989976 + 0.141235i \(0.0451073\pi\)
−0.372675 + 0.927962i \(0.621559\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −7.99232 −1.09783 −0.548915 0.835878i \(-0.684959\pi\)
−0.548915 + 0.835878i \(0.684959\pi\)
\(54\) 0 0
\(55\) −1.27803 −0.172329
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0.0652138 0.112954i 0.00849011 0.0147053i −0.861749 0.507335i \(-0.830631\pi\)
0.870239 + 0.492629i \(0.163964\pi\)
\(60\) 0 0
\(61\) 2.38343 + 4.12822i 0.305166 + 0.528564i 0.977298 0.211868i \(-0.0679546\pi\)
−0.672132 + 0.740431i \(0.734621\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 2.77162 + 4.80059i 0.343777 + 0.595440i
\(66\) 0 0
\(67\) 1.12166 1.94278i 0.137033 0.237348i −0.789339 0.613957i \(-0.789577\pi\)
0.926372 + 0.376609i \(0.122910\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 9.39130 1.11454 0.557271 0.830331i \(-0.311848\pi\)
0.557271 + 0.830331i \(0.311848\pi\)
\(72\) 0 0
\(73\) 4.50909 0.527749 0.263874 0.964557i \(-0.415000\pi\)
0.263874 + 0.964557i \(0.415000\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −7.87120 13.6333i −0.885580 1.53387i −0.845048 0.534691i \(-0.820428\pi\)
−0.0405317 0.999178i \(-0.512905\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 3.16210 + 5.47692i 0.347085 + 0.601170i 0.985730 0.168332i \(-0.0538380\pi\)
−0.638645 + 0.769502i \(0.720505\pi\)
\(84\) 0 0
\(85\) −0.460438 + 0.797501i −0.0499415 + 0.0865011i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −1.06236 −0.112610 −0.0563049 0.998414i \(-0.517932\pi\)
−0.0563049 + 0.998414i \(0.517932\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 1.29523 2.24340i 0.132888 0.230168i
\(96\) 0 0
\(97\) −7.76364 13.4470i −0.788279 1.36534i −0.927021 0.375010i \(-0.877639\pi\)
0.138742 0.990329i \(-0.455694\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 9.75757 + 16.9006i 0.970914 + 1.68167i 0.692807 + 0.721123i \(0.256374\pi\)
0.278107 + 0.960550i \(0.410293\pi\)
\(102\) 0 0
\(103\) 0.911770 1.57923i 0.0898394 0.155606i −0.817604 0.575781i \(-0.804698\pi\)
0.907443 + 0.420175i \(0.138031\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −10.5416 −1.01909 −0.509546 0.860444i \(-0.670187\pi\)
−0.509546 + 0.860444i \(0.670187\pi\)
\(108\) 0 0
\(109\) −12.6088 −1.20771 −0.603854 0.797095i \(-0.706369\pi\)
−0.603854 + 0.797095i \(0.706369\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −7.76452 + 13.4485i −0.730424 + 1.26513i 0.226278 + 0.974063i \(0.427344\pi\)
−0.956702 + 0.291069i \(0.905989\pi\)
\(114\) 0 0
\(115\) −4.69837 8.13781i −0.438125 0.758855i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 5.15086 8.92154i 0.468260 0.811050i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −11.7166 −1.04797
\(126\) 0 0
\(127\) −10.8966 −0.966919 −0.483460 0.875367i \(-0.660620\pi\)
−0.483460 + 0.875367i \(0.660620\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 9.73088 16.8544i 0.850191 1.47257i −0.0308446 0.999524i \(-0.509820\pi\)
0.881036 0.473050i \(-0.156847\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 6.13833 + 10.6319i 0.524433 + 0.908344i 0.999595 + 0.0284461i \(0.00905590\pi\)
−0.475163 + 0.879898i \(0.657611\pi\)
\(138\) 0 0
\(139\) −6.44692 + 11.1664i −0.546821 + 0.947121i 0.451669 + 0.892185i \(0.350829\pi\)
−0.998490 + 0.0549357i \(0.982505\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 3.02872 0.253274
\(144\) 0 0
\(145\) 15.2840 1.26926
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −9.03267 + 15.6451i −0.739986 + 1.28169i 0.212516 + 0.977158i \(0.431834\pi\)
−0.952501 + 0.304535i \(0.901499\pi\)
\(150\) 0 0
\(151\) −4.29891 7.44593i −0.349840 0.605941i 0.636381 0.771375i \(-0.280431\pi\)
−0.986221 + 0.165434i \(0.947097\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 2.52995 + 4.38200i 0.203210 + 0.351971i
\(156\) 0 0
\(157\) −1.59683 + 2.76579i −0.127441 + 0.220734i −0.922684 0.385556i \(-0.874010\pi\)
0.795244 + 0.606290i \(0.207343\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −4.09618 −0.320838 −0.160419 0.987049i \(-0.551284\pi\)
−0.160419 + 0.987049i \(0.551284\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −8.24859 + 14.2870i −0.638295 + 1.10556i 0.347512 + 0.937676i \(0.387027\pi\)
