Properties

Label 75.8.a.j.1.2
Level $75$
Weight $8$
Character 75.1
Self dual yes
Analytic conductor $23.429$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [75,8,Mod(1,75)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(75, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 8, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("75.1"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Level: \( N \) \(=\) \( 75 = 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 75.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,9] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(23.4288769113\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 81x^{2} - 150x + 400 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{2}\cdot 5^{2} \)
Twist minimal: no (minimal twist has level 15)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-7.26440\) of defining polynomial
Character \(\chi\) \(=\) 75.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.02250 q^{2} +27.0000 q^{3} -118.865 q^{4} -81.6074 q^{6} -1505.28 q^{7} +746.147 q^{8} +729.000 q^{9} +1596.37 q^{11} -3209.34 q^{12} -956.100 q^{13} +4549.69 q^{14} +12959.4 q^{16} +32470.6 q^{17} -2203.40 q^{18} -39168.1 q^{19} -40642.5 q^{21} -4825.04 q^{22} +59361.5 q^{23} +20146.0 q^{24} +2889.81 q^{26} +19683.0 q^{27} +178924. q^{28} +66150.5 q^{29} -19664.1 q^{31} -134677. q^{32} +43102.1 q^{33} -98142.2 q^{34} -86652.2 q^{36} +376045. q^{37} +118386. q^{38} -25814.7 q^{39} +385003. q^{41} +122842. q^{42} +466410. q^{43} -189752. q^{44} -179420. q^{46} +468903. q^{47} +349905. q^{48} +1.44232e6 q^{49} +876706. q^{51} +113646. q^{52} +1.60516e6 q^{53} -59491.8 q^{54} -1.12316e6 q^{56} -1.05754e6 q^{57} -199940. q^{58} -2.04044e6 q^{59} -378667. q^{61} +59434.6 q^{62} -1.09735e6 q^{63} -1.25175e6 q^{64} -130276. q^{66} -4644.40 q^{67} -3.85960e6 q^{68} +1.60276e6 q^{69} -2.79333e6 q^{71} +543941. q^{72} -2.01174e6 q^{73} -1.13660e6 q^{74} +4.65570e6 q^{76} -2.40299e6 q^{77} +78024.8 q^{78} +1.76767e6 q^{79} +531441. q^{81} -1.16367e6 q^{82} -3.06625e6 q^{83} +4.83095e6 q^{84} -1.40972e6 q^{86} +1.78606e6 q^{87} +1.19113e6 q^{88} -6.14397e6 q^{89} +1.43920e6 q^{91} -7.05598e6 q^{92} -530930. q^{93} -1.41726e6 q^{94} -3.63627e6 q^{96} +3.02969e6 q^{97} -4.35940e6 q^{98} +1.16376e6 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 9 q^{2} + 108 q^{3} + 333 q^{4} + 243 q^{6} + 1188 q^{7} + 2043 q^{8} + 2916 q^{9} + 5376 q^{11} + 8991 q^{12} + 8424 q^{13} + 6762 q^{14} + 43265 q^{16} + 4896 q^{17} + 6561 q^{18} + 15232 q^{19}+ \cdots + 3919104 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −3.02250 −0.267153 −0.133577 0.991038i \(-0.542646\pi\)
−0.133577 + 0.991038i \(0.542646\pi\)
\(3\) 27.0000 0.577350
\(4\) −118.865 −0.928629
\(5\) 0 0
\(6\) −81.6074 −0.154241
\(7\) −1505.28 −1.65872 −0.829361 0.558714i \(-0.811295\pi\)
−0.829361 + 0.558714i \(0.811295\pi\)
\(8\) 746.147 0.515240
\(9\) 729.000 0.333333
\(10\) 0 0
\(11\) 1596.37 0.361627 0.180813 0.983517i \(-0.442127\pi\)
0.180813 + 0.983517i \(0.442127\pi\)
\(12\) −3209.34 −0.536144
\(13\) −956.100 −0.120698 −0.0603492 0.998177i \(-0.519221\pi\)
−0.0603492 + 0.998177i \(0.519221\pi\)
\(14\) 4549.69 0.443133
\(15\) 0 0
\(16\) 12959.4 0.790981
\(17\) 32470.6 1.60295 0.801473 0.598031i \(-0.204050\pi\)
0.801473 + 0.598031i \(0.204050\pi\)
\(18\) −2203.40 −0.0890511
\(19\) −39168.1 −1.31007 −0.655036 0.755598i \(-0.727347\pi\)
−0.655036 + 0.755598i \(0.727347\pi\)
\(20\) 0 0
\(21\) −40642.5 −0.957663
\(22\) −4825.04 −0.0966098
\(23\) 59361.5 1.01732 0.508660 0.860968i \(-0.330141\pi\)
0.508660 + 0.860968i \(0.330141\pi\)
\(24\) 20146.0 0.297474
\(25\) 0 0
\(26\) 2889.81 0.0322450
\(27\) 19683.0 0.192450
\(28\) 178924. 1.54034
\(29\) 66150.5 0.503663 0.251831 0.967771i \(-0.418967\pi\)
0.251831 + 0.967771i \(0.418967\pi\)
\(30\) 0 0
\(31\) −19664.1 −0.118552 −0.0592758 0.998242i \(-0.518879\pi\)
−0.0592758 + 0.998242i \(0.518879\pi\)
\(32\) −134677. −0.726553
\(33\) 43102.1 0.208785
\(34\) −98142.2 −0.428232
\(35\) 0 0
\(36\) −86652.2 −0.309543
\(37\) 376045. 1.22049 0.610245 0.792213i \(-0.291071\pi\)
0.610245 + 0.792213i \(0.291071\pi\)
\(38\) 118386. 0.349990
\(39\) −25814.7 −0.0696853
\(40\) 0 0
\(41\) 385003. 0.872409 0.436205 0.899848i \(-0.356322\pi\)
0.436205 + 0.899848i \(0.356322\pi\)
\(42\) 122842. 0.255843
\(43\) 466410. 0.894600 0.447300 0.894384i \(-0.352386\pi\)
0.447300 + 0.894384i \(0.352386\pi\)
\(44\) −189752. −0.335817
\(45\) 0 0
\(46\) −179420. −0.271780
\(47\) 468903. 0.658779 0.329390 0.944194i \(-0.393157\pi\)
0.329390 + 0.944194i \(0.393157\pi\)
\(48\) 349905. 0.456673
\(49\) 1.44232e6 1.75136
\(50\) 0 0
\(51\) 876706. 0.925461
\(52\) 113646. 0.112084
\(53\) 1.60516e6 1.48100 0.740498 0.672058i \(-0.234590\pi\)
0.740498 + 0.672058i \(0.234590\pi\)
\(54\) −59491.8 −0.0514137
\(55\) 0 0
\(56\) −1.12316e6 −0.854639
\(57\) −1.05754e6 −0.756371
\(58\) −199940. −0.134555
\(59\) −2.04044e6 −1.29342 −0.646712 0.762734i \(-0.723856\pi\)
−0.646712 + 0.762734i \(0.723856\pi\)
\(60\) 0 0
