Properties

Label 5292.2.l.i.3313.3
Level $5292$
Weight $2$
Character 5292.3313
Analytic conductor $42.257$
Analytic rank $0$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5292,2,Mod(361,5292)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5292, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 2, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5292.361"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 5292 = 2^{2} \cdot 3^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5292.l (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [14,0,0,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(42.2568327497\)
Analytic rank: \(0\)
Dimension: \(14\)
Relative dimension: \(7\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} - 5x^{12} - 3x^{11} + 7x^{10} + 30x^{9} - 117x^{7} + 270x^{5} + 189x^{4} - 243x^{3} - 1215x^{2} + 2187 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 3^{8} \)
Twist minimal: no (minimal twist has level 252)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 3313.3
Root \(1.13119 - 1.31165i\) of defining polynomial
Character \(\chi\) \(=\) 5292.3313
Dual form 5292.2.l.i.361.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.52940 q^{5} -0.835636 q^{11} +(-1.81222 - 3.13886i) q^{13} +(0.301057 + 0.521446i) q^{17} +(-0.846884 + 1.46685i) q^{19} +6.14405 q^{23} -2.66092 q^{25} +(-4.99671 + 8.65455i) q^{29} +(-1.65421 + 2.86517i) q^{31} +(4.39846 - 7.61835i) q^{37} +(3.51718 + 6.09194i) q^{41} +(0.846884 - 1.46685i) q^{43} +(-4.23200 - 7.33004i) q^{47} +(3.99616 + 6.92155i) q^{53} +1.27803 q^{55} +(-0.0652138 + 0.112954i) q^{59} +(-2.38343 - 4.12822i) q^{61} +(2.77162 + 4.80059i) q^{65} +(1.12166 - 1.94278i) q^{67} +9.39130 q^{71} +(2.25454 + 3.90498i) q^{73} +(-7.87120 - 13.6333i) q^{79} +(-3.16210 + 5.47692i) q^{83} +(-0.460438 - 0.797501i) q^{85} +(-0.531180 + 0.920030i) q^{89} +(1.29523 - 2.24340i) q^{95} +(7.76364 - 13.4470i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q + 4 q^{5} + 4 q^{11} - 2 q^{13} + 2 q^{17} - 7 q^{19} + 22 q^{23} + 18 q^{25} - q^{29} + q^{31} + 10 q^{37} - 33 q^{41} + 7 q^{43} - 3 q^{47} + 15 q^{53} + 28 q^{55} - 14 q^{59} + 10 q^{61} - 15 q^{65}+ \cdots + 18 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/5292\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(1081\) \(2647\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −1.52940 −0.683970 −0.341985 0.939705i \(-0.611099\pi\)
−0.341985 + 0.939705i \(0.611099\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −0.835636 −0.251954 −0.125977 0.992033i \(-0.540207\pi\)
−0.125977 + 0.992033i \(0.540207\pi\)
\(12\) 0 0
\(13\) −1.81222 3.13886i −0.502620 0.870563i −0.999995 0.00302796i \(-0.999036\pi\)
0.497375 0.867535i \(-0.334297\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0.301057 + 0.521446i 0.0730170 + 0.126469i 0.900222 0.435431i \(-0.143404\pi\)
−0.827205 + 0.561900i \(0.810071\pi\)
\(18\) 0 0
\(19\) −0.846884 + 1.46685i −0.194289 + 0.336518i −0.946667 0.322213i \(-0.895573\pi\)
0.752379 + 0.658731i \(0.228906\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 6.14405 1.28112 0.640561 0.767907i \(-0.278702\pi\)
0.640561 + 0.767907i \(0.278702\pi\)
\(24\) 0 0
\(25\) −2.66092 −0.532184
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −4.99671 + 8.65455i −0.927865 + 1.60711i −0.140977 + 0.990013i \(0.545024\pi\)
−0.786888 + 0.617096i \(0.788309\pi\)
\(30\) 0 0
\(31\) −1.65421 + 2.86517i −0.297104 + 0.514599i −0.975472 0.220123i \(-0.929354\pi\)
0.678368 + 0.734722i \(0.262688\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 4.39846 7.61835i 0.723102 1.25245i −0.236649 0.971595i \(-0.576049\pi\)
0.959751 0.280854i \(-0.0906177\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 3.51718 + 6.09194i 0.549291 + 0.951401i 0.998323 + 0.0578850i \(0.0184357\pi\)
−0.449032 + 0.893516i \(0.648231\pi\)
\(42\) 0 0
\(43\) 0.846884 1.46685i 0.129149 0.223692i −0.794198 0.607659i \(-0.792109\pi\)
0.923347 + 0.383967i \(0.125442\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −4.23200 7.33004i −0.617301 1.06920i −0.989976 0.141235i \(-0.954893\pi\)
0.372675 0.927962i \(-0.378441\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 3.99616 + 6.92155i 0.548915 + 0.950748i 0.998349 + 0.0574350i \(0.0182922\pi\)
−0.449434 + 0.893313i \(0.648374\pi\)
\(54\) 0 0
\(55\) 1.27803 0.172329
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −0.0652138 + 0.112954i −0.00849011 + 0.0147053i −0.870239 0.492629i \(-0.836036\pi\)
0.861749 + 0.507335i \(0.169369\pi\)
\(60\) 0 0
\(61\) −2.38343 4.12822i −0.305166 0.528564i 0.672132 0.740431i \(-0.265379\pi\)
