Properties

Label 240.8.f.e.49.1
Level $240$
Weight $8$
Character 240.49
Analytic conductor $74.972$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [240,8,Mod(49,240)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(240, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1])) N = Newforms(chi, 8, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("240.49"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Level: \( N \) \(=\) \( 240 = 2^{4} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 240.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,-444] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(74.9724061162\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 162x^{6} + 7361x^{4} + 87300x^{2} + 160000 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{15}\cdot 3^{12}\cdot 5^{3} \)
Twist minimal: no (minimal twist has level 15)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 49.1
Root \(-7.26440i\) of defining polynomial
Character \(\chi\) \(=\) 240.49
Dual form 240.8.f.e.49.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-27.0000i q^{3} +(-272.800 + 60.8703i) q^{5} -1505.28i q^{7} -729.000 q^{9} -1596.37 q^{11} -956.100i q^{13} +(1643.50 + 7365.60i) q^{15} -32470.6i q^{17} -39168.1 q^{19} -40642.5 q^{21} -59361.5i q^{23} +(70714.6 - 33210.8i) q^{25} +19683.0i q^{27} -66150.5 q^{29} +19664.1 q^{31} +43102.1i q^{33} +(91626.6 + 410640. i) q^{35} -376045. i q^{37} -25814.7 q^{39} +385003. q^{41} -466410. i q^{43} +(198871. - 44374.4i) q^{45} +468903. i q^{47} -1.44232e6 q^{49} -876706. q^{51} +1.60516e6i q^{53} +(435491. - 97171.8i) q^{55} +1.05754e6i q^{57} -2.04044e6 q^{59} -378667. q^{61} +1.09735e6i q^{63} +(58198.1 + 260824. i) q^{65} -4644.40i q^{67} -1.60276e6 q^{69} +2.79333e6 q^{71} -2.01174e6i q^{73} +(-896692. - 1.90929e6i) q^{75} +2.40299e6i q^{77} +1.76767e6 q^{79} +531441. q^{81} +3.06625e6i q^{83} +(1.97649e6 + 8.85797e6i) q^{85} +1.78606e6i q^{87} +6.14397e6 q^{89} -1.43920e6 q^{91} -530930. i q^{93} +(1.06851e7 - 2.38417e6i) q^{95} -3.02969e6i q^{97} +1.16376e6 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 444 q^{5} - 5832 q^{9} - 10752 q^{11} + 17496 q^{15} + 30464 q^{19} + 64152 q^{21} + 127616 q^{25} + 240072 q^{29} - 233728 q^{31} - 593520 q^{35} + 454896 q^{39} + 507648 q^{41} + 323676 q^{45} - 3267160 q^{49}+ \cdots + 7838208 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/240\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(97\) \(161\) \(181\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 27.0000i 0.577350i
\(4\) 0 0
\(5\) −272.800 + 60.8703i −0.975999 + 0.217776i
\(6\) 0 0
\(7\) 1505.28i 1.65872i −0.558714 0.829361i \(-0.688705\pi\)
0.558714 0.829361i \(-0.311295\pi\)
\(8\) 0 0
\(9\) −729.000 −0.333333
\(10\) 0 0
\(11\) −1596.37 −0.361627 −0.180813 0.983517i \(-0.557873\pi\)
−0.180813 + 0.983517i \(0.557873\pi\)
\(12\) 0 0
\(13\) 956.100i 0.120698i −0.998177 0.0603492i \(-0.980779\pi\)
0.998177 0.0603492i \(-0.0192214\pi\)
\(14\) 0 0
\(15\) 1643.50 + 7365.60i 0.125733 + 0.563493i
\(16\) 0 0
\(17\) 32470.6i 1.60295i −0.598031 0.801473i \(-0.704050\pi\)