\(61\) −378667. −0.213601 −0.106800 0.994280i \(-0.534061\pi\)
−0.106800 + 0.994280i \(0.534061\pi\)
\(62\) 59434.6 0.0316715
\(63\) −1.09735e6 −0.552907
\(64\) −1.25175e6 −0.596880
\(65\) 0 0
\(66\) −130276. −0.0557777
\(67\) −4644.40 −0.00188655 −0.000943274 1.00000i \(-0.500300\pi\)
−0.000943274 1.00000i \(0.500300\pi\)
\(68\) −3.85960e6 −1.48854
\(69\) 1.60276e6 0.587350
\(70\) 0 0
\(71\) −2.79333e6 −0.926229 −0.463115 0.886298i \(-0.653268\pi\)
−0.463115 + 0.886298i \(0.653268\pi\)
\(72\) 543941. 0.171747
\(73\) −2.01174e6 −0.605259 −0.302630 0.953108i \(-0.597864\pi\)
−0.302630 + 0.953108i \(0.597864\pi\)
\(74\) −1.13660e6 −0.326058
\(75\) 0 0
\(76\) 4.65570e6 1.21657
\(77\) −2.40299e6 −0.599838
\(78\) 78024.8 0.0186167
\(79\) 1.76767e6 0.403372 0.201686 0.979450i \(-0.435358\pi\)
0.201686 + 0.979450i \(0.435358\pi\)
\(80\) 0 0
\(81\) 531441. 0.111111
\(82\) −1.16367e6 −0.233067
\(83\) −3.06625e6 −0.588619 −0.294310 0.955710i \(-0.595090\pi\)
−0.294310 + 0.955710i \(0.595090\pi\)
\(84\) 4.83095e6 0.889314
\(85\) 0 0
\(86\) −1.40972e6 −0.238995
\(87\) 1.78606e6 0.290790
\(88\) 1.19113e6 0.186324
\(89\) −6.14397e6 −0.923813 −0.461907 0.886929i \(-0.652834\pi\)
−0.461907 + 0.886929i \(0.652834\pi\)
\(90\) 0 0
\(91\) 1.43920e6 0.200205
\(92\) −7.05598e6 −0.944713
\(93\) −530930. −0.0684459
\(94\) −1.41726e6 −0.175995
\(95\) 0 0
\(96\) −3.63627e6 −0.419476
\(97\) 3.02969e6 0.337053 0.168526 0.985697i \(-0.446099\pi\)
0.168526 + 0.985697i \(0.446099\pi\)
\(98\) −4.35940e6 −0.467881
\(99\) 1.16376e6 0.120542
\(100\) 0 0
\(101\) 7.17509e6 0.692951 0.346475 0.938059i \(-0.387378\pi\)
0.346475 + 0.938059i \(0.387378\pi\)
\(102\) −2.64984e6 −0.247240
\(103\) −1.45694e7 −1.31374 −0.656872 0.754002i \(-0.728121\pi\)
−0.656872 + 0.754002i \(0.728121\pi\)
\(104\) −713391. −0.0621886
\(105\) 0 0
\(106\) −4.85160e6 −0.395653
\(107\) 1.64442e7 1.29769 0.648843 0.760923i \(-0.275253\pi\)
0.648843 + 0.760923i \(0.275253\pi\)
\(108\) −2.33961e6 −0.178715
\(109\) 2.34832e7 1.73686 0.868430 0.495812i \(-0.165129\pi\)
0.868430 + 0.495812i \(0.165129\pi\)
\(110\) 0 0
\(111\) 1.01532e7 0.704650
\(112\) −1.95075e7 −1.31202
\(113\) 1.25747e7 0.819826 0.409913 0.912125i \(-0.365559\pi\)
0.409913 + 0.912125i \(0.365559\pi\)
\(114\) 3.19641e6 0.202067
\(115\) 0 0
\(116\) −7.86294e6 −0.467716
\(117\) −696997. −0.0402328
\(118\) 6.16721e6 0.345543
\(119\) −4.88772e7 −2.65884
\(120\) 0 0
\(121\) −1.69388e7 −0.869226
\(122\) 1.14452e6 0.0570642
\(123\) 1.03951e7 0.503686
\(124\) 2.33736e6 0.110091
\(125\) 0 0
\(126\) 3.31673e6 0.147711
\(127\) 2.41070e7 1.04431 0.522155 0.852850i \(-0.325128\pi\)
0.522155 + 0.852850i \(0.325128\pi\)
\(128\) 2.10220e7 0.886012
\(129\) 1.25931e7 0.516497
\(130\) 0 0
\(131\) −2.08040e7 −0.808533 −0.404266 0.914641i \(-0.632473\pi\)
−0.404266 + 0.914641i \(0.632473\pi\)
\(132\) −5.12331e6 −0.193884
\(133\) 5.89589e7 2.17304
\(134\) 14037.7 0.000503998 0
\(135\) 0 0
\(136\) 2.42278e7 0.825901
\(137\) 9.94308e6 0.330369 0.165184 0.986263i \(-0.447178\pi\)
0.165184 + 0.986263i \(0.447178\pi\)
\(138\) −4.84434e6 −0.156912
\(139\) 1.47414e7 0.465571 0.232785 0.972528i \(-0.425216\pi\)
0.232785 + 0.972528i \(0.425216\pi\)
\(140\) 0 0
\(141\) 1.26604e7 0.380347
\(142\) 8.44284e6 0.247445
\(143\) −1.52629e6 −0.0436478
\(144\) 9.44743e6 0.263660
\(145\) 0 0
\(146\) 6.08047e6 0.161697
\(147\) 3.89425e7 1.01115
\(148\) −4.46985e7 −1.13338
\(149\) −2.21899e7 −0.549545 −0.274772 0.961509i \(-0.588602\pi\)
−0.274772 + 0.961509i \(0.588602\pi\)
\(150\) 0 0
\(151\) 4.90759e7 1.15998 0.579988 0.814625i \(-0.303057\pi\)
0.579988 + 0.814625i \(0.303057\pi\)
\(152\) −2.92252e7 −0.675001
\(153\) 2.36711e7 0.534315
\(154\) 7.26302e6 0.160249
\(155\) 0 0
\(156\) 3.06845e6 0.0647118
\(157\) −6.21368e6 −0.128145 −0.0640723 0.997945i \(-0.520409\pi\)
−0.0640723 + 0.997945i \(0.520409\pi\)
\(158\) −5.34277e6 −0.107762
\(159\) 4.33394e7 0.855054
\(160\) 0 0
\(161\) −8.93555e7 −1.68745
\(162\) −1.60628e6 −0.0296837
\(163\) 1.54205e7 0.278895 0.139448 0.990229i \(-0.455467\pi\)
0.139448 + 0.990229i \(0.455467\pi\)
\(164\) −4.57632e7 −0.810145
\(165\) 0 0
\(166\) 9.26773e6 0.157252
\(167\) 7.74611e6 0.128699 0.0643496 0.997927i \(-0.479503\pi\)
0.0643496 + 0.997927i \(0.479503\pi\)
\(168\) −3.03253e7 −0.493426
\(169\) −6.18344e7 −0.985432
\(170\) 0 0
\(171\) −2.85536e7 −0.436691
\(172\) −5.54397e7 −0.830751
\(173\) 1.00086e7 0.146965 0.0734824 0.997297i \(-0.476589\pi\)
0.0734824 + 0.997297i \(0.476589\pi\)
\(174\) −5.39837e6 −0.0776855
\(175\) 0 0
\(176\) 2.06881e7 0.286040
\(177\) −5.50918e7 −0.746758
\(178\) 1.85701e7 0.246800
\(179\) 1.09231e8 1.42350 0.711751 0.702431i \(-0.247902\pi\)
0.711751 + 0.702431i \(0.247902\pi\)
\(180\) 0 0
\(181\) −1.27824e7 −0.160228 −0.0801138 0.996786i \(-0.525528\pi\)
−0.0801138 + 0.996786i \(0.525528\pi\)
\(182\) −4.34996e6 −0.0534854
\(183\) −1.02240e7 −0.123322
\(184\) 4.42924e7 0.524164
\(185\) 0 0
\(186\) 1.60473e6 0.0182855
\(187\) 5.18352e7 0.579668
\(188\) −5.57359e7 −0.611762
\(189\) −2.96284e7 −0.319221
\(190\) 0 0