−0.985807 + 0.167883i \(0.946307\pi\)
\(168\) 0 0
\(169\) −0.0682984 0.118296i −0.00525372 0.00909971i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −6.41063 11.1035i −0.487391 0.844186i 0.512504 0.858685i \(-0.328718\pi\)
−0.999895 + 0.0144987i \(0.995385\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −23.7499 −1.77515 −0.887576 0.460661i \(-0.847612\pi\)
−0.887576 + 0.460661i \(0.847612\pi\)
\(180\) 0 0
\(181\) −16.0244 −1.19108 −0.595542 0.803324i \(-0.703063\pi\)
−0.595542 + 0.803324i \(0.703063\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 6.72702 11.6515i 0.494580 0.856638i
\(186\) 0 0
\(187\) 0.251574 + 0.435739i 0.0183969 + 0.0318644i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −5.40475 9.36130i −0.391074 0.677360i 0.601517 0.798860i \(-0.294563\pi\)
−0.992591 + 0.121500i \(0.961230\pi\)
\(192\) 0 0
\(193\) −0.375130 + 0.649745i −0.0270025 + 0.0467696i −0.879211 0.476433i \(-0.841930\pi\)
0.852208 + 0.523203i \(0.175263\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −10.3186 −0.735169 −0.367584 0.929990i \(-0.619815\pi\)
−0.367584 + 0.929990i \(0.619815\pi\)
\(198\) 0 0
\(199\) 5.70859 0.404671 0.202336 0.979316i \(-0.435147\pi\)
0.202336 + 0.979316i \(0.435147\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −5.37919 9.31704i −0.375699 0.650730i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −0.707687 1.22575i −0.0489517 0.0847869i
\(210\) 0 0
\(211\) 2.73050 4.72937i 0.187976 0.325583i −0.756600 0.653878i \(-0.773141\pi\)
0.944575 + 0.328295i \(0.106474\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −2.59046 −0.176668
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 1.09116 1.88995i 0.0733996 0.127132i
\(222\) 0 0
\(223\) −9.00530 15.5976i −0.603040 1.04450i −0.992358 0.123392i \(-0.960623\pi\)
0.389318 0.921103i \(-0.372711\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −9.08699 15.7391i −0.603125 1.04464i −0.992345 0.123498i \(-0.960589\pi\)
0.389220 0.921145i \(-0.372745\pi\)
\(228\) 0 0
\(229\) 7.71391 13.3609i 0.509750 0.882912i −0.490186 0.871618i \(-0.663071\pi\)
0.999936 0.0112949i \(-0.00359534\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −6.41783 −0.420446 −0.210223 0.977653i \(-0.567419\pi\)
−0.210223 + 0.977653i \(0.567419\pi\)
\(234\) 0 0
\(235\) −12.9449 −0.844431
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 2.33317 4.04118i 0.150920 0.261402i −0.780646 0.624974i \(-0.785110\pi\)
0.931566 + 0.363572i \(0.118443\pi\)
\(240\) 0 0
\(241\) 9.42858 + 16.3308i 0.607348 + 1.05196i 0.991676 + 0.128761i \(0.0411000\pi\)
−0.384327 + 0.923197i \(0.625567\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −3.06948 + 5.31650i −0.195307 + 0.338281i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −15.7016 −0.991074 −0.495537 0.868587i \(-0.665029\pi\)
−0.495537 + 0.868587i \(0.665029\pi\)
\(252\) 0 0
\(253\) −5.13419 −0.322784
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 4.60892 7.98289i 0.287497 0.497959i −0.685715 0.727870i \(-0.740510\pi\)
0.973212 + 0.229911i \(0.0738436\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0.241311 + 0.417962i 0.0148799 + 0.0257727i 0.873369 0.487058i \(-0.161930\pi\)
−0.858490 + 0.512831i \(0.828597\pi\)
\(264\) 0 0
\(265\) 6.11174 10.5859i 0.375442 0.650284i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −7.88576 −0.480803 −0.240402 0.970674i \(-0.577279\pi\)
−0.240402 + 0.970674i \(0.577279\pi\)
\(270\) 0 0
\(271\) −25.5893 −1.55444 −0.777220 0.629229i \(-0.783371\pi\)
−0.777220 + 0.629229i \(0.783371\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −1.11178 + 1.92566i −0.0670429 + 0.116122i
\(276\) 0 0
\(277\) −4.18466 7.24804i −0.251432 0.435492i 0.712489 0.701684i \(-0.247568\pi\)
−0.963920 + 0.266191i \(0.914235\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 0.551848 + 0.955828i 0.0329205 + 0.0570199i 0.882016 0.471219i \(-0.156186\pi\)
−0.849096 + 0.528239i \(0.822853\pi\)
\(282\) 0 0
\(283\) −1.45369 + 2.51786i −0.0864128 + 0.149671i −0.905992 0.423294i \(-0.860874\pi\)
0.819580 + 0.572965i \(0.194207\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −16.6375 −0.978674