0.598031 0.801473i \(-0.295950\pi\)
\(18\) 0 0
\(19\) −39168.1 −1.31007 −0.655036 0.755598i \(-0.727347\pi\)
−0.655036 + 0.755598i \(0.727347\pi\)
\(20\) 0 0
\(21\) −40642.5 −0.957663
\(22\) 0 0
\(23\) 59361.5i 1.01732i −0.860968 0.508660i \(-0.830141\pi\)
0.860968 0.508660i \(-0.169859\pi\)
\(24\) 0 0
\(25\) 70714.6 33210.8i 0.905147 0.425098i
\(26\) 0 0
\(27\) 19683.0i 0.192450i
\(28\) 0 0
\(29\) −66150.5 −0.503663 −0.251831 0.967771i \(-0.581033\pi\)
−0.251831 + 0.967771i \(0.581033\pi\)
\(30\) 0 0
\(31\) 19664.1 0.118552 0.0592758 0.998242i \(-0.481121\pi\)
0.0592758 + 0.998242i \(0.481121\pi\)
\(32\) 0 0
\(33\) 43102.1i 0.208785i
\(34\) 0 0
\(35\) 91626.6 + 410640.i 0.361230 + 1.61891i
\(36\) 0 0
\(37\) 376045.i 1.22049i −0.792213 0.610245i \(-0.791071\pi\)
0.792213 0.610245i \(-0.208929\pi\)
\(38\) 0 0
\(39\) −25814.7 −0.0696853
\(40\) 0 0
\(41\) 385003. 0.872409 0.436205 0.899848i \(-0.356322\pi\)
0.436205 + 0.899848i \(0.356322\pi\)
\(42\) 0 0
\(43\) 466410.i 0.894600i −0.894384 0.447300i \(-0.852386\pi\)
0.894384 0.447300i \(-0.147614\pi\)
\(44\) 0 0
\(45\) 198871. 44374.4i 0.325333 0.0725920i
\(46\) 0 0
\(47\) 468903.i 0.658779i 0.944194 + 0.329390i \(0.106843\pi\)
−0.944194 + 0.329390i \(0.893157\pi\)
\(48\) 0 0
\(49\) −1.44232e6 −1.75136
\(50\) 0 0
\(51\) −876706. −0.925461
\(52\) 0 0
\(53\) 1.60516e6i 1.48100i 0.672058 + 0.740498i \(0.265410\pi\)
−0.672058 + 0.740498i \(0.734590\pi\)
\(54\) 0 0
\(55\) 435491. 97171.8i 0.352947 0.0787536i
\(56\) 0 0
\(57\) 1.05754e6i 0.756371i
\(58\) 0 0
\(59\) −2.04044e6 −1.29342 −0.646712 0.762734i \(-0.723856\pi\)
−0.646712 + 0.762734i \(0.723856\pi\)
\(60\) 0 0
\(61\) −378667. −0.213601 −0.106800 0.994280i \(-0.534061\pi\)
−0.106800 + 0.994280i \(0.534061\pi\)
\(62\) 0 0
\(63\) 1.09735e6i 0.552907i
\(64\) 0 0
\(65\) 58198.1 + 260824.i 0.0262852 + 0.117801i
\(66\) 0 0
\(67\) 4644.40i 0.00188655i −1.00000 0.000943274i \(-0.999700\pi\)
1.00000 0.000943274i \(-0.000300253\pi\)
\(68\) 0 0
\(69\) −1.60276e6 −0.587350
\(70\) 0 0
\(71\) 2.79333e6 0.926229 0.463115 0.886298i \(-0.346732\pi\)
0.463115 + 0.886298i \(0.346732\pi\)
\(72\) 0 0
\(73\) 2.01174e6i 0.605259i −0.953108 0.302630i \(-0.902136\pi\)
0.953108 0.302630i \(-0.0978645\pi\)
\(74\) 0 0
\(75\) −896692. 1.90929e6i −0.245431 0.522587i
\(76\) 0 0
\(77\) 2.40299e6i 0.599838i
\(78\) 0 0
\(79\) 1.76767e6 0.403372 0.201686 0.979450i \(-0.435358\pi\)
0.201686 + 0.979450i \(0.435358\pi\)
\(80\) 0 0
\(81\) 531441. 0.111111
\(82\) 0 0
\(83\) 3.06625e6i 0.588619i 0.955710 + 0.294310i \(0.0950897\pi\)
−0.955710 + 0.294310i \(0.904910\pi\)
\(84\) 0 0
\(85\) 1.97649e6 + 8.85797e6i 0.349083 + 1.56447i
\(86\) 0 0
\(87\) 1.78606e6i 0.290790i
\(88\) 0 0
\(89\) 6.14397e6 0.923813 0.461907 0.886929i \(-0.347166\pi\)
0.461907 + 0.886929i \(0.347166\pi\)
\(90\) 0 0
\(91\) −1.43920e6 −0.200205
\(92\) 0 0
\(93\) 530930.i 0.0684459i
\(94\) 0 0
\(95\) 1.06851e7 2.38417e6i 1.27863 0.285302i
\(96\) 0 0
\(97\) 3.02969e6i 0.337053i −0.985697 0.168526i \(-0.946099\pi\)
0.985697 0.168526i \(-0.0539008\pi\)
\(98\) 0 0
\(99\) 1.16376e6 0.120542
\(100\) 0 0
\(101\) 7.17509e6 0.692951 0.346475 0.938059i \(-0.387378\pi\)