\(191\) 1.54482e8 1.60421 0.802103 0.597185i \(-0.203714\pi\)
0.802103 + 0.597185i \(0.203714\pi\)
\(192\) −3.37972e7 −0.344609
\(193\) −1.51365e8 −1.51556 −0.757782 0.652507i \(-0.773717\pi\)
−0.757782 + 0.652507i \(0.773717\pi\)
\(194\) −9.15724e6 −0.0900448
\(195\) 0 0
\(196\) −1.71440e8 −1.62636
\(197\) 1.23829e8 1.15396 0.576981 0.816758i \(-0.304231\pi\)
0.576981 + 0.816758i \(0.304231\pi\)
\(198\) −3.51745e6 −0.0322033
\(199\) 4.77920e7 0.429902 0.214951 0.976625i \(-0.431041\pi\)
0.214951 + 0.976625i \(0.431041\pi\)
\(200\) 0 0
\(201\) −125399. −0.00108920
\(202\) −2.16867e7 −0.185124
\(203\) −9.95748e7 −0.835436
\(204\) −1.04209e8 −0.859410
\(205\) 0 0
\(206\) 4.40359e7 0.350971
\(207\) 4.32745e7 0.339107
\(208\) −1.23905e7 −0.0954701
\(209\) −6.25270e7 −0.473757
\(210\) 0 0
\(211\) 6.28256e7 0.460413 0.230207 0.973142i \(-0.426060\pi\)
0.230207 + 0.973142i \(0.426060\pi\)
\(212\) −1.90797e8 −1.37530
\(213\) −7.54200e7 −0.534759
\(214\) −4.97025e7 −0.346681
\(215\) 0 0
\(216\) 1.46864e7 0.0991580
\(217\) 2.95999e7 0.196644
\(218\) −7.09779e7 −0.464008
\(219\) −5.43169e7 −0.349447
\(220\) 0 0
\(221\) −3.10451e7 −0.193473
\(222\) −3.06881e7 −0.188250
\(223\) 5.17882e6 0.0312726 0.0156363 0.999878i \(-0.495023\pi\)
0.0156363 + 0.999878i \(0.495023\pi\)
\(224\) 2.02726e8 1.20515
\(225\) 0 0
\(226\) −3.80069e7 −0.219019
\(227\) −2.43478e8 −1.38156 −0.690778 0.723067i \(-0.742732\pi\)
−0.690778 + 0.723067i \(0.742732\pi\)
\(228\) 1.25704e8 0.702388
\(229\) −1.09734e8 −0.603832 −0.301916 0.953335i \(-0.597626\pi\)
−0.301916 + 0.953335i \(0.597626\pi\)
\(230\) 0 0
\(231\) −6.48806e7 −0.346317
\(232\) 4.93580e7 0.259507
\(233\) 1.85771e8 0.962129 0.481064 0.876685i \(-0.340250\pi\)
0.481064 + 0.876685i \(0.340250\pi\)
\(234\) 2.10667e6 0.0107483
\(235\) 0 0
\(236\) 2.42535e8 1.20111
\(237\) 4.77270e7 0.232887
\(238\) 1.47731e8 0.710318
\(239\) 3.06316e8 1.45137 0.725684 0.688028i \(-0.241523\pi\)
0.725684 + 0.688028i \(0.241523\pi\)
\(240\) 0 0
\(241\) −5.78177e7 −0.266073 −0.133037 0.991111i \(-0.542473\pi\)
−0.133037 + 0.991111i \(0.542473\pi\)
\(242\) 5.11973e7 0.232217
\(243\) 1.43489e7 0.0641500
\(244\) 4.50101e7 0.198356
\(245\) 0 0
\(246\) −3.14191e7 −0.134561
\(247\) 3.74486e7 0.158124
\(248\) −1.46723e7 −0.0610826
\(249\) −8.27888e7 −0.339840
\(250\) 0 0
\(251\) −3.90109e8 −1.55714 −0.778571 0.627557i \(-0.784055\pi\)
−0.778571 + 0.627557i \(0.784055\pi\)
\(252\) 1.30436e8 0.513446
\(253\) 9.47632e7 0.367890
\(254\) −7.28632e7 −0.278991
\(255\) 0 0
\(256\) 9.66848e7 0.360179
\(257\) 5.32200e8 1.95573 0.977865 0.209237i \(-0.0670980\pi\)
0.977865 + 0.209237i \(0.0670980\pi\)
\(258\) −3.80625e7 −0.137984
\(259\) −5.66053e8 −2.02445
\(260\) 0 0
\(261\) 4.82237e7 0.167888
\(262\) 6.28800e7 0.216002
\(263\) 3.12888e8 1.06058 0.530291 0.847816i \(-0.322083\pi\)
0.530291 + 0.847816i \(0.322083\pi\)
\(264\) 3.21605e7 0.107574
\(265\) 0 0
\(266\) −1.78203e8 −0.580536
\(267\) −1.65887e8 −0.533364
\(268\) 552054. 0.00175190
\(269\) 2.95534e8 0.925710 0.462855 0.886434i \(-0.346825\pi\)
0.462855 + 0.886434i \(0.346825\pi\)
\(270\) 0 0
\(271\) 3.96274e8 1.20949 0.604746 0.796419i \(-0.293275\pi\)
0.604746 + 0.796419i \(0.293275\pi\)
\(272\) 4.20800e8 1.26790
\(273\) 3.88583e7 0.115588
\(274\) −3.00529e7 −0.0882591
\(275\) 0 0
\(276\) −1.90511e8 −0.545430
\(277\) −4.00402e8 −1.13192 −0.565961 0.824432i \(-0.691495\pi\)
−0.565961 + 0.824432i \(0.691495\pi\)
\(278\) −4.45557e7 −0.124379
\(279\) −1.43351e7 −0.0395172
\(280\) 0 0
\(281\) 3.58146e8 0.962916 0.481458 0.876469i \(-0.340107\pi\)
0.481458 + 0.876469i \(0.340107\pi\)
\(282\) −3.82659e7 −0.101611
\(283\) 3.95688e8 1.03777 0.518884 0.854845i \(-0.326348\pi\)
0.518884 + 0.854845i \(0.326348\pi\)
\(284\) 3.32028e8 0.860123
\(285\) 0 0
\(286\) 4.61322e6 0.0116606
\(287\) −5.79536e8 −1.44708
\(288\) −9.81793e7 −0.242184
\(289\) 6.44000e8 1.56943
\(290\) 0 0
\(291\) 8.18017e7 0.194597
\(292\) 2.39124e8 0.562061
\(293\) 1.93280e8 0.448900 0.224450 0.974486i \(-0.427941\pi\)
0.224450 + 0.974486i \(0.427941\pi\)
\(294\) −1.17704e8 −0.270131
\(295\) 0 0
\(296\) 2.80585e8 0.628845
\(297\) 3.14214e7 0.0695951
\(298\) 6.70688e7 0.146813
\(299\) −5.67555e7 −0.122789
\(300\) 0 0
\(301\) −7.02077e8 −1.48389
\(302\) −1.48332e8 −0.309892
\(303\) 1.93727e8 0.400075
\(304\) −5.07597e8 −1.03624
\(305\) 0 0
\(306\) −7.15457e7 −0.142744
\(307\) −2.11267e8 −0.416722 −0.208361 0.978052i \(-0.566813\pi\)
−0.208361 + 0.978052i \(0.566813\pi\)
\(308\) 2.85630e8 0.557027
\(309\) −3.93373e8 −0.758490
\(310\) 0 0
\(311\) 2.59442e8 0.489079 0.244540 0.969639i \(-0.421363\pi\)
0.244540 + 0.969639i \(0.421363\pi\)
\(312\) −1.92616e7 −0.0359046
\(313\) −9.29772e8 −1.71384 −0.856922 0.515446i \(-0.827626\pi\)
−0.856922 + 0.515446i \(0.827626\pi\)
\(314\) 1.87808e7 0.0342343
\(315\) 0 0
\(316\) −2.10113e8 −0.374583
\(317\) −1.63510e8 −0.288295 −0.144147 0.989556i \(-0.546044\pi\)
−0.144147 + 0.989556i \(0.546044\pi\)
\(318\) −1.30993e8 −0.228431
\(319\) 1.05601e8 0.182138
\(320\) 0 0
\(321\) 4.43993e8 0.749219
\(322\) 2.70077e8 0.450808