−0.977298 + 0.211868i \(0.932045\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 2.77162 + 4.80059i 0.343777 + 0.595440i
\(66\) 0 0
\(67\) 1.12166 1.94278i 0.137033 0.237348i −0.789339 0.613957i \(-0.789577\pi\)
0.926372 + 0.376609i \(0.122910\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 9.39130 1.11454 0.557271 0.830331i \(-0.311848\pi\)
0.557271 + 0.830331i \(0.311848\pi\)
\(72\) 0 0
\(73\) 2.25454 + 3.90498i 0.263874 + 0.457044i 0.967268 0.253757i \(-0.0816662\pi\)
−0.703394 + 0.710800i \(0.748333\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −7.87120 13.6333i −0.885580 1.53387i −0.845048 0.534691i \(-0.820428\pi\)
−0.0405317 0.999178i \(-0.512905\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −3.16210 + 5.47692i −0.347085 + 0.601170i −0.985730 0.168332i \(-0.946162\pi\)
0.638645 + 0.769502i \(0.279495\pi\)
\(84\) 0 0
\(85\) −0.460438 0.797501i −0.0499415 0.0865011i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −0.531180 + 0.920030i −0.0563049 + 0.0975230i −0.892804 0.450445i \(-0.851265\pi\)
0.836499 + 0.547968i \(0.184599\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 1.29523 2.24340i 0.132888 0.230168i
\(96\) 0 0
\(97\) 7.76364 13.4470i 0.788279 1.36534i −0.138742 0.990329i \(-0.544306\pi\)
0.927021 0.375010i \(-0.122361\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 19.5151 1.94183 0.970914 0.239427i \(-0.0769597\pi\)
0.970914 + 0.239427i \(0.0769597\pi\)
\(102\) 0 0
\(103\) 1.82354 0.179679 0.0898394 0.995956i \(-0.471365\pi\)
0.0898394 + 0.995956i \(0.471365\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 5.27078 9.12926i 0.509546 0.882559i −0.490393 0.871501i \(-0.663147\pi\)
0.999939 0.0110578i \(-0.00351989\pi\)
\(108\) 0 0
\(109\) 6.30442 + 10.9196i 0.603854 + 1.04591i 0.992231 + 0.124406i \(0.0397025\pi\)
−0.388377 + 0.921501i \(0.626964\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −7.76452 13.4485i −0.730424 1.26513i −0.956702 0.291069i \(-0.905989\pi\)
0.226278 0.974063i \(-0.427344\pi\)
\(114\) 0 0
\(115\) −9.39673 −0.876250
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −10.3017 −0.936519
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 11.7166 1.04797
\(126\) 0 0
\(127\) −10.8966 −0.966919 −0.483460 0.875367i \(-0.660620\pi\)
−0.483460 + 0.875367i \(0.660620\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 19.4618 1.70038 0.850191 0.526474i \(-0.176486\pi\)
0.850191 + 0.526474i \(0.176486\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −12.2767 −1.04887 −0.524433 0.851452i \(-0.675723\pi\)
−0.524433 + 0.851452i \(0.675723\pi\)
\(138\) 0 0
\(139\) 6.44692 + 11.1664i 0.546821 + 0.947121i 0.998490 + 0.0549357i \(0.0174954\pi\)
−0.451669 + 0.892185i \(0.649171\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 1.51436 + 2.62295i 0.126637 + 0.219342i
\(144\) 0 0
\(145\) 7.64198 13.2363i 0.634632 1.09922i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 18.0653 1.47997 0.739986 0.672623i \(-0.234832\pi\)
0.739986 + 0.672623i \(0.234832\pi\)
\(150\) 0 0
\(151\) 8.59782 0.699681 0.349840 0.936809i \(-0.386236\pi\)
0.349840 + 0.936809i \(0.386236\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 2.52995 4.38200i 0.203210 0.351971i
\(156\) 0 0
\(157\) 1.59683 2.76579i 0.127441 0.220734i −0.795244 0.606290i \(-0.792657\pi\)
0.922684 + 0.385556i \(0.125990\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 2.04809 3.54740i 0.160419 0.277854i −0.774600 0.632451i \(-0.782049\pi\)
0.935019 + 0.354598i \(0.115382\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 8.24859 + 14.2870i 0.638295 + 1.10556i 0.985807 + 0.167883i \(0.0536932\pi\)
−0.347512 + 0.937676i \(0.612973\pi\)
\(168\) 0 0
\(169\) −0.0682984 + 0.118296i −0.00525372 + 0.00909971i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 6.41063 + 11.1035i 0.487391 + 0.844186i 0.999895 0.0144987i \(-0.00461525\pi\)
−0.512504 + 0.858685i \(0.671282\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 11.8750 + 20.5680i 0.887576 + 1.53733i 0.842732 + 0.538333i \(0.180946\pi\)
0.0448441 + 0.998994i \(0.485721\pi\)
\(180\) 0 0
\(181\) 16.0244 1.19108 0.595542 0.803324i \(-0.296937\pi\)
0.595542 + 0.803324i \(0.296937\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −6.72702 + 11.6515i −0.494580 + 0.856638i
\(186\) 0 0
\(187\) −0.251574 0.435739i −0.0183969 0.0318644i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −5.40475 9.36130i −0.391074 0.677360i 0.601517 0.798860i \(-0.294563\pi\)
−0.992591 + 0.121500i \(0.961230\pi\)
\(192\) 0 0
\(193\) −0.375130 + 0.649745i −0.0270025 + 0.0467696i −0.879211 0.476433i \(-0.841930\pi\)
0.852208 + 0.523203i \(0.175263\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −10.3186 −0.735169 −0.367584 0.929990i \(-0.619815\pi\)