0.346475 + 0.938059i \(0.387378\pi\)
\(102\) 0 0
\(103\) 1.45694e7i 1.31374i 0.754002 + 0.656872i \(0.228121\pi\)
−0.754002 + 0.656872i \(0.771879\pi\)
\(104\) 0 0
\(105\) 1.10873e7 2.47392e6i 0.934678 0.208556i
\(106\) 0 0
\(107\) 1.64442e7i 1.29769i 0.760923 + 0.648843i \(0.224747\pi\)
−0.760923 + 0.648843i \(0.775253\pi\)
\(108\) 0 0
\(109\) −2.34832e7 −1.73686 −0.868430 0.495812i \(-0.834871\pi\)
−0.868430 + 0.495812i \(0.834871\pi\)
\(110\) 0 0
\(111\) −1.01532e7 −0.704650
\(112\) 0 0
\(113\) 1.25747e7i 0.819826i 0.912125 + 0.409913i \(0.134441\pi\)
−0.912125 + 0.409913i \(0.865559\pi\)
\(114\) 0 0
\(115\) 3.61335e6 + 1.61938e7i 0.221548 + 0.992903i
\(116\) 0 0
\(117\) 696997.i 0.0402328i
\(118\) 0 0
\(119\) −4.88772e7 −2.65884
\(120\) 0 0
\(121\) −1.69388e7 −0.869226
\(122\) 0 0
\(123\) 1.03951e7i 0.503686i
\(124\) 0 0
\(125\) −1.72694e7 + 1.33643e7i −0.790846 + 0.612015i
\(126\) 0 0
\(127\) 2.41070e7i 1.04431i 0.852850 + 0.522155i \(0.174872\pi\)
−0.852850 + 0.522155i \(0.825128\pi\)
\(128\) 0 0
\(129\) −1.25931e7 −0.516497
\(130\) 0 0
\(131\) 2.08040e7 0.808533 0.404266 0.914641i \(-0.367527\pi\)
0.404266 + 0.914641i \(0.367527\pi\)
\(132\) 0 0
\(133\) 5.89589e7i 2.17304i
\(134\) 0 0
\(135\) −1.19811e6 5.36952e6i −0.0419110 0.187831i
\(136\) 0 0
\(137\) 9.94308e6i 0.330369i −0.986263 0.165184i \(-0.947178\pi\)
0.986263 0.165184i \(-0.0528219\pi\)
\(138\) 0 0
\(139\) 1.47414e7 0.465571 0.232785 0.972528i \(-0.425216\pi\)
0.232785 + 0.972528i \(0.425216\pi\)
\(140\) 0 0
\(141\) 1.26604e7 0.380347
\(142\) 0 0
\(143\) 1.52629e6i 0.0436478i
\(144\) 0 0
\(145\) 1.80458e7 4.02660e6i 0.491574 0.109686i
\(146\) 0 0
\(147\) 3.89425e7i 1.01115i
\(148\) 0 0
\(149\) 2.21899e7 0.549545 0.274772 0.961509i \(-0.411398\pi\)
0.274772 + 0.961509i \(0.411398\pi\)
\(150\) 0 0
\(151\) −4.90759e7 −1.15998 −0.579988 0.814625i \(-0.696943\pi\)
−0.579988 + 0.814625i \(0.696943\pi\)
\(152\) 0 0
\(153\) 2.36711e7i 0.534315i
\(154\) 0 0
\(155\) −5.36436e6 + 1.19696e6i −0.115706 + 0.0258177i
\(156\) 0 0
\(157\) 6.21368e6i 0.128145i 0.997945 + 0.0640723i \(0.0204088\pi\)
−0.997945 + 0.0640723i \(0.979591\pi\)
\(158\) 0 0
\(159\) 4.33394e7 0.855054
\(160\) 0 0
\(161\) −8.93555e7 −1.68745
\(162\) 0 0
\(163\) 1.54205e7i 0.278895i −0.990229 0.139448i \(-0.955467\pi\)
0.990229 0.139448i \(-0.0445327\pi\)
\(164\) 0 0
\(165\) −2.62364e6 1.17583e7i −0.0454684 0.203774i
\(166\) 0 0
\(167\) 7.74611e6i 0.128699i 0.997927 + 0.0643496i \(0.0204973\pi\)
−0.997927 + 0.0643496i \(0.979503\pi\)
\(168\) 0 0
\(169\) 6.18344e7 0.985432
\(170\) 0 0
\(171\) 2.85536e7 0.436691
\(172\) 0 0
\(173\) 1.00086e7i 0.146965i 0.997297 + 0.0734824i \(0.0234113\pi\)
−0.997297 + 0.0734824i \(0.976589\pi\)
\(174\) 0 0
\(175\) −4.99915e7 1.06445e8i −0.705120 1.50139i
\(176\) 0 0
\(177\) 5.50918e7i 0.746758i
\(178\) 0 0
\(179\) 1.09231e8 1.42350 0.711751 0.702431i \(-0.247902\pi\)
0.711751 + 0.702431i \(0.247902\pi\)
\(180\) 0 0
\(181\) −1.27824e7 −0.160228 −0.0801138 0.996786i \(-0.525528\pi\)
−0.0801138 + 0.996786i \(0.525528\pi\)
\(182\) 0 0
\(183\) 1.02240e7i 0.123322i
\(184\) 0 0