\(323\) −1.27181e9 −2.09997
\(324\) −6.31695e7 −0.103181
\(325\) 0 0
\(326\) −4.66083e7 −0.0745079
\(327\) 6.34047e8 1.00278
\(328\) 2.87269e8 0.449500
\(329\) −7.05828e8 −1.09273
\(330\) 0 0
\(331\) −2.57948e8 −0.390962 −0.195481 0.980707i \(-0.562627\pi\)
−0.195481 + 0.980707i \(0.562627\pi\)
\(332\) 3.64469e8 0.546609
\(333\) 2.74137e8 0.406830
\(334\) −2.34126e7 −0.0343825
\(335\) 0 0
\(336\) −5.26704e8 −0.757493
\(337\) 2.34282e8 0.333452 0.166726 0.986003i \(-0.446680\pi\)
0.166726 + 0.986003i \(0.446680\pi\)
\(338\) 1.86894e8 0.263261
\(339\) 3.39516e8 0.473327
\(340\) 0 0
\(341\) −3.13912e7 −0.0428715
\(342\) 8.63030e7 0.116663
\(343\) −9.31426e8 −1.24629
\(344\) 3.48011e8 0.460933
\(345\) 0 0
\(346\) −3.02511e7 −0.0392622
\(347\) −6.73974e8 −0.865944 −0.432972 0.901407i \(-0.642535\pi\)
−0.432972 + 0.901407i \(0.642535\pi\)
\(348\) −2.12299e8 −0.270036
\(349\) 8.77464e8 1.10494 0.552472 0.833531i \(-0.313685\pi\)
0.552472 + 0.833531i \(0.313685\pi\)
\(350\) 0 0
\(351\) −1.88189e7 −0.0232284
\(352\) −2.14994e8 −0.262741
\(353\) −6.75088e8 −0.816863 −0.408431 0.912789i \(-0.633924\pi\)
−0.408431 + 0.912789i \(0.633924\pi\)
\(354\) 1.66515e8 0.199499
\(355\) 0 0
\(356\) 7.30300e8 0.857880
\(357\) −1.31969e9 −1.53508
\(358\) −3.30149e8 −0.380294
\(359\) −7.40244e8 −0.844393 −0.422196 0.906504i \(-0.638741\pi\)
−0.422196 + 0.906504i \(0.638741\pi\)
\(360\) 0 0
\(361\) 6.40271e8 0.716290
\(362\) 3.86348e7 0.0428054
\(363\) −4.57346e8 −0.501848
\(364\) −1.71069e8 −0.185916
\(365\) 0 0
\(366\) 3.09020e7 0.0329460
\(367\) −1.05986e9 −1.11922 −0.559611 0.828755i \(-0.689049\pi\)
−0.559611 + 0.828755i \(0.689049\pi\)
\(368\) 7.69291e8 0.804680
\(369\) 2.80667e8 0.290803
\(370\) 0 0
\(371\) −2.41622e9 −2.45656
\(372\) 6.31088e7 0.0635608
\(373\) 1.28239e9 1.27950 0.639748 0.768585i \(-0.279039\pi\)
0.639748 + 0.768585i \(0.279039\pi\)
\(374\) −1.56672e8 −0.154860
\(375\) 0 0
\(376\) 3.49870e8 0.339429
\(377\) −6.32465e7 −0.0607913
\(378\) 8.95516e7 0.0852810
\(379\) −2.97355e8 −0.280568 −0.140284 0.990111i \(-0.544802\pi\)
−0.140284 + 0.990111i \(0.544802\pi\)
\(380\) 0 0
\(381\) 6.50888e8 0.602933
\(382\) −4.66920e8 −0.428569
\(383\) −8.10508e8 −0.737160 −0.368580 0.929596i \(-0.620156\pi\)
−0.368580 + 0.929596i \(0.620156\pi\)
\(384\) 5.67594e8 0.511539
\(385\) 0 0
\(386\) 4.57500e8 0.404888
\(387\) 3.40013e8 0.298200
\(388\) −3.60123e8 −0.312997
\(389\) −3.38899e8 −0.291908 −0.145954 0.989291i \(-0.546625\pi\)
−0.145954 + 0.989291i \(0.546625\pi\)
\(390\) 0 0
\(391\) 1.92750e9 1.63071
\(392\) 1.07618e9 0.902368
\(393\) −5.61708e8 −0.466807
\(394\) −3.74273e8 −0.308285
\(395\) 0 0
\(396\) −1.38329e8 −0.111939
\(397\) 1.00265e9 0.804235 0.402117 0.915588i \(-0.368274\pi\)
0.402117 + 0.915588i \(0.368274\pi\)
\(398\) −1.44451e8 −0.114850
\(399\) 1.59189e9 1.25461
\(400\) 0 0
\(401\) −1.09336e9 −0.846755 −0.423377 0.905953i \(-0.639156\pi\)
−0.423377 + 0.905953i \(0.639156\pi\)
\(402\) 379017. 0.000290983 0
\(403\) 1.88008e7 0.0143090
\(404\) −8.52863e8 −0.643494
\(405\) 0 0
\(406\) 3.00964e8 0.223190
\(407\) 6.00309e8 0.441362
\(408\) 6.54151e8 0.476834
\(409\) 1.09511e9 0.791453 0.395726 0.918368i \(-0.370493\pi\)
0.395726 + 0.918368i \(0.370493\pi\)
\(410\) 0 0
\(411\) 2.68463e8 0.190738
\(412\) 1.73178e9 1.21998
\(413\) 3.07142e9 2.14543
\(414\) −1.30797e8 −0.0905935
\(415\) 0 0
\(416\) 1.28764e8 0.0876938
\(417\) 3.98016e8 0.268797
\(418\) 1.88988e8 0.126566
\(419\) −1.75196e9 −1.16352 −0.581762 0.813359i \(-0.697636\pi\)
−0.581762 + 0.813359i \(0.697636\pi\)
\(420\) 0 0
\(421\) −4.58026e8 −0.299160 −0.149580 0.988750i \(-0.547792\pi\)
−0.149580 + 0.988750i \(0.547792\pi\)
\(422\) −1.89890e8 −0.123001
\(423\) 3.41830e8 0.219593
\(424\) 1.19769e9 0.763068
\(425\) 0 0
\(426\) 2.27957e8 0.142863
\(427\) 5.69999e8 0.354304
\(428\) −1.95463e9 −1.20507
\(429\) −4.12099e7 −0.0252000
\(430\) 0 0
\(431\) −7.60129e8 −0.457317 −0.228658 0.973507i \(-0.573434\pi\)
−0.228658 + 0.973507i \(0.573434\pi\)
\(432\) 2.55081e8 0.152224
\(433\) 2.48461e9 1.47079 0.735396 0.677638i \(-0.236996\pi\)
0.735396 + 0.677638i \(0.236996\pi\)
\(434\) −8.94656e7 −0.0525342
\(435\) 0 0
\(436\) −2.79132e9 −1.61290
\(437\) −2.32508e9 −1.33276
\(438\) 1.64173e8 0.0933558
\(439\) 1.69934e8 0.0958637 0.0479318 0.998851i \(-0.484737\pi\)
0.0479318 + 0.998851i \(0.484737\pi\)
\(440\) 0 0
\(441\) 1.05145e9 0.583785
\(442\) 9.38337e7 0.0516870
\(443\) 1.53246e9 0.837481 0.418741 0.908106i \(-0.362472\pi\)
0.418741 + 0.908106i \(0.362472\pi\)
\(444\) −1.20686e9 −0.654359
\(445\) 0 0
\(446\) −1.56530e7 −0.00835458
\(447\) −5.99127e8 −0.317280
\(448\) 1.88423e9 0.990057
\(449\) −3.45325e9 −1.80039 −0.900194 0.435489i \(-0.856575\pi\)
−0.900194 + 0.435489i \(0.856575\pi\)
\(450\) 0 0
\(451\) 6.14609e8 0.315486
\(452\) −1.49468e9 −0.761315
\(453\) 1.32505e9 0.669713
\(454\) 7.35910e8 0.369087
\(455\) 0 0
\(456\) −7.89080e8 −0.389712
\(457\) −7.56279e8 −0.370659 −0.185330 0.982676i \(-0.559335\pi\)
−0.185330 + 0.982676i \(0.559335\pi\)
\(458\) 3.31670e8 0.161316
\(459\) 6.39118e8 0.308487
\(460\) 0 0