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 12.4381 21.5434i 0.726642 1.25858i −0.231653 0.972798i \(-0.574413\pi\)
0.958295 0.285782i \(-0.0922532\pi\)
\(294\) 0 0
\(295\) 0.0997383 + 0.172752i 0.00580699 + 0.0100580i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 11.1344 + 19.2853i 0.643918 + 1.11530i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −7.29045 −0.417450
\(306\) 0 0
\(307\) −23.7968 −1.35816 −0.679078 0.734066i \(-0.737620\pi\)
−0.679078 + 0.734066i \(0.737620\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 9.35677 16.2064i 0.530574 0.918981i −0.468790 0.883310i \(-0.655310\pi\)
0.999364 0.0356711i \(-0.0113569\pi\)
\(312\) 0 0
\(313\) 9.65797 + 16.7281i 0.545901 + 0.945527i 0.998550 + 0.0538387i \(0.0171457\pi\)
−0.452649 + 0.891689i \(0.649521\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −0.897542 1.55459i −0.0504110 0.0873144i 0.839719 0.543021i \(-0.182720\pi\)
−0.890130 + 0.455707i \(0.849386\pi\)
\(318\) 0 0
\(319\) 4.17543 7.23205i 0.233779 0.404917i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −1.01984 −0.0567455
\(324\) 0 0
\(325\) 9.64436 0.534973
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 7.06833 + 12.2427i 0.388511 + 0.672920i 0.992249 0.124262i \(-0.0396563\pi\)
−0.603739 + 0.797182i \(0.706323\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 1.71547 + 2.97129i 0.0937264 + 0.162339i
\(336\) 0 0
\(337\) −2.94072 + 5.09348i −0.160191 + 0.277459i −0.934937 0.354813i \(-0.884544\pi\)
0.774746 + 0.632273i \(0.217878\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 2.76463 0.149713
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −3.17593 + 5.50087i −0.170493 + 0.295302i −0.938592 0.345028i \(-0.887869\pi\)
0.768099 + 0.640331i \(0.221203\pi\)
\(348\) 0 0
\(349\) 10.4321 + 18.0689i 0.558416 + 0.967205i 0.997629 + 0.0688222i \(0.0219241\pi\)
−0.439213 + 0.898383i \(0.644743\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −1.07115 1.85528i −0.0570114 0.0987466i 0.836111 0.548560i \(-0.184824\pi\)
−0.893123 + 0.449813i \(0.851490\pi\)
\(354\) 0 0
\(355\) −7.18155 + 12.4388i −0.381157 + 0.660183i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −21.2396 −1.12098 −0.560492 0.828160i \(-0.689388\pi\)
−0.560492 + 0.828160i \(0.689388\pi\)
\(360\) 0 0
\(361\) −16.1311 −0.849008
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −3.44811 + 5.97230i −0.180482 + 0.312605i
\(366\) 0 0
\(367\) 16.2053 + 28.0685i 0.845912 + 1.46516i 0.884827 + 0.465919i \(0.154276\pi\)
−0.0389156 + 0.999243i \(0.512390\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −16.8101 + 29.1159i −0.870393 + 1.50756i −0.00880173 + 0.999961i \(0.502802\pi\)
−0.861591 + 0.507603i \(0.830532\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −36.2206 −1.86545
\(378\) 0 0
\(379\) 28.2829 1.45279 0.726396 0.687276i \(-0.241194\pi\)
0.726396 + 0.687276i \(0.241194\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −5.09473 + 8.82434i −0.260329 + 0.450903i −0.966329 0.257309i \(-0.917164\pi\)
0.706001 + 0.708211i \(0.250498\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 5.22525 + 9.05040i 0.264931 + 0.458873i 0.967545 0.252697i \(-0.0813176\pi\)
−0.702615 + 0.711570i \(0.747984\pi\)
\(390\) 0 0
\(391\) −1.84971 + 3.20379i −0.0935437 + 0.162022i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 24.0765 1.21142
\(396\) 0 0
\(397\) 14.5007 0.727767 0.363884 0.931444i \(-0.381451\pi\)
0.363884 + 0.931444i \(0.381451\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −12.7071 + 22.0094i −0.634563 + 1.09909i 0.352045 + 0.935983i \(0.385486\pi\)
−0.986608 + 0.163112i \(0.947847\pi\)
\(402\) 0 0
\(403\) −5.99558 10.3846i −0.298661 0.517296i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −3.67551 6.36617i −0.182188 0.315559i
\(408\) 0 0
\(409\) −6.19535 + 10.7307i −0.306340 + 0.530597i −0.977559 0.210663i \(-0.932438\pi\)
0.671219 + 0.741259i \(0.265771\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −9.67226 −0.474792
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 15.3596 26.6036i 0.750365 1.29967i −0.197281 0.980347i \(-0.563211\pi\)