\(185\) 2.28900e7 + 1.02585e8i 0.265794 + 1.19120i
\(186\) 0 0
\(187\) 5.18352e7i 0.579668i
\(188\) 0 0
\(189\) 2.96284e7 0.319221
\(190\) 0 0
\(191\) −1.54482e8 −1.60421 −0.802103 0.597185i \(-0.796286\pi\)
−0.802103 + 0.597185i \(0.796286\pi\)
\(192\) 0 0
\(193\) 1.51365e8i 1.51556i −0.652507 0.757782i \(-0.726283\pi\)
0.652507 0.757782i \(-0.273717\pi\)
\(194\) 0 0
\(195\) 7.04225e6 1.57135e6i 0.0680127 0.0151758i
\(196\) 0 0
\(197\) 1.23829e8i 1.15396i −0.816758 0.576981i \(-0.804231\pi\)
0.816758 0.576981i \(-0.195769\pi\)
\(198\) 0 0
\(199\) 4.77920e7 0.429902 0.214951 0.976625i \(-0.431041\pi\)
0.214951 + 0.976625i \(0.431041\pi\)
\(200\) 0 0
\(201\) −125399. −0.00108920
\(202\) 0 0
\(203\) 9.95748e7i 0.835436i
\(204\) 0 0
\(205\) −1.05029e8 + 2.34352e7i −0.851470 + 0.189990i
\(206\) 0 0
\(207\) 4.32745e7i 0.339107i
\(208\) 0 0
\(209\) 6.25270e7 0.473757
\(210\) 0 0
\(211\) −6.28256e7 −0.460413 −0.230207 0.973142i \(-0.573940\pi\)
−0.230207 + 0.973142i \(0.573940\pi\)
\(212\) 0 0
\(213\) 7.54200e7i 0.534759i
\(214\) 0 0
\(215\) 2.83905e7 + 1.27237e8i 0.194822 + 0.873128i
\(216\) 0 0
\(217\) 2.95999e7i 0.196644i
\(218\) 0 0
\(219\) −5.43169e7 −0.349447
\(220\) 0 0
\(221\) −3.10451e7 −0.193473
\(222\) 0 0
\(223\) 5.17882e6i 0.0312726i −0.999878 0.0156363i \(-0.995023\pi\)
0.999878 0.0156363i \(-0.00497739\pi\)
\(224\) 0 0
\(225\) −5.15510e7 + 2.42107e7i −0.301716 + 0.141699i
\(226\) 0 0
\(227\) 2.43478e8i 1.38156i −0.723067 0.690778i \(-0.757268\pi\)
0.723067 0.690778i \(-0.242732\pi\)
\(228\) 0 0
\(229\) 1.09734e8 0.603832 0.301916 0.953335i \(-0.402374\pi\)
0.301916 + 0.953335i \(0.402374\pi\)
\(230\) 0 0
\(231\) 6.48806e7 0.346317
\(232\) 0 0
\(233\) 1.85771e8i 0.962129i 0.876685 + 0.481064i \(0.159750\pi\)
−0.876685 + 0.481064i \(0.840250\pi\)
\(234\) 0 0
\(235\) −2.85422e7 1.27917e8i −0.143466 0.642968i
\(236\) 0 0
\(237\) 4.77270e7i 0.232887i
\(238\) 0 0
\(239\) 3.06316e8 1.45137 0.725684 0.688028i \(-0.241523\pi\)
0.725684 + 0.688028i \(0.241523\pi\)
\(240\) 0 0
\(241\) −5.78177e7 −0.266073 −0.133037 0.991111i \(-0.542473\pi\)
−0.133037 + 0.991111i \(0.542473\pi\)
\(242\) 0 0
\(243\) 1.43489e7i 0.0641500i
\(244\) 0 0
\(245\) 3.93464e8 8.77942e7i 1.70932 0.381403i
\(246\) 0 0
\(247\) 3.74486e7i 0.158124i
\(248\) 0 0
\(249\) 8.27888e7 0.339840
\(250\) 0 0
\(251\) 3.90109e8 1.55714 0.778571 0.627557i \(-0.215945\pi\)
0.778571 + 0.627557i \(0.215945\pi\)
\(252\) 0 0
\(253\) 9.47632e7i 0.367890i
\(254\) 0 0
\(255\) 2.39165e8 5.33653e7i 0.903249 0.201543i
\(256\) 0 0
\(257\) 5.32200e8i 1.95573i −0.209237 0.977865i \(-0.567098\pi\)
0.209237 0.977865i \(-0.432902\pi\)
\(258\) 0 0
\(259\) −5.66053e8 −2.02445
\(260\) 0 0
\(261\) 4.82237e7 0.167888
\(262\) 0 0
\(263\) 3.12888e8i 1.06058i −0.847816 0.530291i \(-0.822083\pi\)
0.847816 0.530291i \(-0.177917\pi\)
\(264\) 0 0
\(265\) −9.77068e7 4.37889e8i −0.322526 1.44545i
\(266\) 0 0
\(267\) 1.65887e8i 0.533364i
\(268\) 0 0
\(269\) −2.95534e8 −0.925710 −0.462855 0.886434i \(-0.653175\pi\)
−0.462855 + 0.886434i \(0.653175\pi\)
\(270\) 0 0
\(271\) −3.96274e8 −1.20949 −0.604746 0.796419i \(-0.706725\pi\)