−0.367584 + 0.929990i \(0.619815\pi\)
\(198\) 0 0
\(199\) 2.85430 + 4.94379i 0.202336 + 0.350456i 0.949281 0.314430i \(-0.101813\pi\)
−0.746945 + 0.664886i \(0.768480\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −5.37919 9.31704i −0.375699 0.650730i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0.707687 1.22575i 0.0489517 0.0847869i
\(210\) 0 0
\(211\) 2.73050 + 4.72937i 0.187976 + 0.325583i 0.944575 0.328295i \(-0.106474\pi\)
−0.756600 + 0.653878i \(0.773141\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −1.29523 + 2.24340i −0.0883338 + 0.152999i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 1.09116 1.88995i 0.0733996 0.127132i
\(222\) 0 0
\(223\) 9.00530 15.5976i 0.603040 1.04450i −0.389318 0.921103i \(-0.627289\pi\)
0.992358 0.123392i \(-0.0393772\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −18.1740 −1.20625 −0.603125 0.797647i \(-0.706078\pi\)
−0.603125 + 0.797647i \(0.706078\pi\)
\(228\) 0 0
\(229\) 15.4278 1.01950 0.509750 0.860323i \(-0.329738\pi\)
0.509750 + 0.860323i \(0.329738\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 3.20892 5.55801i 0.210223 0.364117i −0.741561 0.670885i \(-0.765914\pi\)
0.951784 + 0.306768i \(0.0992476\pi\)
\(234\) 0 0
\(235\) 6.47244 + 11.2106i 0.422216 + 0.731299i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 2.33317 + 4.04118i 0.150920 + 0.261402i 0.931566 0.363572i \(-0.118443\pi\)
−0.780646 + 0.624974i \(0.785110\pi\)
\(240\) 0 0
\(241\) 18.8572 1.21470 0.607348 0.794436i \(-0.292233\pi\)
0.607348 + 0.794436i \(0.292233\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 6.13897 0.390613
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 15.7016 0.991074 0.495537 0.868587i \(-0.334971\pi\)
0.495537 + 0.868587i \(0.334971\pi\)
\(252\) 0 0
\(253\) −5.13419 −0.322784
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 9.21785 0.574993 0.287497 0.957782i \(-0.407177\pi\)
0.287497 + 0.957782i \(0.407177\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −0.482621 −0.0297597 −0.0148799 0.999889i \(-0.504737\pi\)
−0.0148799 + 0.999889i \(0.504737\pi\)
\(264\) 0 0
\(265\) −6.11174 10.5859i −0.375442 0.650284i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −3.94288 6.82927i −0.240402 0.416388i 0.720427 0.693531i \(-0.243946\pi\)
−0.960829 + 0.277143i \(0.910612\pi\)
\(270\) 0 0
\(271\) −12.7947 + 22.1610i −0.777220 + 1.34618i 0.156318 + 0.987707i \(0.450037\pi\)
−0.933538 + 0.358478i \(0.883296\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 2.22356 0.134086
\(276\) 0 0
\(277\) 8.36931 0.502863 0.251432 0.967875i \(-0.419099\pi\)
0.251432 + 0.967875i \(0.419099\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 0.551848 0.955828i 0.0329205 0.0570199i −0.849096 0.528239i \(-0.822853\pi\)
0.882016 + 0.471219i \(0.156186\pi\)
\(282\) 0 0
\(283\) 1.45369 2.51786i 0.0864128 0.149671i −0.819580 0.572965i \(-0.805793\pi\)
0.905992 + 0.423294i \(0.139126\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 8.31873 14.4085i 0.489337 0.847557i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −12.4381 21.5434i −0.726642 1.25858i −0.958295 0.285782i \(-0.907747\pi\)
0.231653 0.972798i \(-0.425587\pi\)
\(294\) 0 0
\(295\) 0.0997383 0.172752i 0.00580699 0.0100580i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −11.1344 19.2853i −0.643918 1.11530i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 3.64522 + 6.31371i 0.208725 + 0.361522i
\(306\) 0 0
\(307\) 23.7968 1.35816 0.679078 0.734066i \(-0.262380\pi\)
0.679078 + 0.734066i \(0.262380\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −9.35677 + 16.2064i −0.530574 + 0.918981i 0.468790 + 0.883310i \(0.344690\pi\)
−0.999364 + 0.0356711i \(0.988643\pi\)
\(312\) 0 0
\(313\) −9.65797 16.7281i −0.545901 0.945527i −0.998550 0.0538387i \(-0.982854\pi\)
0.452649 0.891689i \(-0.350479\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −0.897542 1.55459i −0.0504110 0.0873144i 0.839719 0.543021i \(-0.182720\pi\)
−0.890130 + 0.455707i \(0.849386\pi\)
\(318\) 0 0
\(319\) 4.17543 7.23205i 0.233779 0.404917i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −1.01984 −0.0567455
\(324\) 0 0
\(325\) 4.82218 + 8.35226i 0.267487 + 0.463300i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 7.06833 + 12.2427i 0.388511 + 0.672920i 0.992249 0.124262i \(-0.0396563\pi\)
−0.603739 + 0.797182i \(0.706323\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −1.71547 + 2.97129i −0.0937264 + 0.162339i
\(336\) 0 0
\(337\) −2.94072 5.09348i −0.160191 0.277459i 0.774746 0.632273i \(-0.217878\pi\)