0.947646 0.319323i \(-0.103455\pi\)
\(420\) 0 0
\(421\) −2.88912 5.00410i −0.140807 0.243885i 0.786994 0.616961i \(-0.211636\pi\)
−0.927801 + 0.373076i \(0.878303\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0.801089 + 1.38753i 0.0388585 + 0.0673049i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −0.420556 −0.0202575 −0.0101287 0.999949i \(-0.503224\pi\)
−0.0101287 + 0.999949i \(0.503224\pi\)
\(432\) 0 0
\(433\) 30.8208 1.48115 0.740576 0.671972i \(-0.234553\pi\)
0.740576 + 0.671972i \(0.234553\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 5.20330 9.01237i 0.248907 0.431120i
\(438\) 0 0
\(439\) −1.50590 2.60830i −0.0718729 0.124488i 0.827849 0.560951i \(-0.189564\pi\)
−0.899722 + 0.436463i \(0.856231\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −9.22141 15.9719i −0.438122 0.758850i 0.559422 0.828883i \(-0.311023\pi\)
−0.997545 + 0.0700326i \(0.977690\pi\)
\(444\) 0 0
\(445\) 0.812388 1.40710i 0.0385109 0.0667028i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 6.80998 0.321383 0.160691 0.987005i \(-0.448628\pi\)
0.160691 + 0.987005i \(0.448628\pi\)
\(450\) 0 0
\(451\) −5.87817 −0.276792
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −6.18283 10.7090i −0.289220 0.500944i 0.684403 0.729103i \(-0.260063\pi\)
−0.973624 + 0.228159i \(0.926729\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 16.3651 + 28.3453i 0.762201 + 1.32017i 0.941714 + 0.336415i \(0.109214\pi\)
−0.179513 + 0.983756i \(0.557452\pi\)
\(462\) 0 0
\(463\) 9.61023 16.6454i 0.446625 0.773577i −0.551539 0.834149i \(-0.685959\pi\)
0.998164 + 0.0605719i \(0.0192924\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 3.01711 0.139615 0.0698075 0.997560i \(-0.477761\pi\)
0.0698075 + 0.997560i \(0.477761\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −0.707687 + 1.22575i −0.0325395 + 0.0563600i
\(474\) 0 0
\(475\) −2.25349 3.90316i −0.103397 0.179089i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −12.9486 22.4276i −0.591635 1.02474i −0.994012 0.109269i \(-0.965149\pi\)
0.402377 0.915474i \(-0.368184\pi\)
\(480\) 0 0
\(481\) −15.9420 + 27.6123i −0.726891 + 1.25901i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 23.7475 1.07832
\(486\) 0 0
\(487\) 41.7683 1.89270 0.946350 0.323143i \(-0.104739\pi\)
0.946350 + 0.323143i \(0.104739\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 13.9879 24.2278i 0.631265 1.09338i −0.356028 0.934475i \(-0.615869\pi\)
0.987293 0.158908i \(-0.0507974\pi\)
\(492\) 0 0
\(493\) −3.00858 5.21102i −0.135500 0.234693i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 12.4748 21.6070i 0.558450 0.967264i −0.439176 0.898401i \(-0.644730\pi\)
0.997626 0.0688626i \(-0.0219370\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −34.1966 −1.52475 −0.762376 0.647135i \(-0.775967\pi\)
−0.762376 + 0.647135i \(0.775967\pi\)
\(504\) 0 0
\(505\) −29.8465 −1.32815
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 6.84342 11.8532i 0.303329 0.525382i −0.673559 0.739134i \(-0.735235\pi\)
0.976888 + 0.213752i \(0.0685685\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 1.39447 + 2.41528i 0.0614475 + 0.106430i
\(516\) 0 0
\(517\) −3.53641 + 6.12525i −0.155531 + 0.269388i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −26.7496 −1.17192 −0.585960 0.810340i \(-0.699282\pi\)
−0.585960 + 0.810340i \(0.699282\pi\)
\(522\) 0 0
\(523\) 21.2262 0.928158 0.464079 0.885794i \(-0.346385\pi\)
0.464079 + 0.885794i \(0.346385\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0.996020 1.72516i 0.0433873 0.0751490i
\(528\) 0 0
\(529\) −7.37466 12.7733i −0.320637 0.555360i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 12.7478 + 22.0799i 0.552170 + 0.956386i
\(534\) 0 0
\(535\) 8.06116 13.9623i 0.348514 0.603644i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −20.2537 −0.870776 −0.435388 0.900243i \(-0.643389\pi\)
−0.435388 + 0.900243i \(0.643389\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 9.64201 16.7005i 0.413019 0.715369i
\(546\) 0 0
\(547\) −21.9668 38.0476i −0.939233 1.62680i −0.766906 0.641760i \(-0.778205\pi\)