−0.604746 + 0.796419i \(0.706725\pi\)
\(272\) 0 0
\(273\) 3.88583e7i 0.115588i
\(274\) 0 0
\(275\) −1.12887e8 + 5.30169e7i −0.327325 + 0.153727i
\(276\) 0 0
\(277\) 4.00402e8i 1.13192i 0.824432 + 0.565961i \(0.191495\pi\)
−0.824432 + 0.565961i \(0.808505\pi\)
\(278\) 0 0
\(279\) −1.43351e7 −0.0395172
\(280\) 0 0
\(281\) 3.58146e8 0.962916 0.481458 0.876469i \(-0.340107\pi\)
0.481458 + 0.876469i \(0.340107\pi\)
\(282\) 0 0
\(283\) 3.95688e8i 1.03777i −0.854845 0.518884i \(-0.826348\pi\)
0.854845 0.518884i \(-0.173652\pi\)
\(284\) 0 0
\(285\) −6.43727e7 2.88497e8i −0.164719 0.738217i
\(286\) 0 0
\(287\) 5.79536e8i 1.44708i
\(288\) 0 0
\(289\) −6.44000e8 −1.56943
\(290\) 0 0
\(291\) −8.18017e7 −0.194597
\(292\) 0 0
\(293\) 1.93280e8i 0.448900i 0.974486 + 0.224450i \(0.0720586\pi\)
−0.974486 + 0.224450i \(0.927941\pi\)
\(294\) 0 0
\(295\) 5.56631e8 1.24202e8i 1.26238 0.281677i
\(296\) 0 0
\(297\) 3.14214e7i 0.0695951i
\(298\) 0 0
\(299\) −5.67555e7 −0.122789
\(300\) 0 0
\(301\) −7.02077e8 −1.48389
\(302\) 0 0
\(303\) 1.93727e8i 0.400075i
\(304\) 0 0
\(305\) 1.03300e8 2.30496e7i 0.208474 0.0465171i
\(306\) 0 0
\(307\) 2.11267e8i 0.416722i −0.978052 0.208361i \(-0.933187\pi\)
0.978052 0.208361i \(-0.0668129\pi\)
\(308\) 0 0
\(309\) 3.93373e8 0.758490
\(310\) 0 0
\(311\) −2.59442e8 −0.489079 −0.244540 0.969639i \(-0.578637\pi\)
−0.244540 + 0.969639i \(0.578637\pi\)
\(312\) 0 0
\(313\) 9.29772e8i 1.71384i −0.515446 0.856922i \(-0.672374\pi\)
0.515446 0.856922i \(-0.327626\pi\)
\(314\) 0 0
\(315\) −6.67958e7 2.99356e8i −0.120410 0.539637i
\(316\) 0 0
\(317\) 1.63510e8i 0.288295i 0.989556 + 0.144147i \(0.0460439\pi\)
−0.989556 + 0.144147i \(0.953956\pi\)
\(318\) 0 0
\(319\) 1.05601e8 0.182138
\(320\) 0 0
\(321\) 4.43993e8 0.749219
\(322\) 0 0
\(323\) 1.27181e9i 2.09997i
\(324\) 0 0
\(325\) −3.17529e7 6.76102e7i −0.0513087 0.109250i
\(326\) 0 0
\(327\) 6.34047e8i 1.00278i
\(328\) 0 0
\(329\) 7.05828e8 1.09273
\(330\) 0 0
\(331\) 2.57948e8 0.390962 0.195481 0.980707i \(-0.437373\pi\)
0.195481 + 0.980707i \(0.437373\pi\)
\(332\) 0 0
\(333\) 2.74137e8i 0.406830i
\(334\) 0 0
\(335\) 282706. + 1.26699e6i 0.000410845 + 0.00184127i
\(336\) 0 0
\(337\) 2.34282e8i 0.333452i −0.986003 0.166726i \(-0.946680\pi\)
0.986003 0.166726i \(-0.0533196\pi\)
\(338\) 0 0
\(339\) 3.39516e8 0.473327
\(340\) 0 0
\(341\) −3.13912e7 −0.0428715
\(342\) 0 0
\(343\) 9.31426e8i 1.24629i
\(344\) 0 0
\(345\) 4.37233e8 9.75605e7i 0.573253 0.127911i
\(346\) 0 0
\(347\) 6.73974e8i 0.865944i −0.901407 0.432972i \(-0.857465\pi\)
0.901407 0.432972i \(-0.142535\pi\)
\(348\) 0 0
\(349\) −8.77464e8 −1.10494 −0.552472 0.833531i \(-0.686315\pi\)
−0.552472 + 0.833531i \(0.686315\pi\)
\(350\) 0 0
\(351\) 1.88189e7 0.0232284
\(352\) 0 0
\(353\) 6.75088e8i 0.816863i −0.912789 0.408431i \(-0.866076\pi\)
0.912789 0.408431i \(-0.133924\pi\)
\(354\) 0 0
\(355\) −7.62021e8 + 1.70031e8i −0.903999 + 0.201711i
\(356\) 0 0
\(357\) 1.31969e9i 1.53508i
\(358\) 0 0
\(359\) −7.40244e8 −0.844393 −0.422196 0.906504i \(-0.638741\pi\)
−0.422196 + 0.906504i \(0.638741\pi\)
\(360\) 0 0
\(361\) 6.40271e8 0.716290
\(362\) 0 0
\(363\) 4.57346e8i 0.501848i