−0.934937 + 0.354813i \(0.884544\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 1.38231 2.39424i 0.0748565 0.129655i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −3.17593 + 5.50087i −0.170493 + 0.295302i −0.938592 0.345028i \(-0.887869\pi\)
0.768099 + 0.640331i \(0.221203\pi\)
\(348\) 0 0
\(349\) −10.4321 + 18.0689i −0.558416 + 0.967205i 0.439213 + 0.898383i \(0.355257\pi\)
−0.997629 + 0.0688222i \(0.978076\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −2.14229 −0.114023 −0.0570114 0.998374i \(-0.518157\pi\)
−0.0570114 + 0.998374i \(0.518157\pi\)
\(354\) 0 0
\(355\) −14.3631 −0.762314
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 10.6198 18.3940i 0.560492 0.970800i −0.436962 0.899480i \(-0.643946\pi\)
0.997454 0.0713198i \(-0.0227211\pi\)
\(360\) 0 0
\(361\) 8.06557 + 13.9700i 0.424504 + 0.735262i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −3.44811 5.97230i −0.180482 0.312605i
\(366\) 0 0
\(367\) 32.4107 1.69182 0.845912 0.533323i \(-0.179057\pi\)
0.845912 + 0.533323i \(0.179057\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 33.6202 1.74079 0.870393 0.492358i \(-0.163865\pi\)
0.870393 + 0.492358i \(0.163865\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 36.2206 1.86545
\(378\) 0 0
\(379\) 28.2829 1.45279 0.726396 0.687276i \(-0.241194\pi\)
0.726396 + 0.687276i \(0.241194\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −10.1895 −0.520657 −0.260329 0.965520i \(-0.583831\pi\)
−0.260329 + 0.965520i \(0.583831\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −10.4505 −0.529861 −0.264931 0.964267i \(-0.585349\pi\)
−0.264931 + 0.964267i \(0.585349\pi\)
\(390\) 0 0
\(391\) 1.84971 + 3.20379i 0.0935437 + 0.162022i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 12.0383 + 20.8509i 0.605710 + 1.04912i
\(396\) 0 0
\(397\) 7.25033 12.5579i 0.363884 0.630265i −0.624713 0.780855i \(-0.714784\pi\)
0.988596 + 0.150590i \(0.0481173\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 25.4142 1.26913 0.634563 0.772871i \(-0.281180\pi\)
0.634563 + 0.772871i \(0.281180\pi\)
\(402\) 0 0
\(403\) 11.9912 0.597322
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −3.67551 + 6.36617i −0.182188 + 0.315559i
\(408\) 0 0
\(409\) 6.19535 10.7307i 0.306340 0.530597i −0.671219 0.741259i \(-0.734229\pi\)
0.977559 + 0.210663i \(0.0675622\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 4.83613 8.37642i 0.237396 0.411182i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −15.3596 26.6036i −0.750365 1.29967i −0.947646 0.319323i \(-0.896545\pi\)
0.197281 0.980347i \(-0.436789\pi\)
\(420\) 0 0
\(421\) −2.88912 + 5.00410i −0.140807 + 0.243885i −0.927801 0.373076i \(-0.878303\pi\)
0.786994 + 0.616961i \(0.211636\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −0.801089 1.38753i −0.0388585 0.0673049i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0.210278 + 0.364212i 0.0101287 + 0.0175435i 0.871045 0.491203i \(-0.163443\pi\)
−0.860917 + 0.508746i \(0.830109\pi\)
\(432\) 0 0
\(433\) −30.8208 −1.48115 −0.740576 0.671972i \(-0.765447\pi\)
−0.740576 + 0.671972i \(0.765447\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −5.20330 + 9.01237i −0.248907 + 0.431120i
\(438\) 0 0
\(439\) 1.50590 + 2.60830i 0.0718729 + 0.124488i 0.899722 0.436463i \(-0.143769\pi\)
−0.827849 + 0.560951i \(0.810436\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −9.22141 15.9719i −0.438122 0.758850i 0.559422 0.828883i \(-0.311023\pi\)
−0.997545 + 0.0700326i \(0.977690\pi\)
\(444\) 0 0
\(445\) 0.812388 1.40710i 0.0385109 0.0667028i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 6.80998 0.321383 0.160691 0.987005i \(-0.448628\pi\)
0.160691 + 0.987005i \(0.448628\pi\)
\(450\) 0 0
\(451\) −2.93908 5.09064i −0.138396 0.239709i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −6.18283 10.7090i −0.289220 0.500944i 0.684403 0.729103i \(-0.260063\pi\)
−0.973624 + 0.228159i \(0.926729\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −16.3651 + 28.3453i −0.762201 + 1.32017i 0.179513 + 0.983756i \(0.442548\pi\)
−0.941714 + 0.336415i \(0.890786\pi\)
\(462\) 0 0
\(463\) 9.61023 + 16.6454i 0.446625 + 0.773577i 0.998164 0.0605719i \(-0.0192924\pi\)
−0.551539 + 0.834149i \(0.685959\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 1.50855 2.61289i 0.0698075 0.120910i −0.829009 0.559235i \(-0.811095\pi\)
0.898816 + 0.438325i \(0.144428\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −0.707687 + 1.22575i −0.0325395 + 0.0563600i
\(474\) 0 0
\(475\) 2.25349 3.90316i 0.103397 0.179089i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −25.8972 −1.18327 −0.591635 0.806206i \(-0.701518\pi\)
−0.591635 + 0.806206i \(0.701518\pi\)
\(480\) 0 0
\(481\) −31.8839 −1.45378