−0.172327 0.985040i \(-0.555129\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 8.46326 + 14.6588i 0.360547 + 0.624486i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −8.90965 −0.377514 −0.188757 0.982024i \(-0.560446\pi\)
−0.188757 + 0.982024i \(0.560446\pi\)
\(558\) 0 0
\(559\) 6.13897 0.259651
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −14.2096 + 24.6118i −0.598865 + 1.03726i 0.394124 + 0.919057i \(0.371048\pi\)
−0.992989 + 0.118207i \(0.962285\pi\)
\(564\) 0 0
\(565\) −11.8751 20.5683i −0.499589 0.865313i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −4.28948 7.42959i −0.179824 0.311465i 0.761996 0.647582i \(-0.224220\pi\)
−0.941820 + 0.336117i \(0.890886\pi\)
\(570\) 0 0
\(571\) −9.68861 + 16.7812i −0.405456 + 0.702270i −0.994374 0.105922i \(-0.966221\pi\)
0.588919 + 0.808192i \(0.299554\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −16.3488 −0.681793
\(576\) 0 0
\(577\) −1.16888 −0.0486612 −0.0243306 0.999704i \(-0.507745\pi\)
−0.0243306 + 0.999704i \(0.507745\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −3.33934 5.78390i −0.138301 0.239545i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 15.5863 + 26.9963i 0.643316 + 1.11426i 0.984688 + 0.174327i \(0.0557750\pi\)
−0.341372 + 0.939928i \(0.610892\pi\)
\(588\) 0 0
\(589\) −2.80184 + 4.85293i −0.115448 + 0.199962i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −30.3773 −1.24745 −0.623724 0.781645i \(-0.714381\pi\)
−0.623724 + 0.781645i \(0.714381\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −3.65379 + 6.32855i −0.149290 + 0.258577i −0.930965 0.365108i \(-0.881032\pi\)
0.781675 + 0.623685i \(0.214365\pi\)
\(600\) 0 0
\(601\) 4.61461 + 7.99274i 0.188234 + 0.326031i 0.944661 0.328047i \(-0.106390\pi\)
−0.756428 + 0.654077i \(0.773057\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 7.87774 + 13.6446i 0.320276 + 0.554734i
\(606\) 0 0
\(607\) 8.53370 14.7808i 0.346372 0.599934i −0.639230 0.769016i \(-0.720747\pi\)
0.985602 + 0.169082i \(0.0540801\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 30.6773 1.24107
\(612\) 0 0
\(613\) 0.786117 0.0317510 0.0158755 0.999874i \(-0.494946\pi\)
0.0158755 + 0.999874i \(0.494946\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −23.7960 + 41.2159i −0.957991 + 1.65929i −0.230621 + 0.973044i \(0.574076\pi\)
−0.727370 + 0.686246i \(0.759257\pi\)
\(618\) 0 0
\(619\) −9.48717 16.4323i −0.381321 0.660468i 0.609930 0.792455i \(-0.291198\pi\)
−0.991251 + 0.131987i \(0.957864\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 2.30744 3.99660i 0.0922976 0.159864i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −5.29674 −0.211195
\(630\) 0 0
\(631\) 0.300343 0.0119565 0.00597823 0.999982i \(-0.498097\pi\)
0.00597823 + 0.999982i \(0.498097\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 8.33267 14.4326i 0.330672 0.572741i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 14.0548 + 24.3436i 0.555131 + 0.961514i 0.997893 + 0.0648756i \(0.0206651\pi\)
−0.442763 + 0.896639i \(0.646002\pi\)
\(642\) 0 0
\(643\) −1.55289 + 2.68968i −0.0612399 + 0.106071i −0.895020 0.446026i \(-0.852839\pi\)
0.833780 + 0.552097i \(0.186172\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 46.7113 1.83641 0.918205 0.396105i \(-0.129638\pi\)
0.918205 + 0.396105i \(0.129638\pi\)
\(648\) 0 0
\(649\) 0.108990 0.00427823
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −0.998764 + 1.72991i −0.0390847 + 0.0676966i −0.884906 0.465770i \(-0.845778\pi\)
0.845821 + 0.533466i \(0.179111\pi\)
\(654\) 0 0
\(655\) 14.8825 + 25.7772i 0.581506 + 1.00720i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −8.37284 14.5022i −0.326160 0.564925i 0.655587 0.755120i \(-0.272421\pi\)
−0.981746 + 0.190195i \(0.939088\pi\)
\(660\) 0 0
\(661\) −6.28870 + 10.8924i −0.244602 + 0.423664i −0.962020 0.272980i \(-0.911991\pi\)
0.717417 + 0.696644i \(0.245324\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 61.4000 2.37742
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −1.99168 + 3.44969i −0.0768878 + 0.133174i
\(672\) 0 0
\(673\) 23.8175 + 41.2531i 0.918096 + 1.59019i 0.802304 + 0.596916i \(0.203607\pi\)