\(364\) 0 0
\(365\) 1.22455e8 + 5.48802e8i 0.131811 + 0.590732i
\(366\) 0 0
\(367\) 1.05986e9i 1.11922i −0.828755 0.559611i \(-0.810951\pi\)
0.828755 0.559611i \(-0.189049\pi\)
\(368\) 0 0
\(369\) −2.80667e8 −0.290803
\(370\) 0 0
\(371\) 2.41622e9 2.45656
\(372\) 0 0
\(373\) 1.28239e9i 1.27950i 0.768585 + 0.639748i \(0.220961\pi\)
−0.768585 + 0.639748i \(0.779039\pi\)
\(374\) 0 0
\(375\) 3.60837e8 + 4.66274e8i 0.353347 + 0.456595i
\(376\) 0 0
\(377\) 6.32465e7i 0.0607913i
\(378\) 0 0
\(379\) −2.97355e8 −0.280568 −0.140284 0.990111i \(-0.544802\pi\)
−0.140284 + 0.990111i \(0.544802\pi\)
\(380\) 0 0
\(381\) 6.50888e8 0.602933
\(382\) 0 0
\(383\) 8.10508e8i 0.737160i 0.929596 + 0.368580i \(0.120156\pi\)
−0.929596 + 0.368580i \(0.879844\pi\)
\(384\) 0 0
\(385\) −1.46270e8 6.55535e8i −0.130630 0.585441i
\(386\) 0 0
\(387\) 3.40013e8i 0.298200i
\(388\) 0 0
\(389\) 3.38899e8 0.291908 0.145954 0.989291i \(-0.453375\pi\)
0.145954 + 0.989291i \(0.453375\pi\)
\(390\) 0 0
\(391\) −1.92750e9 −1.63071
\(392\) 0 0
\(393\) 5.61708e8i 0.466807i
\(394\) 0 0
\(395\) −4.82220e8 + 1.07598e8i −0.393691 + 0.0878448i
\(396\) 0 0
\(397\) 1.00265e9i 0.804235i −0.915588 0.402117i \(-0.868274\pi\)
0.915588 0.402117i \(-0.131726\pi\)
\(398\) 0 0
\(399\) 1.59189e9 1.25461
\(400\) 0 0
\(401\) −1.09336e9 −0.846755 −0.423377 0.905953i \(-0.639156\pi\)
−0.423377 + 0.905953i \(0.639156\pi\)
\(402\) 0 0
\(403\) 1.88008e7i 0.0143090i
\(404\) 0 0
\(405\) −1.44977e8 + 3.23490e7i −0.108444 + 0.0241973i
\(406\) 0 0
\(407\) 6.00309e8i 0.441362i
\(408\) 0 0
\(409\) −1.09511e9 −0.791453 −0.395726 0.918368i \(-0.629507\pi\)
−0.395726 + 0.918368i \(0.629507\pi\)
\(410\) 0 0
\(411\) −2.68463e8 −0.190738
\(412\) 0 0
\(413\) 3.07142e9i 2.14543i
\(414\) 0 0
\(415\) −1.86644e8 8.36473e8i −0.128187 0.574492i
\(416\) 0 0
\(417\) 3.98016e8i 0.268797i
\(418\) 0 0
\(419\) −1.75196e9 −1.16352 −0.581762 0.813359i \(-0.697636\pi\)
−0.581762 + 0.813359i \(0.697636\pi\)
\(420\) 0 0
\(421\) −4.58026e8 −0.299160 −0.149580 0.988750i \(-0.547792\pi\)
−0.149580 + 0.988750i \(0.547792\pi\)
\(422\) 0 0
\(423\) 3.41830e8i 0.219593i
\(424\) 0 0
\(425\) −1.07837e9 2.29614e9i −0.681410 1.45090i
\(426\) 0 0
\(427\) 5.69999e8i 0.354304i
\(428\) 0 0
\(429\) 4.12099e7 0.0252000
\(430\) 0 0
\(431\) 7.60129e8 0.457317 0.228658 0.973507i \(-0.426566\pi\)
0.228658 + 0.973507i \(0.426566\pi\)
\(432\) 0 0
\(433\) 2.48461e9i 1.47079i 0.677638 + 0.735396i \(0.263004\pi\)
−0.677638 + 0.735396i \(0.736996\pi\)
\(434\) 0 0
\(435\) −1.08718e8 4.87238e8i −0.0633271 0.283811i
\(436\) 0 0
\(437\) 2.32508e9i 1.33276i
\(438\) 0 0
\(439\) 1.69934e8 0.0958637 0.0479318 0.998851i \(-0.484737\pi\)
0.0479318 + 0.998851i \(0.484737\pi\)
\(440\) 0 0
\(441\) 1.05145e9 0.583785
\(442\) 0 0
\(443\) 1.53246e9i 0.837481i −0.908106 0.418741i \(-0.862472\pi\)
0.908106 0.418741i \(-0.137528\pi\)
\(444\) 0 0
\(445\) −1.67607e9 + 3.73985e8i −0.901640 + 0.201184i
\(446\) 0 0
\(447\) 5.99127e8i 0.317280i
\(448\) 0 0
\(449\) 3.45325e9 1.80039 0.900194 0.435489i \(-0.143425\pi\)
0.900194 + 0.435489i \(0.143425\pi\)
\(450\) 0 0
\(451\) −6.14609e8 −0.315486