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −11.8738 + 20.5659i −0.539159 + 0.933851i
\(486\) 0 0
\(487\) −20.8841 36.1724i −0.946350 1.63913i −0.753025 0.657992i \(-0.771406\pi\)
−0.193326 0.981135i \(-0.561927\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 13.9879 + 24.2278i 0.631265 + 1.09338i 0.987293 + 0.158908i \(0.0507974\pi\)
−0.356028 + 0.934475i \(0.615869\pi\)
\(492\) 0 0
\(493\) −6.01717 −0.271000
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −24.9497 −1.11690 −0.558450 0.829538i \(-0.688604\pi\)
−0.558450 + 0.829538i \(0.688604\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 34.1966 1.52475 0.762376 0.647135i \(-0.224033\pi\)
0.762376 + 0.647135i \(0.224033\pi\)
\(504\) 0 0
\(505\) −29.8465 −1.32815
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 13.6868 0.606659 0.303329 0.952886i \(-0.401902\pi\)
0.303329 + 0.952886i \(0.401902\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −2.78893 −0.122895
\(516\) 0 0
\(517\) 3.53641 + 6.12525i 0.155531 + 0.269388i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −13.3748 23.1658i −0.585960 1.01491i −0.994755 0.102286i \(-0.967384\pi\)
0.408795 0.912626i \(-0.365949\pi\)
\(522\) 0 0
\(523\) 10.6131 18.3824i 0.464079 0.803808i −0.535081 0.844801i \(-0.679719\pi\)
0.999159 + 0.0409928i \(0.0130521\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −1.99204 −0.0867746
\(528\) 0 0
\(529\) 14.7493 0.641275
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 12.7478 22.0799i 0.552170 0.956386i
\(534\) 0 0
\(535\) −8.06116 + 13.9623i −0.348514 + 0.603644i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 10.1269 17.5402i 0.435388 0.754114i −0.561939 0.827178i \(-0.689945\pi\)
0.997327 + 0.0730646i \(0.0232779\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −9.64201 16.7005i −0.413019 0.715369i
\(546\) 0 0
\(547\) −21.9668 + 38.0476i −0.939233 + 1.62680i −0.172327 + 0.985040i \(0.555129\pi\)
−0.766906 + 0.641760i \(0.778205\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −8.46326 14.6588i −0.360547 0.624486i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 4.45483 + 7.71599i 0.188757 + 0.326937i 0.944836 0.327544i \(-0.106221\pi\)
−0.756079 + 0.654480i \(0.772887\pi\)
\(558\) 0 0
\(559\) −6.13897 −0.259651
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 14.2096 24.6118i 0.598865 1.03726i −0.394124 0.919057i \(-0.628952\pi\)
0.992989 0.118207i \(-0.0377146\pi\)
\(564\) 0 0
\(565\) 11.8751 + 20.5683i 0.499589 + 0.865313i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −4.28948 7.42959i −0.179824 0.311465i 0.761996 0.647582i \(-0.224220\pi\)
−0.941820 + 0.336117i \(0.890886\pi\)
\(570\) 0 0
\(571\) −9.68861 + 16.7812i −0.405456 + 0.702270i −0.994374 0.105922i \(-0.966221\pi\)
0.588919 + 0.808192i \(0.299554\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −16.3488 −0.681793
\(576\) 0 0
\(577\) −0.584441 1.01228i −0.0243306 0.0421418i 0.853604 0.520923i \(-0.174412\pi\)
−0.877934 + 0.478781i \(0.841079\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −3.33934 5.78390i −0.138301 0.239545i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −15.5863 + 26.9963i −0.643316 + 1.11426i 0.341372 + 0.939928i \(0.389108\pi\)
−0.984688 + 0.174327i \(0.944225\pi\)
\(588\) 0 0
\(589\) −2.80184 4.85293i −0.115448 0.199962i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −15.1887 + 26.3075i −0.623724 + 1.08032i 0.365062 + 0.930983i \(0.381048\pi\)
−0.988786 + 0.149338i \(0.952286\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −3.65379 + 6.32855i −0.149290 + 0.258577i −0.930965 0.365108i \(-0.881032\pi\)
0.781675 + 0.623685i \(0.214365\pi\)
\(600\) 0 0
\(601\) −4.61461 + 7.99274i −0.188234 + 0.326031i −0.944661 0.328047i \(-0.893610\pi\)
0.756428 + 0.654077i \(0.226943\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 15.7555 0.640552
\(606\) 0 0
\(607\) 17.0674 0.692744 0.346372 0.938097i \(-0.387413\pi\)
0.346372 + 0.938097i \(0.387413\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −15.3387 + 26.5673i −0.620536 + 1.07480i
\(612\) 0 0
\(613\) −0.393059 0.680797i −0.0158755 0.0274972i 0.857979 0.513686i \(-0.171720\pi\)
−0.873854 + 0.486188i \(0.838387\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −23.7960 41.2159i −0.957991 1.65929i −0.727370 0.686246i \(-0.759257\pi\)
−0.230621 0.973044i \(-0.574076\pi\)
\(618\) 0 0
\(619\) −18.9743 −0.762643 −0.381321 0.924443i \(-0.624531\pi\)
−0.381321 + 0.924443i \(0.624531\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −4.61488 −0.184595
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 5.29674 0.211195
\(630\) 0 0
\(631\) 0.300343 0.0119565 0.00597823 0.999982i \(-0.498097\pi\)