0.115792 + 0.993273i \(0.463059\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −4.54664 7.87500i −0.174741 0.302661i 0.765330 0.643638i \(-0.222576\pi\)
−0.940072 + 0.340977i \(0.889242\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 4.83348 0.184948 0.0924741 0.995715i \(-0.470522\pi\)
0.0924741 + 0.995715i \(0.470522\pi\)
\(684\) 0 0
\(685\) −18.7760 −0.717393
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −14.4839 + 25.0868i −0.551791 + 0.955730i
\(690\) 0 0
\(691\) 5.39228 + 9.33969i 0.205132 + 0.355299i 0.950175 0.311718i \(-0.100904\pi\)
−0.745043 + 0.667017i \(0.767571\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −9.85995 17.0779i −0.374009 0.647803i
\(696\) 0 0
\(697\) −2.11774 + 3.66804i −0.0802152 + 0.138937i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 31.8393 1.20255 0.601276 0.799041i \(-0.294659\pi\)
0.601276 + 0.799041i \(0.294659\pi\)
\(702\) 0 0
\(703\) 14.8999 0.561962
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 13.6032 + 23.5614i 0.510879 + 0.884868i 0.999921 + 0.0126076i \(0.00401324\pi\)
−0.489042 + 0.872260i \(0.662653\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 10.1635 + 17.6037i 0.380627 + 0.659265i
\(714\) 0 0
\(715\) −2.31607 + 4.01154i −0.0866160 + 0.150023i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −28.9098 −1.07815 −0.539076 0.842257i \(-0.681227\pi\)
−0.539076 + 0.842257i \(0.681227\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 13.2958 23.0291i 0.493795 0.855278i
\(726\) 0 0
\(727\) 4.29978 + 7.44744i 0.159470 + 0.276210i 0.934678 0.355496i \(-0.115688\pi\)
−0.775208 + 0.631706i \(0.782355\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 0.509920 + 0.883208i 0.0188601 + 0.0326666i
\(732\) 0 0
\(733\) 22.7753 39.4480i 0.841225 1.45705i −0.0476340 0.998865i \(-0.515168\pi\)
0.888859 0.458180i \(-0.151499\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 1.87460 0.0690519
\(738\) 0 0
\(739\) −12.6898 −0.466803 −0.233401 0.972380i \(-0.574986\pi\)
−0.233401 + 0.972380i \(0.574986\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 5.04492 8.73806i 0.185080 0.320568i −0.758523 0.651646i \(-0.774079\pi\)
0.943604 + 0.331078i \(0.107412\pi\)
\(744\) 0 0
\(745\) −13.8146 23.9276i −0.506128 0.876640i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −2.50357 + 4.33631i −0.0913565 + 0.158234i −0.908082 0.418792i \(-0.862454\pi\)
0.816726 + 0.577026i \(0.195787\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 13.1495 0.478561
\(756\) 0 0
\(757\) 6.83620 0.248466 0.124233 0.992253i \(-0.460353\pi\)
0.124233 + 0.992253i \(0.460353\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 13.4377 23.2747i 0.487115 0.843708i −0.512775 0.858523i \(-0.671382\pi\)
0.999890 + 0.0148147i \(0.00471582\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −0.236364 0.409394i −0.00853460 0.0147824i
\(768\) 0 0
\(769\) −2.00631 + 3.47503i −0.0723493 + 0.125313i −0.899931 0.436033i \(-0.856383\pi\)
0.827581 + 0.561346i \(0.189716\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −27.3723 −0.984512 −0.492256 0.870451i \(-0.663828\pi\)
−0.492256 + 0.870451i \(0.663828\pi\)
\(774\) 0 0
\(775\) 8.80343 0.316228
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 5.95729 10.3183i 0.213442 0.369693i
\(780\) 0 0
\(781\) 3.92385 + 6.79631i 0.140407 + 0.243191i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −2.44220 4.23001i −0.0871658 0.150976i
\(786\) 0 0
\(787\) 6.43636 11.1481i 0.229432 0.397387i −0.728208 0.685356i \(-0.759647\pi\)
0.957640 + 0.287969i \(0.0929799\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 17.2772 0.613531
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 8.71139 15.0886i 0.308573 0.534465i −0.669477 0.742833i \(-0.733482\pi\)
0.978050 + 0.208368i \(0.0668152\pi\)
\(798\) 0 0
\(799\) 2.54815 + 4.41352i 0.0901469 + 0.156139i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 1.88398 + 3.26315i 0.0664842 + 0.115154i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −6.08195 −0.213830 −0.106915 0.994268i \(-0.534097\pi\)
−0.106915 + 0.994268i \(0.534097\pi\)
\(810\) 0 0
\(811\) 14.6219 0.513443 0.256722 0.966485i \(-0.417358\pi\)