\(461\) −8.78272e8 −0.417518 −0.208759 0.977967i \(-0.566942\pi\)
−0.208759 + 0.977967i \(0.566942\pi\)
\(462\) 1.96101e8 0.0925196
\(463\) −3.54973e9 −1.66212 −0.831058 0.556185i \(-0.812264\pi\)
−0.831058 + 0.556185i \(0.812264\pi\)
\(464\) 8.57273e8 0.398388
\(465\) 0 0
\(466\) −5.61493e8 −0.257036
\(467\) 3.03363e9 1.37833 0.689165 0.724605i \(-0.257978\pi\)
0.689165 + 0.724605i \(0.257978\pi\)
\(468\) 8.28482e7 0.0373613
\(469\) 6.99111e6 0.00312926
\(470\) 0 0
\(471\) −1.67769e8 −0.0739843
\(472\) −1.52246e9 −0.666423
\(473\) 7.44566e8 0.323511
\(474\) −1.44255e8 −0.0622165
\(475\) 0 0
\(476\) 5.80977e9 2.46908
\(477\) 1.17017e9 0.493666
\(478\) −9.25840e8 −0.387738
\(479\) 3.00343e9 1.24866 0.624328 0.781162i \(-0.285373\pi\)
0.624328 + 0.781162i \(0.285373\pi\)
\(480\) 0 0
\(481\) −3.59537e8 −0.147311
\(482\) 1.74754e8 0.0710823
\(483\) −2.41260e9 −0.974249
\(484\) 2.01342e9 0.807189
\(485\) 0 0
\(486\) −4.33695e7 −0.0171379
\(487\) 3.28649e8 0.128938 0.0644690 0.997920i \(-0.479465\pi\)
0.0644690 + 0.997920i \(0.479465\pi\)
\(488\) −2.82541e8 −0.110056
\(489\) 4.16353e8 0.161020
\(490\) 0 0
\(491\) −6.97275e8 −0.265839 −0.132919 0.991127i \(-0.542435\pi\)
−0.132919 + 0.991127i \(0.542435\pi\)
\(492\) −1.23561e9 −0.467737
\(493\) 2.14794e9 0.807344
\(494\) −1.13188e8 −0.0422433
\(495\) 0 0
\(496\) −2.54835e8 −0.0937721
\(497\) 4.20474e9 1.53636
\(498\) 2.50229e8 0.0907893
\(499\) −3.18226e9 −1.14652 −0.573262 0.819372i \(-0.694322\pi\)
−0.573262 + 0.819372i \(0.694322\pi\)
\(500\) 0 0
\(501\) 2.09145e8 0.0743046
\(502\) 1.17910e9 0.415996
\(503\) −4.07550e9 −1.42788 −0.713942 0.700205i \(-0.753092\pi\)
−0.713942 + 0.700205i \(0.753092\pi\)
\(504\) −8.18782e8 −0.284880
\(505\) 0 0
\(506\) −2.86421e8 −0.0982830
\(507\) −1.66953e9 −0.568939
\(508\) −2.86546e9 −0.969777
\(509\) 4.18725e8 0.140740 0.0703699 0.997521i \(-0.477582\pi\)
0.0703699 + 0.997521i \(0.477582\pi\)
\(510\) 0 0
\(511\) 3.02822e9 1.00396
\(512\) −2.98305e9 −0.982235
\(513\) −7.70946e8 −0.252124
\(514\) −1.60857e9 −0.522480
\(515\) 0 0
\(516\) −1.49687e9 −0.479634
\(517\) 7.48544e8 0.238232
\(518\) 1.71089e9 0.540839
\(519\) 2.70233e8 0.0848502
\(520\) 0 0
\(521\) −2.02201e9 −0.626400 −0.313200 0.949687i \(-0.601401\pi\)
−0.313200 + 0.949687i \(0.601401\pi\)
\(522\) −1.45756e8 −0.0448518
\(523\) −1.87087e8 −0.0571857 −0.0285928 0.999591i \(-0.509103\pi\)
−0.0285928 + 0.999591i \(0.509103\pi\)
\(524\) 2.47286e9 0.750827
\(525\) 0 0
\(526\) −9.45704e8 −0.283338
\(527\) −6.38504e8 −0.190032
\(528\) 5.58579e8 0.165145
\(529\) 1.18962e8 0.0349392
\(530\) 0 0
\(531\) −1.48748e9 −0.431141
\(532\) −7.00812e9 −2.01795
\(533\) −3.68101e8 −0.105298
\(534\) 5.01393e8 0.142490
\(535\) 0 0
\(536\) −3.46541e6 −0.000972025 0
\(537\) 2.94922e9 0.821860
\(538\) −8.93251e8 −0.247307
\(539\) 2.30248e9 0.633337
\(540\) 0 0
\(541\) 3.94897e9 1.07224 0.536122 0.844140i \(-0.319889\pi\)
0.536122 + 0.844140i \(0.319889\pi\)
\(542\) −1.19774e9 −0.323120
\(543\) −3.45125e8 −0.0925075
\(544\) −4.37303e9 −1.16463
\(545\) 0 0
\(546\) −1.17449e8 −0.0308798
\(547\) −1.71845e9 −0.448932 −0.224466 0.974482i \(-0.572064\pi\)
−0.224466 + 0.974482i \(0.572064\pi\)
\(548\) −1.18188e9 −0.306790
\(549\) −2.76048e8 −0.0712003
\(550\) 0 0
\(551\) −2.59099e9 −0.659835
\(552\) 1.19589e9 0.302626
\(553\) −2.66083e9 −0.669082
\(554\) 1.21021e9 0.302397
\(555\) 0 0
\(556\) −1.75222e9 −0.432342
\(557\) −3.22406e9 −0.790516 −0.395258 0.918570i \(-0.629345\pi\)
−0.395258 + 0.918570i \(0.629345\pi\)
\(558\) 4.33278e7 0.0105572
\(559\) −4.45935e8 −0.107977
\(560\) 0 0
\(561\) 1.39955e9 0.334671
\(562\) −1.08250e9 −0.257246
\(563\) −5.69907e9 −1.34594 −0.672968 0.739671i \(-0.734981\pi\)
−0.672968 + 0.739671i \(0.734981\pi\)
\(564\) −1.50487e9 −0.353201
\(565\) 0 0
\(566\) −1.19596e9 −0.277243
\(567\) −7.99966e8 −0.184302
\(568\) −2.08424e9 −0.477230
\(569\) 3.70804e9 0.843823 0.421912 0.906637i \(-0.361359\pi\)
0.421912 + 0.906637i \(0.361359\pi\)
\(570\) 0 0
\(571\) −3.34811e9 −0.752615 −0.376308 0.926495i \(-0.622806\pi\)
−0.376308 + 0.926495i \(0.622806\pi\)
\(572\) 1.81422e8 0.0405326
\(573\) 4.17101e9 0.926189
\(574\) 1.75164e9 0.386593
\(575\) 0 0
\(576\) −9.12524e8 −0.198960
\(577\) 8.37348e9 1.81464 0.907320 0.420441i \(-0.138124\pi\)
0.907320 + 0.420441i \(0.138124\pi\)
\(578\) −1.94649e9 −0.419280
\(579\) −4.08685e9 −0.875012
\(580\) 0 0
\(581\) 4.61556e9 0.976355
\(582\) −2.47245e8 −0.0519874
\(583\) 2.56244e9 0.535568
\(584\) −1.50105e9 −0.311854
\(585\) 0 0
\(586\) −5.84188e8 −0.119925
\(587\) −9.32230e8 −0.190235 −0.0951174 0.995466i \(-0.530323\pi\)
−0.0951174 + 0.995466i \(0.530323\pi\)
\(588\) −4.62889e9 −0.938979
\(589\) 7.70205e8 0.155311
\(590\) 0 0
\(591\) 3.34339e9 0.666240
\(592\) 4.87334e9 0.965385
\(593\) 4.69858e9 0.925283 0.462642 0.886545i \(-0.346902\pi\)
0.462642 + 0.886545i \(0.346902\pi\)
\(594\) −9.49712e7 −0.0185926
\(595\) 0 0
\(596\) 2.63759e9 0.510323
\(597\) 1.29038e9 0.248204
\(598\) 1.71543e8 0.0328035
\(599\) −2.66487e9 −0.506620 −0.253310 0.967385i \(-0.581519\pi\)