0.00597823 + 0.999982i \(0.498097\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 16.6653 0.661344
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −28.1096 −1.11026 −0.555131 0.831763i \(-0.687332\pi\)
−0.555131 + 0.831763i \(0.687332\pi\)
\(642\) 0 0
\(643\) 1.55289 + 2.68968i 0.0612399 + 0.106071i 0.895020 0.446026i \(-0.147161\pi\)
−0.833780 + 0.552097i \(0.813828\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 23.3556 + 40.4532i 0.918205 + 1.59038i 0.802140 + 0.597137i \(0.203695\pi\)
0.116066 + 0.993242i \(0.462972\pi\)
\(648\) 0 0
\(649\) 0.0544950 0.0943881i 0.00213912 0.00370506i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 1.99753 0.0781693 0.0390847 0.999236i \(-0.487556\pi\)
0.0390847 + 0.999236i \(0.487556\pi\)
\(654\) 0 0
\(655\) −29.7649 −1.16301
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −8.37284 + 14.5022i −0.326160 + 0.564925i −0.981746 0.190195i \(-0.939088\pi\)
0.655587 + 0.755120i \(0.272421\pi\)
\(660\) 0 0
\(661\) 6.28870 10.8924i 0.244602 0.423664i −0.717417 0.696644i \(-0.754676\pi\)
0.962020 + 0.272980i \(0.0880093\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −30.7000 + 53.1740i −1.18871 + 2.05890i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 1.99168 + 3.44969i 0.0768878 + 0.133174i
\(672\) 0 0
\(673\) 23.8175 41.2531i 0.918096 1.59019i 0.115792 0.993273i \(-0.463059\pi\)
0.802304 0.596916i \(-0.203607\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 4.54664 + 7.87500i 0.174741 + 0.302661i 0.940072 0.340977i \(-0.110758\pi\)
−0.765330 + 0.643638i \(0.777424\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −2.41674 4.18592i −0.0924741 0.160170i 0.816078 0.577942i \(-0.196144\pi\)
−0.908552 + 0.417773i \(0.862811\pi\)
\(684\) 0 0
\(685\) 18.7760 0.717393
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 14.4839 25.0868i 0.551791 0.955730i
\(690\) 0 0
\(691\) −5.39228 9.33969i −0.205132 0.355299i 0.745043 0.667017i \(-0.232429\pi\)
−0.950175 + 0.311718i \(0.899096\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −9.85995 17.0779i −0.374009 0.647803i
\(696\) 0 0
\(697\) −2.11774 + 3.66804i −0.0802152 + 0.138937i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 31.8393 1.20255 0.601276 0.799041i \(-0.294659\pi\)
0.601276 + 0.799041i \(0.294659\pi\)
\(702\) 0 0
\(703\) 7.44997 + 12.9037i 0.280981 + 0.486673i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 13.6032 + 23.5614i 0.510879 + 0.884868i 0.999921 + 0.0126076i \(0.00401324\pi\)
−0.489042 + 0.872260i \(0.662653\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −10.1635 + 17.6037i −0.380627 + 0.659265i
\(714\) 0 0
\(715\) −2.31607 4.01154i −0.0866160 0.150023i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −14.4549 + 25.0366i −0.539076 + 0.933707i 0.459878 + 0.887982i \(0.347893\pi\)
−0.998954 + 0.0457252i \(0.985440\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 13.2958 23.0291i 0.493795 0.855278i
\(726\) 0 0
\(727\) −4.29978 + 7.44744i −0.159470 + 0.276210i −0.934678 0.355496i \(-0.884312\pi\)
0.775208 + 0.631706i \(0.217645\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 1.01984 0.0377202
\(732\) 0 0
\(733\) 45.5506 1.68245 0.841225 0.540685i \(-0.181835\pi\)
0.841225 + 0.540685i \(0.181835\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −0.937301 + 1.62345i −0.0345259 + 0.0598007i
\(738\) 0 0
\(739\) 6.34491 + 10.9897i 0.233401 + 0.404263i 0.958807 0.284059i \(-0.0916811\pi\)
−0.725405 + 0.688322i \(0.758348\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 5.04492 + 8.73806i 0.185080 + 0.320568i 0.943604 0.331078i \(-0.107412\pi\)
−0.758523 + 0.651646i \(0.774079\pi\)
\(744\) 0 0
\(745\) −27.6292 −1.01226
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 5.00713 0.182713 0.0913565 0.995818i \(-0.470880\pi\)
0.0913565 + 0.995818i \(0.470880\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −13.1495 −0.478561
\(756\) 0 0
\(757\) 6.83620 0.248466 0.124233 0.992253i \(-0.460353\pi\)
0.124233 + 0.992253i \(0.460353\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 26.8753 0.974231 0.487115 0.873338i \(-0.338049\pi\)
0.487115 + 0.873338i \(0.338049\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0.472728 0.0170692
\(768\) 0 0
\(769\) 2.00631 + 3.47503i 0.0723493 + 0.125313i 0.899931 0.436033i \(-0.143617\pi\)
−0.827581 + 0.561346i \(0.810284\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −13.6861 23.7051i −0.492256 0.852612i 0.507704 0.861531i \(-0.330494\pi\)
−0.999960 + 0.00891927i \(0.997161\pi\)
\(774\) 0 0
\(775\) 4.40171 7.62399i 0.158114 0.273862i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −11.9146 −0.426884