\(452\) 0 0
\(453\) 1.32505e9i 0.669713i
\(454\) 0 0
\(455\) 3.92612e8 8.76042e7i 0.195400 0.0435999i
\(456\) 0 0
\(457\) 7.56279e8i 0.370659i 0.982676 + 0.185330i \(0.0593353\pi\)
−0.982676 + 0.185330i \(0.940665\pi\)
\(458\) 0 0
\(459\) 6.39118e8 0.308487
\(460\) 0 0
\(461\) −8.78272e8 −0.417518 −0.208759 0.977967i \(-0.566942\pi\)
−0.208759 + 0.977967i \(0.566942\pi\)
\(462\) 0 0
\(463\) 3.54973e9i 1.66212i 0.556185 + 0.831058i \(0.312264\pi\)
−0.556185 + 0.831058i \(0.687736\pi\)
\(464\) 0 0
\(465\) 3.23179e7 + 1.44838e8i 0.0149059 + 0.0668031i
\(466\) 0 0
\(467\) 3.03363e9i 1.37833i 0.724605 + 0.689165i \(0.242022\pi\)
−0.724605 + 0.689165i \(0.757978\pi\)
\(468\) 0 0
\(469\) −6.99111e6 −0.00312926
\(470\) 0 0
\(471\) 1.67769e8 0.0739843
\(472\) 0 0
\(473\) 7.44566e8i 0.323511i
\(474\) 0 0
\(475\) −2.76976e9 + 1.30081e9i −1.18581 + 0.556910i
\(476\) 0 0
\(477\) 1.17017e9i 0.493666i
\(478\) 0 0
\(479\) 3.00343e9 1.24866 0.624328 0.781162i \(-0.285373\pi\)
0.624328 + 0.781162i \(0.285373\pi\)
\(480\) 0 0
\(481\) −3.59537e8 −0.147311
\(482\) 0 0
\(483\) 2.41260e9i 0.974249i
\(484\) 0 0
\(485\) 1.84418e8 + 8.26500e8i 0.0734020 + 0.328963i
\(486\) 0 0
\(487\) 3.28649e8i 0.128938i 0.997920 + 0.0644690i \(0.0205354\pi\)
−0.997920 + 0.0644690i \(0.979465\pi\)
\(488\) 0 0
\(489\) −4.16353e8 −0.161020
\(490\) 0 0
\(491\) 6.97275e8 0.265839 0.132919 0.991127i \(-0.457565\pi\)
0.132919 + 0.991127i \(0.457565\pi\)
\(492\) 0 0
\(493\) 2.14794e9i 0.807344i
\(494\) 0 0
\(495\) −3.17473e8 + 7.08382e7i −0.117649 + 0.0262512i
\(496\) 0 0
\(497\) 4.20474e9i 1.53636i
\(498\) 0 0
\(499\) −3.18226e9 −1.14652 −0.573262 0.819372i \(-0.694322\pi\)
−0.573262 + 0.819372i \(0.694322\pi\)
\(500\) 0 0
\(501\) 2.09145e8 0.0743046
\(502\) 0 0
\(503\) 4.07550e9i 1.42788i 0.700205 + 0.713942i \(0.253092\pi\)
−0.700205 + 0.713942i \(0.746908\pi\)
\(504\) 0 0
\(505\) −1.95736e9 + 4.36749e8i −0.676319 + 0.150908i
\(506\) 0 0
\(507\) 1.66953e9i 0.568939i
\(508\) 0 0
\(509\) −4.18725e8 −0.140740 −0.0703699 0.997521i \(-0.522418\pi\)
−0.0703699 + 0.997521i \(0.522418\pi\)
\(510\) 0 0
\(511\) −3.02822e9 −1.00396
\(512\) 0 0
\(513\) 7.70946e8i 0.252124i
\(514\) 0 0
\(515\) −8.86842e8 3.97452e9i −0.286102 1.28221i
\(516\) 0 0
\(517\) 7.48544e8i 0.238232i
\(518\) 0 0
\(519\) 2.70233e8 0.0848502
\(520\) 0 0
\(521\) −2.02201e9 −0.626400 −0.313200 0.949687i \(-0.601401\pi\)
−0.313200 + 0.949687i \(0.601401\pi\)
\(522\) 0 0
\(523\) 1.87087e8i 0.0571857i 0.999591 + 0.0285928i \(0.00910262\pi\)
−0.999591 + 0.0285928i \(0.990897\pi\)
\(524\) 0 0
\(525\) −2.87402e9 + 1.34977e9i −0.866826 + 0.407101i
\(526\) 0 0
\(527\) 6.38504e8i 0.190032i
\(528\) 0 0
\(529\) −1.18962e8 −0.0349392
\(530\) 0 0
\(531\) 1.48748e9 0.431141
\(532\) 0 0
\(533\) 3.68101e8i 0.105298i
\(534\) 0 0
\(535\) −1.00096e9 4.48598e9i −0.282605 1.26654i
\(536\) 0 0
\(537\) 2.94922e9i 0.821860i
\(538\) 0 0
\(539\) 2.30248e9 0.633337
\(540\) 0 0
\(541\) 3.94897e9 1.07224 0.536122 0.844140i \(-0.319889\pi\)
0.536122 + 0.844140i \(0.319889\pi\)
\(542\) 0 0
\(543\) 3.45125e8i 0.0925075i
\(544\) 0 0
\(545\) 6.40622e9 1.42943e9i 1.69517 0.378247i