−0.253310 + 0.967385i \(0.581519\pi\)
\(600\) 0 0
\(601\) −1.21738e9 −0.228753 −0.114376 0.993437i \(-0.536487\pi\)
−0.114376 + 0.993437i \(0.536487\pi\)
\(602\) 2.12203e9 0.396427
\(603\) −3.38577e6 −0.000628849 0
\(604\) −5.83339e9 −1.07719
\(605\) 0 0
\(606\) −5.85540e8 −0.106881
\(607\) −2.74917e9 −0.498932 −0.249466 0.968384i \(-0.580255\pi\)
−0.249466 + 0.968384i \(0.580255\pi\)
\(608\) 5.27503e9 0.951837
\(609\) −2.68852e9 −0.482339
\(610\) 0 0
\(611\) −4.48318e8 −0.0795136
\(612\) −2.81365e9 −0.496181
\(613\) 7.89654e9 1.38460 0.692301 0.721609i \(-0.256597\pi\)
0.692301 + 0.721609i \(0.256597\pi\)
\(614\) 6.38552e8 0.111329
\(615\) 0 0
\(616\) −1.79298e9 −0.309060
\(617\) 3.64303e9 0.624403 0.312202 0.950016i \(-0.398934\pi\)
0.312202 + 0.950016i \(0.398934\pi\)
\(618\) 1.18897e9 0.202633
\(619\) 7.22253e9 1.22397 0.611987 0.790868i \(-0.290370\pi\)
0.611987 + 0.790868i \(0.290370\pi\)
\(620\) 0 0
\(621\) 1.16841e9 0.195783
\(622\) −7.84163e8 −0.130659
\(623\) 9.24838e9 1.53235
\(624\) −3.34544e8 −0.0551197
\(625\) 0 0
\(626\) 2.81023e9 0.457859
\(627\) −1.68823e9 −0.273524
\(628\) 7.38586e8 0.118999
\(629\) 1.22104e10 1.95638
\(630\) 0 0
\(631\) −1.55879e9 −0.246993 −0.123496 0.992345i \(-0.539411\pi\)
−0.123496 + 0.992345i \(0.539411\pi\)
\(632\) 1.31894e9 0.207833
\(633\) 1.69629e9 0.265820
\(634\) 4.94208e8 0.0770189
\(635\) 0 0
\(636\) −5.15152e9 −0.794028
\(637\) −1.37900e9 −0.211386
\(638\) −3.19178e8 −0.0486588
\(639\) −2.03634e9 −0.308743
\(640\) 0 0
\(641\) 3.18649e9 0.477869 0.238935 0.971036i \(-0.423202\pi\)
0.238935 + 0.971036i \(0.423202\pi\)
\(642\) −1.34197e9 −0.200156
\(643\) 1.65144e9 0.244976 0.122488 0.992470i \(-0.460913\pi\)
0.122488 + 0.992470i \(0.460913\pi\)
\(644\) 1.06212e10 1.56701
\(645\) 0 0
\(646\) 3.84405e9 0.561015
\(647\) 3.95797e9 0.574523 0.287262 0.957852i \(-0.407255\pi\)
0.287262 + 0.957852i \(0.407255\pi\)
\(648\) 3.96533e8 0.0572489
\(649\) −3.25730e9 −0.467736
\(650\) 0 0
\(651\) 7.99197e8 0.113533
\(652\) −1.83295e9 −0.258990
\(653\) −2.09998e9 −0.295134 −0.147567 0.989052i \(-0.547144\pi\)
−0.147567 + 0.989052i \(0.547144\pi\)
\(654\) −1.91640e9 −0.267895
\(655\) 0 0
\(656\) 4.98942e9 0.690059
\(657\) −1.46656e9 −0.201753
\(658\) 2.13336e9 0.291927
\(659\) −1.18536e10 −1.61344 −0.806718 0.590937i \(-0.798758\pi\)
−0.806718 + 0.590937i \(0.798758\pi\)
\(660\) 0 0
\(661\) −1.14873e10 −1.54709 −0.773543 0.633744i \(-0.781517\pi\)
−0.773543 + 0.633744i \(0.781517\pi\)
\(662\) 7.79648e8 0.104447
\(663\) −8.38218e8 −0.111702
\(664\) −2.28787e9 −0.303280
\(665\) 0 0
\(666\) −8.28578e8 −0.108686
\(667\) 3.92679e9 0.512386
\(668\) −9.20738e8 −0.119514
\(669\) 1.39828e8 0.0180552
\(670\) 0 0
\(671\) −6.04494e8 −0.0772437
\(672\) 5.47359e9 0.695793
\(673\) −1.99478e9 −0.252257 −0.126128 0.992014i \(-0.540255\pi\)
−0.126128 + 0.992014i \(0.540255\pi\)
\(674\) −7.08115e8 −0.0890829
\(675\) 0 0
\(676\) 7.34992e9 0.915101
\(677\) −3.21860e9 −0.398664 −0.199332 0.979932i \(-0.563877\pi\)
−0.199332 + 0.979932i \(0.563877\pi\)
\(678\) −1.02619e9 −0.126451
\(679\) −4.56053e9 −0.559076
\(680\) 0 0
\(681\) −6.57389e9 −0.797642
\(682\) 9.48799e7 0.0114533
\(683\) −1.87259e9 −0.224890 −0.112445 0.993658i \(-0.535868\pi\)
−0.112445 + 0.993658i \(0.535868\pi\)
\(684\) 3.39401e9 0.405524
\(685\) 0 0
\(686\) 2.81523e9 0.332950
\(687\) −2.96281e9 −0.348622
\(688\) 6.04442e9 0.707611
\(689\) −1.53470e9 −0.178754
\(690\) 0 0
\(691\) 3.08223e8 0.0355380 0.0177690 0.999842i \(-0.494344\pi\)
0.0177690 + 0.999842i \(0.494344\pi\)
\(692\) −1.18967e9 −0.136476
\(693\) −1.75178e9 −0.199946
\(694\) 2.03708e9 0.231340
\(695\) 0 0
\(696\) 1.33267e9 0.149827
\(697\) 1.25013e10 1.39842
\(698\) −2.65213e9 −0.295190
\(699\) 5.01583e9 0.555485
\(700\) 0 0
\(701\) −1.39953e10 −1.53450 −0.767251 0.641346i \(-0.778376\pi\)
−0.767251 + 0.641346i \(0.778376\pi\)
\(702\) 5.68801e7 0.00620555
\(703\) −1.47290e10 −1.59893
\(704\) −1.99826e9 −0.215848
\(705\) 0 0
\(706\) 2.04045e9 0.218228
\(707\) −1.08005e10 −1.14941
\(708\) 6.54845e9 0.693462
\(709\) −1.02356e10 −1.07858 −0.539290 0.842120i \(-0.681307\pi\)
−0.539290 + 0.842120i \(0.681307\pi\)
\(710\) 0 0
\(711\) 1.28863e9 0.134457
\(712\) −4.58430e9 −0.475985
\(713\) −1.16729e9 −0.120605
\(714\) 3.98874e9 0.410102
\(715\) 0 0
\(716\) −1.29836e10 −1.32191
\(717\) 8.27054e9 0.837948
\(718\) 2.23739e9 0.225582
\(719\) 9.63078e9 0.966297 0.483148 0.875538i \(-0.339493\pi\)
0.483148 + 0.875538i \(0.339493\pi\)
\(720\) 0 0
\(721\) 2.19309e10 2.17913
\(722\) −1.93522e9 −0.191359
\(723\) −1.56108e9 −0.153617
\(724\) 1.51937e9 0.148792
\(725\) 0 0
\(726\) 1.38233e9 0.134070
\(727\) −1.62740e10 −1.57081 −0.785407 0.618980i \(-0.787546\pi\)
−0.785407 + 0.618980i \(0.787546\pi\)
\(728\) 1.07385e9 0.103154
\(729\) 3.87420e8 0.0370370
\(730\) 0 0
\(731\) 1.51446e10 1.43399
\(732\) 1.21527e9 0.114521
\(733\) 1.62212e10 1.52132 0.760659 0.649152i \(-0.224876\pi\)
0.760659 + 0.649152i \(0.224876\pi\)
\(734\) 3.20342e9 0.299004
\(735\) 0 0
\(736\) −7.99461e9 −0.739137
\(737\) −7.41420e6 −0.000682226 0