\(780\) 0 0
\(781\) −7.84771 −0.280813
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −2.44220 + 4.23001i −0.0871658 + 0.150976i
\(786\) 0 0
\(787\) −6.43636 + 11.1481i −0.229432 + 0.397387i −0.957640 0.287969i \(-0.907020\pi\)
0.728208 + 0.685356i \(0.240353\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −8.63860 + 14.9625i −0.306766 + 0.531334i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −8.71139 15.0886i −0.308573 0.534465i 0.669477 0.742833i \(-0.266518\pi\)
−0.978050 + 0.208368i \(0.933185\pi\)
\(798\) 0 0
\(799\) 2.54815 4.41352i 0.0901469 0.156139i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −1.88398 3.26315i −0.0664842 0.115154i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 3.04097 + 5.26712i 0.106915 + 0.185182i 0.914519 0.404543i \(-0.132569\pi\)
−0.807604 + 0.589725i \(0.799236\pi\)
\(810\) 0 0
\(811\) −14.6219 −0.513443 −0.256722 0.966485i \(-0.582642\pi\)
−0.256722 + 0.966485i \(0.582642\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −3.13236 + 5.42540i −0.109722 + 0.190044i
\(816\) 0 0
\(817\) 1.43443 + 2.48450i 0.0501842 + 0.0869216i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −4.87162 8.43789i −0.170021 0.294484i 0.768406 0.639962i \(-0.221050\pi\)
−0.938427 + 0.345478i \(0.887717\pi\)
\(822\) 0 0
\(823\) −5.38983 + 9.33546i −0.187878 + 0.325414i −0.944542 0.328389i \(-0.893494\pi\)
0.756665 + 0.653803i \(0.226827\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −13.0521 −0.453867 −0.226933 0.973910i \(-0.572870\pi\)
−0.226933 + 0.973910i \(0.572870\pi\)
\(828\) 0 0
\(829\) −24.5548 42.5301i −0.852822 1.47713i −0.878651 0.477465i \(-0.841556\pi\)
0.0258286 0.999666i \(-0.491778\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −12.6154 21.8506i −0.436575 0.756170i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −12.0830 + 20.9284i −0.417151 + 0.722527i −0.995652 0.0931549i \(-0.970305\pi\)
0.578500 + 0.815682i \(0.303638\pi\)
\(840\) 0 0
\(841\) −35.4341 61.3737i −1.22187 2.11633i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0.104456 0.180923i 0.00359339 0.00622393i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 27.0243 46.8075i 0.926382 1.60454i
\(852\) 0 0
\(853\) −2.72681 + 4.72297i −0.0933641 + 0.161711i −0.908925 0.416960i \(-0.863095\pi\)
0.815561 + 0.578672i \(0.196429\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 32.8388 1.12175 0.560876 0.827900i \(-0.310464\pi\)
0.560876 + 0.827900i \(0.310464\pi\)
\(858\) 0 0
\(859\) −52.6598 −1.79673 −0.898365 0.439249i \(-0.855245\pi\)
−0.898365 + 0.439249i \(0.855245\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −24.4095 + 42.2784i −0.830908 + 1.43917i 0.0664116 + 0.997792i \(0.478845\pi\)
−0.897319 + 0.441382i \(0.854488\pi\)
\(864\) 0 0
\(865\) −9.80445 16.9818i −0.333361 0.577398i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 6.57746 + 11.3925i 0.223125 + 0.386464i
\(870\) 0 0
\(871\) −8.13080 −0.275502
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −25.0745 −0.846706 −0.423353 0.905965i \(-0.639147\pi\)
−0.423353 + 0.905965i \(0.639147\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −16.2437 −0.547263 −0.273632 0.961835i \(-0.588225\pi\)
−0.273632 + 0.961835i \(0.588225\pi\)
\(882\) 0 0
\(883\) 29.7137 0.999945 0.499973 0.866041i \(-0.333343\pi\)
0.499973 + 0.866041i \(0.333343\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −15.7471 −0.528734 −0.264367 0.964422i \(-0.585163\pi\)
−0.264367 + 0.964422i \(0.585163\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 14.3361 0.479738
\(894\) 0 0
\(895\) −18.1616 31.4568i −0.607076 1.05149i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −16.5312 28.6328i −0.551345 0.954957i
\(900\) 0 0
\(901\) −2.40614 + 4.16756i −0.0801602 + 0.138842i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −24.5078 −0.814666
\(906\) 0 0
\(907\) −2.58003 −0.0856684 −0.0428342 0.999082i \(-0.513639\pi\)
−0.0428342 + 0.999082i \(0.513639\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −23.2170 + 40.2130i −0.769214 + 1.33232i 0.168776 + 0.985654i \(0.446019\pi\)
−0.937990 + 0.346663i \(0.887315\pi\)
\(912\) 0 0
\(913\) 2.64236 4.57671i 0.0874495 0.151467i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −2.84387 + 4.92572i −0.0938106 + 0.162485i −0.909112 0.416553i \(-0.863238\pi\)
0.815301 + 0.579037i \(0.196571\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −17.0191 29.4780i −0.560191 0.970279i
\(924\) 0 0
\(925\) −11.7040 + 20.2718i −0.384824 + 0.666534i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −23.9803 41.5350i −0.786767 1.36272i −0.927938 0.372734i \(-0.878420\pi\)