0.256722 + 0.966485i \(0.417358\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 3.13236 5.42540i 0.109722 0.190044i
\(816\) 0 0
\(817\) −1.43443 2.48450i −0.0501842 0.0869216i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −4.87162 8.43789i −0.170021 0.294484i 0.768406 0.639962i \(-0.221050\pi\)
−0.938427 + 0.345478i \(0.887717\pi\)
\(822\) 0 0
\(823\) −5.38983 + 9.33546i −0.187878 + 0.325414i −0.944542 0.328389i \(-0.893494\pi\)
0.756665 + 0.653803i \(0.226827\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −13.0521 −0.453867 −0.226933 0.973910i \(-0.572870\pi\)
−0.226933 + 0.973910i \(0.572870\pi\)
\(828\) 0 0
\(829\) −49.1095 −1.70564 −0.852822 0.522201i \(-0.825111\pi\)
−0.852822 + 0.522201i \(0.825111\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −12.6154 21.8506i −0.436575 0.756170i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 12.0830 + 20.9284i 0.417151 + 0.722527i 0.995652 0.0931549i \(-0.0296952\pi\)
−0.578500 + 0.815682i \(0.696362\pi\)
\(840\) 0 0
\(841\) −35.4341 + 61.3737i −1.22187 + 2.11633i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0.208912 0.00718678
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 27.0243 46.8075i 0.926382 1.60454i
\(852\) 0 0
\(853\) 2.72681 + 4.72297i 0.0933641 + 0.161711i 0.908925 0.416960i \(-0.136905\pi\)
−0.815561 + 0.578672i \(0.803571\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 16.4194 + 28.4393i 0.560876 + 0.971466i 0.997420 + 0.0717835i \(0.0228691\pi\)
−0.436544 + 0.899683i \(0.643798\pi\)
\(858\) 0 0
\(859\) −26.3299 + 45.6048i −0.898365 + 1.55601i −0.0687820 + 0.997632i \(0.521911\pi\)
−0.829583 + 0.558383i \(0.811422\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 48.8189 1.66182 0.830908 0.556410i \(-0.187822\pi\)
0.830908 + 0.556410i \(0.187822\pi\)
\(864\) 0 0
\(865\) 19.6089 0.666722
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 6.57746 11.3925i 0.223125 0.386464i
\(870\) 0 0
\(871\) −4.06540 7.04148i −0.137751 0.238591i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 12.5373 21.7152i 0.423353 0.733269i −0.572912 0.819617i \(-0.694186\pi\)
0.996265 + 0.0863480i \(0.0275197\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 16.2437 0.547263 0.273632 0.961835i \(-0.411775\pi\)
0.273632 + 0.961835i \(0.411775\pi\)
\(882\) 0 0
\(883\) 29.7137 0.999945 0.499973 0.866041i \(-0.333343\pi\)
0.499973 + 0.866041i \(0.333343\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −7.87353 + 13.6374i −0.264367 + 0.457897i −0.967398 0.253262i \(-0.918496\pi\)
0.703030 + 0.711160i \(0.251830\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −7.16803 12.4154i −0.239869 0.415465i
\(894\) 0 0
\(895\) 18.1616 31.4568i 0.607076 1.05149i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −33.0623 −1.10269
\(900\) 0 0
\(901\) −4.81228 −0.160320
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 12.2539 21.2244i 0.407333 0.705522i
\(906\) 0 0
\(907\) 1.29001 + 2.23437i 0.0428342 + 0.0741910i 0.886648 0.462446i \(-0.153028\pi\)
−0.843813 + 0.536637i \(0.819695\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −23.2170 40.2130i −0.769214 1.33232i −0.937990 0.346663i \(-0.887315\pi\)
0.168776 0.985654i \(-0.446019\pi\)
\(912\) 0 0
\(913\) −2.64236 + 4.57671i −0.0874495 + 0.151467i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 5.68774 0.187621 0.0938106 0.995590i \(-0.470095\pi\)
0.0938106 + 0.995590i \(0.470095\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 17.0191 29.4780i 0.560191 0.970279i
\(924\) 0 0
\(925\) −11.7040 20.2718i −0.384824 0.666534i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 23.9803 + 41.5350i 0.786767 + 1.36272i 0.927938 + 0.372734i \(0.121580\pi\)
−0.141172 + 0.989985i \(0.545087\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −0.769516 −0.0251659
\(936\) 0 0
\(937\) −25.3542 −0.828285 −0.414142 0.910212i \(-0.635918\pi\)
−0.414142 + 0.910212i \(0.635918\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 1.25651 2.17634i 0.0409611 0.0709468i −0.844818 0.535054i \(-0.820291\pi\)
0.885779 + 0.464107i \(0.153625\pi\)
\(942\) 0 0
\(943\) −21.6097 37.4292i −0.703710 1.21886i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 7.26537 + 12.5840i 0.236093 + 0.408925i 0.959590 0.281403i \(-0.0907997\pi\)