\(738\) −8.48315e8 −0.0776890
\(739\) 1.78796e10 1.62968 0.814841 0.579684i \(-0.196824\pi\)
0.814841 + 0.579684i \(0.196824\pi\)
\(740\) 0 0
\(741\) 1.01111e9 0.0912927
\(742\) 7.30301e9 0.656278
\(743\) −1.10072e10 −0.984499 −0.492249 0.870454i \(-0.663825\pi\)
−0.492249 + 0.870454i \(0.663825\pi\)
\(744\) −3.96152e8 −0.0352660
\(745\) 0 0
\(746\) −3.87602e9 −0.341822
\(747\) −2.23530e9 −0.196206
\(748\) −6.16137e9 −0.538296
\(749\) −2.47531e10 −2.15250
\(750\) 0 0
\(751\) −8.82495e9 −0.760278 −0.380139 0.924929i \(-0.624124\pi\)
−0.380139 + 0.924929i \(0.624124\pi\)
\(752\) 6.07671e9 0.521082
\(753\) −1.05329e10 −0.899016
\(754\) 1.91162e8 0.0162406
\(755\) 0 0
\(756\) 3.52176e9 0.296438
\(757\) −1.26747e10 −1.06194 −0.530972 0.847389i \(-0.678173\pi\)
−0.530972 + 0.847389i \(0.678173\pi\)
\(758\) 8.98754e8 0.0749547
\(759\) 2.55861e9 0.212401
\(760\) 0 0
\(761\) −4.76538e9 −0.391969 −0.195984 0.980607i \(-0.562790\pi\)
−0.195984 + 0.980607i \(0.562790\pi\)
\(762\) −1.96731e9 −0.161076
\(763\) −3.53487e10 −2.88097
\(764\) −1.83624e10 −1.48971
\(765\) 0 0
\(766\) 2.44976e9 0.196935
\(767\) 1.95086e9 0.156114
\(768\) 2.61049e9 0.207949
\(769\) −3.33620e9 −0.264552 −0.132276 0.991213i \(-0.542228\pi\)
−0.132276 + 0.991213i \(0.542228\pi\)
\(770\) 0 0
\(771\) 1.43694e10 1.12914
\(772\) 1.79919e10 1.40740
\(773\) 1.22441e9 0.0953453 0.0476726 0.998863i \(-0.484820\pi\)
0.0476726 + 0.998863i \(0.484820\pi\)
\(774\) −1.02769e9 −0.0796651
\(775\) 0 0
\(776\) 2.26060e9 0.173663
\(777\) −1.52834e10 −1.16882
\(778\) 1.02432e9 0.0779843
\(779\) −1.50798e10 −1.14292
\(780\) 0 0
\(781\) −4.45921e9 −0.334949
\(782\) −5.82587e9 −0.435649
\(783\) 1.30204e9 0.0969300
\(784\) 1.86916e10 1.38529
\(785\) 0 0
\(786\) 1.69776e9 0.124709
\(787\) −1.72256e10 −1.25969 −0.629844 0.776721i \(-0.716881\pi\)
−0.629844 + 0.776721i \(0.716881\pi\)
\(788\) −1.47189e10 −1.07160
\(789\) 8.44799e9 0.612327
\(790\) 0 0
\(791\) −1.89284e10 −1.35986
\(792\) 8.68334e8 0.0621082
\(793\) 3.62043e8 0.0257813
\(794\) −3.03051e9 −0.214854
\(795\) 0 0
\(796\) −5.68077e9 −0.399219
\(797\) 1.01065e10 0.707127 0.353564 0.935411i \(-0.384970\pi\)
0.353564 + 0.935411i \(0.384970\pi\)
\(798\) −4.81148e9 −0.335173
\(799\) 1.52255e10 1.05599
\(800\) 0 0
\(801\) −4.47895e9 −0.307938
\(802\) 3.30467e9 0.226213
\(803\) −3.21149e9 −0.218878
\(804\) 1.49055e7 0.00101146
\(805\) 0 0
\(806\) −5.68254e7 −0.00382270
\(807\) 7.97943e9 0.534459
\(808\) 5.35367e9 0.357036
\(809\) 9.46505e9 0.628497 0.314248 0.949341i \(-0.398247\pi\)
0.314248 + 0.949341i \(0.398247\pi\)
\(810\) 0 0
\(811\) 1.67478e10 1.10251 0.551257 0.834335i \(-0.314148\pi\)
0.551257 + 0.834335i \(0.314148\pi\)
\(812\) 1.18359e10 0.775810
\(813\) 1.06994e10 0.698300
\(814\) −1.81443e9 −0.117911
\(815\) 0 0
\(816\) 1.13616e10 0.732022
\(817\) −1.82684e10 −1.17199
\(818\) −3.30996e9 −0.211439
\(819\) 1.04917e9 0.0667350
\(820\) 0 0
\(821\) −3.34978e9 −0.211259 −0.105630 0.994406i \(-0.533686\pi\)
−0.105630 + 0.994406i \(0.533686\pi\)
\(822\) −8.11429e8 −0.0509564
\(823\) 6.69632e9 0.418732 0.209366 0.977837i \(-0.432860\pi\)
0.209366 + 0.977837i \(0.432860\pi\)
\(824\) −1.08709e10 −0.676893
\(825\) 0 0
\(826\) −9.28336e9 −0.573159
\(827\) −5.81000e9 −0.357196 −0.178598 0.983922i \(-0.557156\pi\)
−0.178598 + 0.983922i \(0.557156\pi\)
\(828\) −5.14381e9 −0.314904
\(829\) 6.84048e9 0.417009 0.208505 0.978021i \(-0.433140\pi\)
0.208505 + 0.978021i \(0.433140\pi\)
\(830\) 0 0
\(831\) −1.08108e10 −0.653516
\(832\) 1.19680e9 0.0720424
\(833\) 4.68329e10 2.80733
\(834\) −1.20300e9 −0.0718101
\(835\) 0 0
\(836\) 7.43224e9 0.439945
\(837\) −3.87048e8 −0.0228153
\(838\) 5.29529e9 0.310839
\(839\) −1.04085e8 −0.00608445 −0.00304223 0.999995i \(-0.500968\pi\)
−0.00304223 + 0.999995i \(0.500968\pi\)
\(840\) 0 0
\(841\) −1.28740e10 −0.746324
\(842\) 1.38438e9 0.0799215
\(843\) 9.66995e9 0.555940
\(844\) −7.46773e9 −0.427553
\(845\) 0 0
\(846\) −1.03318e9 −0.0586651
\(847\) 2.54975e10 1.44180
\(848\) 2.08020e10 1.17144
\(849\) 1.06836e10 0.599155
\(850\) 0 0
\(851\) 2.23226e10 1.24163
\(852\) 8.96476e9 0.496593
\(853\) 6.47246e9 0.357066 0.178533 0.983934i \(-0.442865\pi\)
0.178533 + 0.983934i \(0.442865\pi\)
\(854\) −1.72282e9 −0.0946536
\(855\) 0 0
\(856\) 1.22698e10 0.668619
\(857\) −2.27261e10 −1.23337 −0.616684 0.787211i \(-0.711524\pi\)
−0.616684 + 0.787211i \(0.711524\pi\)
\(858\) 1.24557e8 0.00673228
\(859\) −1.08363e10 −0.583315 −0.291657 0.956523i \(-0.594207\pi\)
−0.291657 + 0.956523i \(0.594207\pi\)
\(860\) 0 0
\(861\) −1.56475e10 −0.835474
\(862\) 2.29749e9 0.122174
\(863\) −3.23218e10 −1.71182 −0.855910 0.517125i \(-0.827002\pi\)
−0.855910 + 0.517125i \(0.827002\pi\)
\(864\) −2.65084e9 −0.139825
\(865\) 0 0
\(866\) −7.50973e9 −0.392927
\(867\) 1.73880e10 0.906114
\(868\) −3.51838e9 −0.182610
\(869\) 2.82186e9 0.145870
\(870\) 0 0
\(871\) 4.44051e6 0.000227703 0
\(872\) 1.75219e10 0.894899
\(873\) 2.20865e9 0.112351
\(874\) 7.02754e9 0.356052
\(875\) 0 0
\(876\) 6.45635e9 0.324506
\(877\) 4.21367e9 0.210941 0.105471 0.994422i \(-0.466365\pi\)