0.141172 0.989985i \(-0.454913\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0.384758 + 0.666421i 0.0125829 + 0.0217943i
\(936\) 0 0
\(937\) 25.3542 0.828285 0.414142 0.910212i \(-0.364082\pi\)
0.414142 + 0.910212i \(0.364082\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −1.25651 + 2.17634i −0.0409611 + 0.0709468i −0.885779 0.464107i \(-0.846375\pi\)
0.844818 + 0.535054i \(0.179709\pi\)
\(942\) 0 0
\(943\) 21.6097 + 37.4292i 0.703710 + 1.21886i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 7.26537 + 12.5840i 0.236093 + 0.408925i 0.959590 0.281403i \(-0.0907997\pi\)
−0.723497 + 0.690328i \(0.757466\pi\)
\(948\) 0 0
\(949\) 8.17147 14.1534i 0.265257 0.459439i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 36.5564 1.18418 0.592089 0.805873i \(-0.298303\pi\)
0.592089 + 0.805873i \(0.298303\pi\)
\(954\) 0 0
\(955\) 8.26605 + 14.3172i 0.267483 + 0.463294i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 10.0272 + 17.3676i 0.323458 + 0.560246i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0.573726 0.993722i 0.0184689 0.0319890i
\(966\) 0 0
\(967\) 8.06111 + 13.9623i 0.259228 + 0.448996i 0.966035 0.258410i \(-0.0831986\pi\)
−0.706807 + 0.707406i \(0.749865\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 8.60100 14.8974i 0.276019 0.478079i −0.694373 0.719616i \(-0.744318\pi\)
0.970392 + 0.241537i \(0.0776514\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 20.1225 34.8532i 0.643776 1.11505i −0.340806 0.940133i \(-0.610700\pi\)
0.984583 0.174920i \(-0.0559666\pi\)
\(978\) 0 0
\(979\) 0.443873 0.768810i 0.0141862 0.0245713i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 20.5520 0.655506 0.327753 0.944763i \(-0.393709\pi\)
0.327753 + 0.944763i \(0.393709\pi\)
\(984\) 0 0
\(985\) 15.7813 0.502834
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 5.20330 9.01237i 0.165455 0.286577i
\(990\) 0 0
\(991\) −14.9872 25.9586i −0.476083 0.824601i 0.523541 0.852000i \(-0.324611\pi\)
−0.999625 + 0.0273998i \(0.991277\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −4.36537 7.56105i −0.138392 0.239701i
\(996\) 0 0
\(997\) 12.0389 0.381275 0.190638 0.981660i \(-0.438944\pi\)
0.190638 + 0.981660i \(0.438944\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5292.2.l.i.3313.3 14
3.2 odd 2 1764.2.l.i.961.3 14
7.2 even 3 5292.2.j.g.3529.5 14
7.3 odd 6 756.2.i.b.613.3 14
7.4 even 3 5292.2.i.i.2125.5 14
7.5 odd 6 5292.2.j.h.3529.3 14
7.6 odd 2 756.2.l.b.289.5 14
9.4 even 3 5292.2.i.i.1549.5 14
9.5 odd 6 1764.2.i.i.373.4 14
21.2 odd 6 1764.2.j.h.1177.7 14
21.5 even 6 1764.2.j.g.1177.1 14
21.11 odd 6 1764.2.i.i.1537.4 14
21.17 even 6 252.2.i.b.25.4 14
21.20 even 2 252.2.l.b.205.5 yes 14
28.3 even 6 3024.2.q.j.2881.3 14
28.27 even 2 3024.2.t.j.289.5 14
63.4 even 3 inner 5292.2.l.i.361.3 14
63.5 even 6 1764.2.j.g.589.1 14
63.13 odd 6 756.2.i.b.37.3 14
63.20 even 6 2268.2.k.e.1297.5 14
63.23 odd 6 1764.2.j.h.589.7 14
63.31 odd 6 756.2.l.b.361.5 14
63.32 odd 6 1764.2.l.i.949.3 14
63.34 odd 6 2268.2.k.f.1297.3 14
63.38 even 6 2268.2.k.e.1621.5 14
63.40 odd 6 5292.2.j.h.1765.3 14
63.41 even 6 252.2.i.b.121.4 yes 14
63.52 odd 6 2268.2.k.f.1621.3 14
63.58 even 3 5292.2.j.g.1765.5 14
63.59 even 6 252.2.l.b.193.5 yes 14
84.59 odd 6 1008.2.q.j.529.4 14
84.83 odd 2 1008.2.t.j.961.3 14
252.31 even 6 3024.2.t.j.1873.5 14
252.59 odd 6 1008.2.t.j.193.3 14
252.139 even 6 3024.2.q.j.2305.3 14
252.167 odd 6 1008.2.q.j.625.4 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
252.2.i.b.25.4 14 21.17 even 6
252.2.i.b.121.4 yes 14 63.41 even 6
252.2.l.b.193.5 yes 14 63.59 even 6
252.2.l.b.205.5 yes 14 21.20 even 2
756.2.i.b.37.3 14 63.13 odd 6
756.2.i.b.613.3 14 7.3 odd 6
756.2.l.b.289.5 14 7.6 odd 2
756.2.l.b.361.5 14 63.31 odd 6
1008.2.q.j.529.4 14 84.59 odd 6
1008.2.q.j.625.4 14 252.167 odd 6
1008.2.t.j.193.3 14 252.59 odd 6
1008.2.t.j.961.3 14 84.83 odd 2
1764.2.i.i.373.4 14 9.5 odd 6
1764.2.i.i.1537.4 14 21.11 odd 6
1764.2.j.g.589.1 14 63.5 even 6
1764.2.j.g.1177.1 14 21.5 even 6
1764.2.j.h.589.7 14 63.23 odd 6
1764.2.j.h.1177.7 14 21.2 odd 6
1764.2.l.i.949.3 14 63.32 odd 6
1764.2.l.i.961.3 14 3.2 odd 2
2268.2.k.e.1297.5 14 63.20 even 6
2268.2.k.e.1621.5 14 63.38 even 6
2268.2.k.f.1297.3 14 63.34 odd 6
2268.2.k.f.1621.3 14 63.52 odd 6
3024.2.q.j.2305.3 14 252.139 even 6
3024.2.q.j.2881.3 14 28.3 even 6
3024.2.t.j.289.5 14 28.27 even 2
3024.2.t.j.1873.5 14 252.31 even 6
5292.2.i.i.1549.5 14 9.4 even 3
5292.2.i.i.2125.5 14 7.4 even 3
5292.2.j.g.1765.5 14 63.58 even 3
5292.2.j.g.3529.5 14 7.2 even 3
5292.2.j.h.1765.3 14 63.40 odd 6
5292.2.j.h.3529.3 14 7.5 odd 6
5292.2.l.i.361.3 14 63.4 even 3 inner
5292.2.l.i.3313.3 14 1.1 even 1 trivial