−0.723497 + 0.690328i \(0.757466\pi\)
\(948\) 0 0
\(949\) 8.17147 14.1534i 0.265257 0.459439i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 36.5564 1.18418 0.592089 0.805873i \(-0.298303\pi\)
0.592089 + 0.805873i \(0.298303\pi\)
\(954\) 0 0
\(955\) 16.5321 0.534966
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 10.0272 + 17.3676i 0.323458 + 0.560246i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −0.573726 0.993722i −0.0184689 0.0319890i
\(966\) 0 0
\(967\) 8.06111 13.9623i 0.259228 0.448996i −0.706807 0.707406i \(-0.749865\pi\)
0.966035 + 0.258410i \(0.0831986\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 17.2020 0.552038 0.276019 0.961152i \(-0.410985\pi\)
0.276019 + 0.961152i \(0.410985\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 20.1225 34.8532i 0.643776 1.11505i −0.340806 0.940133i \(-0.610700\pi\)
0.984583 0.174920i \(-0.0559666\pi\)
\(978\) 0 0
\(979\) −0.443873 0.768810i −0.0141862 0.0245713i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 10.2760 + 17.7985i 0.327753 + 0.567685i 0.982066 0.188539i \(-0.0603753\pi\)
−0.654313 + 0.756224i \(0.727042\pi\)
\(984\) 0 0
\(985\) 7.89065 13.6670i 0.251417 0.435467i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −10.4066 −0.330910
\(990\) 0 0
\(991\) 29.9744 0.952167 0.476083 0.879400i \(-0.342056\pi\)
0.476083 + 0.879400i \(0.342056\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −4.36537 + 7.56105i −0.138392 + 0.239701i
\(996\) 0 0
\(997\) 6.01944 + 10.4260i 0.190638 + 0.330194i 0.945462 0.325733i \(-0.105611\pi\)
−0.754824 + 0.655927i \(0.772278\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5292.2.j.h.1765.3 14
3.2 odd 2 1764.2.j.g.589.1 14
7.2 even 3 756.2.l.b.361.5 14
7.3 odd 6 5292.2.i.i.1549.5 14
7.4 even 3 756.2.i.b.37.3 14
7.5 odd 6 5292.2.l.i.361.3 14
7.6 odd 2 5292.2.j.g.1765.5 14
9.2 odd 6 1764.2.j.g.1177.1 14
9.7 even 3 inner 5292.2.j.h.3529.3 14
21.2 odd 6 252.2.l.b.193.5 yes 14
21.5 even 6 1764.2.l.i.949.3 14
21.11 odd 6 252.2.i.b.121.4 yes 14
21.17 even 6 1764.2.i.i.373.4 14
21.20 even 2 1764.2.j.h.589.7 14
28.11 odd 6 3024.2.q.j.2305.3 14
28.23 odd 6 3024.2.t.j.1873.5 14
63.2 odd 6 252.2.i.b.25.4 14
63.4 even 3 2268.2.k.f.1297.3 14
63.11 odd 6 252.2.l.b.205.5 yes 14
63.16 even 3 756.2.i.b.613.3 14
63.20 even 6 1764.2.j.h.1177.7 14
63.23 odd 6 2268.2.k.e.1621.5 14
63.25 even 3 756.2.l.b.289.5 14
63.32 odd 6 2268.2.k.e.1297.5 14
63.34 odd 6 5292.2.j.g.3529.5 14
63.38 even 6 1764.2.l.i.961.3 14
63.47 even 6 1764.2.i.i.1537.4 14
63.52 odd 6 5292.2.l.i.3313.3 14
63.58 even 3 2268.2.k.f.1621.3 14
63.61 odd 6 5292.2.i.i.2125.5 14
84.11 even 6 1008.2.q.j.625.4 14
84.23 even 6 1008.2.t.j.193.3 14
252.11 even 6 1008.2.t.j.961.3 14
252.79 odd 6 3024.2.q.j.2881.3 14
252.151 odd 6 3024.2.t.j.289.5 14
252.191 even 6 1008.2.q.j.529.4 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
252.2.i.b.25.4 14 63.2 odd 6
252.2.i.b.121.4 yes 14 21.11 odd 6
252.2.l.b.193.5 yes 14 21.2 odd 6
252.2.l.b.205.5 yes 14 63.11 odd 6
756.2.i.b.37.3 14 7.4 even 3
756.2.i.b.613.3 14 63.16 even 3
756.2.l.b.289.5 14 63.25 even 3
756.2.l.b.361.5 14 7.2 even 3
1008.2.q.j.529.4 14 252.191 even 6
1008.2.q.j.625.4 14 84.11 even 6
1008.2.t.j.193.3 14 84.23 even 6
1008.2.t.j.961.3 14 252.11 even 6
1764.2.i.i.373.4 14 21.17 even 6
1764.2.i.i.1537.4 14 63.47 even 6
1764.2.j.g.589.1 14 3.2 odd 2
1764.2.j.g.1177.1 14 9.2 odd 6
1764.2.j.h.589.7 14 21.20 even 2
1764.2.j.h.1177.7 14 63.20 even 6
1764.2.l.i.949.3 14 21.5 even 6
1764.2.l.i.961.3 14 63.38 even 6
2268.2.k.e.1297.5 14 63.32 odd 6
2268.2.k.e.1621.5 14 63.23 odd 6
2268.2.k.f.1297.3 14 63.4 even 3
2268.2.k.f.1621.3 14 63.58 even 3
3024.2.q.j.2305.3 14 28.11 odd 6
3024.2.q.j.2881.3 14 252.79 odd 6
3024.2.t.j.289.5 14 252.151 odd 6
3024.2.t.j.1873.5 14 28.23 odd 6
5292.2.i.i.1549.5 14 7.3 odd 6
5292.2.i.i.2125.5 14 63.61 odd 6
5292.2.j.g.1765.5 14 7.6 odd 2
5292.2.j.g.3529.5 14 63.34 odd 6
5292.2.j.h.1765.3 14 1.1 even 1 trivial
5292.2.j.h.3529.3 14 9.7 even 3 inner
5292.2.l.i.361.3 14 7.5 odd 6
5292.2.l.i.3313.3 14 63.52 odd 6