0.105471 + 0.994422i \(0.466365\pi\)
\(878\) −5.13624e8 −0.0256103
\(879\) 5.21856e9 0.259173
\(880\) 0 0
\(881\) 5.03021e9 0.247840 0.123920 0.992292i \(-0.460453\pi\)
0.123920 + 0.992292i \(0.460453\pi\)
\(882\) −3.17800e9 −0.155960
\(883\) 2.81606e10 1.37651 0.688255 0.725469i \(-0.258377\pi\)
0.688255 + 0.725469i \(0.258377\pi\)
\(884\) 3.69016e9 0.179665
\(885\) 0 0
\(886\) −4.63184e9 −0.223736
\(887\) −1.59422e10 −0.767038 −0.383519 0.923533i \(-0.625288\pi\)
−0.383519 + 0.923533i \(0.625288\pi\)
\(888\) 7.57580e9 0.363064
\(889\) −3.62877e10 −1.73222
\(890\) 0 0
\(891\) 8.48379e8 0.0401807
\(892\) −6.15578e8 −0.0290406
\(893\) −1.83660e10 −0.863049
\(894\) 1.81086e9 0.0847624
\(895\) 0 0
\(896\) −3.16440e10 −1.46965
\(897\) −1.53240e9 −0.0708922
\(898\) 1.04374e10 0.480980
\(899\) −1.30079e9 −0.0597101
\(900\) 0 0
\(901\) 5.21206e10 2.37396
\(902\) −1.85765e9 −0.0842833
\(903\) −1.89561e10 −0.856725
\(904\) 9.38255e9 0.422407
\(905\) 0 0
\(906\) −4.00496e9 −0.178916
\(907\) 2.20381e10 0.980729 0.490364 0.871517i \(-0.336864\pi\)
0.490364 + 0.871517i \(0.336864\pi\)
\(908\) 2.89408e10 1.28295
\(909\) 5.23064e9 0.230984
\(910\) 0 0
\(911\) 1.50904e10 0.661283 0.330641 0.943756i \(-0.392735\pi\)
0.330641 + 0.943756i \(0.392735\pi\)
\(912\) −1.37051e10 −0.598275
\(913\) −4.89489e9 −0.212860
\(914\) 2.28585e9 0.0990229
\(915\) 0 0
\(916\) 1.30434e10 0.560736
\(917\) 3.13158e10 1.34113
\(918\) −1.93173e9 −0.0824134
\(919\) 9.21105e9 0.391476 0.195738 0.980656i \(-0.437290\pi\)
0.195738 + 0.980656i \(0.437290\pi\)
\(920\) 0 0
\(921\) −5.70420e9 −0.240595
\(922\) 2.65457e9 0.111541
\(923\) 2.67071e9 0.111794
\(924\) 7.71201e9 0.321600
\(925\) 0 0
\(926\) 1.07290e10 0.444040
\(927\) −1.06211e10 −0.437915
\(928\) −8.90892e9 −0.365938
\(929\) 4.08831e10 1.67297 0.836487 0.547987i \(-0.184606\pi\)
0.836487 + 0.547987i \(0.184606\pi\)
\(930\) 0 0
\(931\) −5.64929e10 −2.29440
\(932\) −2.20816e10 −0.893461
\(933\) 7.00494e9 0.282370
\(934\) −9.16912e9 −0.368225
\(935\) 0 0
\(936\) −5.20062e8 −0.0207295
\(937\) −3.38015e10 −1.34229 −0.671147 0.741324i \(-0.734198\pi\)
−0.671147 + 0.741324i \(0.734198\pi\)
\(938\) −2.11306e7 −0.000835992 0
\(939\) −2.51038e10 −0.989488
\(940\) 0 0
\(941\) 2.16815e10 0.848252 0.424126 0.905603i \(-0.360581\pi\)
0.424126 + 0.905603i \(0.360581\pi\)
\(942\) 5.07082e8 0.0197652
\(943\) 2.28543e10 0.887519
\(944\) −2.64429e10 −1.02307
\(945\) 0 0
\(946\) −2.25045e9 −0.0864271
\(947\) 1.47060e10 0.562692 0.281346 0.959606i \(-0.409219\pi\)
0.281346 + 0.959606i \(0.409219\pi\)
\(948\) −5.67305e9 −0.216266
\(949\) 1.92342e9 0.0730538
\(950\) 0 0
\(951\) −4.41476e9 −0.166447
\(952\) −3.64696e10 −1.36994
\(953\) 1.26663e10 0.474050 0.237025 0.971504i \(-0.423828\pi\)
0.237025 + 0.971504i \(0.423828\pi\)
\(954\) −3.53682e9 −0.131884
\(955\) 0 0
\(956\) −3.64102e10 −1.34778
\(957\) 2.85123e9 0.105157
\(958\) −9.07785e9 −0.333583
\(959\) −1.49671e10 −0.547989
\(960\) 0 0
\(961\) −2.71259e10 −0.985945
\(962\) 1.08670e9 0.0393547
\(963\) 1.19878e10 0.432562
\(964\) 6.87247e9 0.247083
\(965\) 0 0
\(966\) 7.29207e9 0.260274
\(967\) 2.68713e10 0.955644 0.477822 0.878457i \(-0.341426\pi\)
0.477822 + 0.878457i \(0.341426\pi\)
\(968\) −1.26388e10 −0.447860
\(969\) −3.43389e10 −1.21242
\(970\) 0 0
\(971\) 1.85571e9 0.0650494 0.0325247 0.999471i \(-0.489645\pi\)
0.0325247 + 0.999471i \(0.489645\pi\)
\(972\) −1.70558e9 −0.0595716
\(973\) −2.21898e10 −0.772252
\(974\) −9.93340e8 −0.0344462
\(975\) 0 0
\(976\) −4.90731e9 −0.168954
\(977\) 3.13360e10 1.07501 0.537506 0.843260i \(-0.319367\pi\)
0.537506 + 0.843260i \(0.319367\pi\)
\(978\) −1.25843e9 −0.0430171
\(979\) −9.80808e9 −0.334075
\(980\) 0 0
\(981\) 1.71193e10 0.578953
\(982\) 2.10751e9 0.0710198
\(983\) −2.78355e9 −0.0934679 −0.0467339 0.998907i \(-0.514881\pi\)
−0.0467339 + 0.998907i \(0.514881\pi\)
\(984\) 7.75625e9 0.259519
\(985\) 0 0
\(986\) −6.49215e9 −0.215685
\(987\) −1.90574e10 −0.630889
\(988\) −4.45132e9 −0.146838
\(989\) 2.76868e10 0.910094
\(990\) 0 0
\(991\) 2.20283e10 0.718991 0.359495 0.933147i \(-0.382949\pi\)
0.359495 + 0.933147i \(0.382949\pi\)
\(992\) 2.64829e9 0.0861341
\(993\) −6.96461e9 −0.225722
\(994\) −1.27088e10 −0.410443
\(995\) 0 0
\(996\) 9.84065e9 0.315585
\(997\) 5.02880e10 1.60706 0.803528 0.595266i \(-0.202953\pi\)
0.803528 + 0.595266i \(0.202953\pi\)
\(998\) 9.61836e9 0.306298
\(999\) 7.40170e9 0.234883
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 75.8.a.j.1.2 4
3.2 odd 2 225.8.a.z.1.3 4
5.2 odd 4 15.8.b.a.4.4 8
5.3 odd 4 15.8.b.a.4.5 yes 8
5.4 even 2 75.8.a.i.1.3 4
15.2 even 4 45.8.b.d.19.5 8
15.8 even 4 45.8.b.d.19.4 8
15.14 odd 2 225.8.a.bb.1.2 4
20.3 even 4 240.8.f.e.49.1 8
20.7 even 4 240.8.f.e.49.5 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
15.8.b.a.4.4 8 5.2 odd 4
15.8.b.a.4.5 yes 8 5.3 odd 4
45.8.b.d.19.4 8 15.8 even 4
45.8.b.d.19.5 8 15.2 even 4
75.8.a.i.1.3 4 5.4 even 2
75.8.a.j.1.2 4 1.1 even 1 trivial
225.8.a.z.1.3 4 3.2 odd 2
225.8.a.bb.1.2 4 15.14 odd 2
240.8.f.e.49.1 8 20.3 even 4
240.8.f.e.49.5 8 20.7 even 4