Properties

Label 75.8
Level 75
Weight 8
Dimension 947
Nonzero newspaces 6
Newform subspaces 25
Sturm bound 3200
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 75 = 3 \cdot 5^{2} \)
Weight: \( k \) = \( 8 \)
Nonzero newspaces: \( 6 \)
Newform subspaces: \( 25 \)
Sturm bound: \(3200\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{8}(\Gamma_1(75))\).

Total New Old
Modular forms 1456 987 469
Cusp forms 1344 947 397
Eisenstein series 112 40 72

Trace form

\( 947 q + 38 q^{2} - 85 q^{3} + 656 q^{4} + 54 q^{5} - 2244 q^{6} - 7044 q^{7} + 8832 q^{8} + 3635 q^{9} + 2256 q^{10} - 13060 q^{11} - 24142 q^{12} + 4554 q^{13} + 70128 q^{14} - 16294 q^{15} + 43468 q^{16}+ \cdots + 21832092 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{8}^{\mathrm{new}}(\Gamma_1(75))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
75.8.a \(\chi_{75}(1, \cdot)\) 75.8.a.a 1 1
75.8.a.b 1
75.8.a.c 1
75.8.a.d 2
75.8.a.e 2
75.8.a.f 2
75.8.a.g 3
75.8.a.h 3
75.8.a.i 4
75.8.a.j 4
75.8.b \(\chi_{75}(49, \cdot)\) 75.8.b.a 2 1
75.8.b.b 2
75.8.b.c 2
75.8.b.d 4
75.8.b.e 4
75.8.b.f 6
75.8.e \(\chi_{75}(32, \cdot)\) 75.8.e.a 4 2
75.8.e.b 4
75.8.e.c 16
75.8.e.d 24
75.8.e.e 32
75.8.g \(\chi_{75}(16, \cdot)\) 75.8.g.a 68 4
75.8.g.b 68
75.8.i \(\chi_{75}(4, \cdot)\) 75.8.i.a 144 4
75.8.l \(\chi_{75}(2, \cdot)\) 75.8.l.a 544 8

Decomposition of \(S_{8}^{\mathrm{old}}(\Gamma_1(75))\) into lower level spaces

\( S_{8}^{\mathrm{old}}(\Gamma_1(75)) \cong \) \(S_{8}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 3}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(15))\)\(^{\oplus 2}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(25))\)\(^{\oplus 2}\)