\(546\) 0 0
\(547\) 1.71845e9i 0.448932i −0.974482 0.224466i \(-0.927936\pi\)
0.974482 0.224466i \(-0.0720638\pi\)
\(548\) 0 0
\(549\) 2.76048e8 0.0712003
\(550\) 0 0
\(551\) 2.59099e9 0.659835
\(552\) 0 0
\(553\) 2.66083e9i 0.669082i
\(554\) 0 0
\(555\) 2.76980e9 6.18030e8i 0.687738 0.153456i
\(556\) 0 0
\(557\) 3.22406e9i 0.790516i 0.918570 + 0.395258i \(0.129345\pi\)
−0.918570 + 0.395258i \(0.870655\pi\)
\(558\) 0 0
\(559\) −4.45935e8 −0.107977
\(560\) 0 0
\(561\) 1.39955e9 0.334671
\(562\) 0 0
\(563\) 5.69907e9i 1.34594i 0.739671 + 0.672968i \(0.234981\pi\)
−0.739671 + 0.672968i \(0.765019\pi\)
\(564\) 0 0
\(565\) −7.65423e8 3.43037e9i −0.178539 0.800149i
\(566\) 0 0
\(567\) 7.99966e8i 0.184302i
\(568\) 0 0
\(569\) −3.70804e9 −0.843823 −0.421912 0.906637i \(-0.638641\pi\)
−0.421912 + 0.906637i \(0.638641\pi\)
\(570\) 0 0
\(571\) 3.34811e9 0.752615 0.376308 0.926495i \(-0.377194\pi\)
0.376308 + 0.926495i \(0.377194\pi\)
\(572\) 0 0
\(573\) 4.17101e9i 0.926189i
\(574\) 0 0
\(575\) −1.97144e9 4.19773e9i −0.432461 0.920824i
\(576\) 0 0
\(577\) 8.37348e9i 1.81464i −0.420441 0.907320i \(-0.638124\pi\)
0.420441 0.907320i \(-0.361876\pi\)
\(578\) 0 0
\(579\) −4.08685e9 −0.875012
\(580\) 0 0
\(581\) 4.61556e9 0.976355
\(582\) 0 0
\(583\) 2.56244e9i 0.535568i
\(584\) 0 0
\(585\) −4.24264e7 1.90141e8i −0.00876174 0.0392672i
\(586\) 0 0
\(587\) 9.32230e8i 0.190235i −0.995466 0.0951174i \(-0.969677\pi\)
0.995466 0.0951174i \(-0.0303226\pi\)
\(588\) 0 0
\(589\) −7.70205e8 −0.155311
\(590\) 0 0
\(591\) −3.34339e9 −0.666240
\(592\) 0 0
\(593\) 4.69858e9i 0.925283i 0.886545 + 0.462642i \(0.153098\pi\)
−0.886545 + 0.462642i \(0.846902\pi\)
\(594\) 0 0
\(595\) 1.33337e10 2.97517e9i 2.59502 0.579032i
\(596\) 0 0
\(597\) 1.29038e9i 0.248204i
\(598\) 0 0
\(599\) −2.66487e9 −0.506620 −0.253310 0.967385i \(-0.581519\pi\)
−0.253310 + 0.967385i \(0.581519\pi\)
\(600\) 0 0
\(601\) −1.21738e9 −0.228753 −0.114376 0.993437i \(-0.536487\pi\)
−0.114376 + 0.993437i \(0.536487\pi\)
\(602\) 0 0
\(603\) 3.38577e6i 0.000628849i
\(604\) 0 0
\(605\) 4.62089e9 1.03107e9i 0.848364 0.189297i
\(606\) 0 0
\(607\) 2.74917e9i 0.498932i −0.968384 0.249466i \(-0.919745\pi\)
0.968384 0.249466i \(-0.0802551\pi\)
\(608\) 0 0
\(609\) 2.68852e9 0.482339
\(610\) 0 0
\(611\) 4.48318e8 0.0795136
\(612\) 0 0
\(613\) 7.89654e9i 1.38460i 0.721609 + 0.692301i \(0.243403\pi\)
−0.721609 + 0.692301i \(0.756597\pi\)
\(614\) 0 0
\(615\) 6.32751e8 + 2.83578e9i 0.109691 + 0.491597i
\(616\) 0 0
\(617\) 3.64303e9i 0.624403i −0.950016 0.312202i \(-0.898934\pi\)
0.950016 0.312202i \(-0.101066\pi\)
\(618\) 0 0
\(619\) 7.22253e9 1.22397 0.611987 0.790868i \(-0.290370\pi\)
0.611987 + 0.790868i \(0.290370\pi\)
\(620\) 0 0
\(621\) 1.16841e9 0.195783
\(622\) 0 0
\(623\) 9.24838e9i 1.53235i
\(624\) 0 0
\(625\) 3.89760e9 4.69698e9i 0.638583 0.769553i
\(626\) 0 0
\(627\) 1.68823e9i 0.273524i
\(628\) 0 0
\(629\) −1.22104e10 −1.95638
\(630\) 0 0
\(631\) 1.55879e9 0.246993 0.123496 0.992345i \(-0.460589\pi\)
0.123496 + 0.992345i \(0.460589\pi\)
\(632\) 0 0
\(633\) 1.69629e9i 0.265820i
\(634\) 0 0
\(635\) −1.46740e9 6.57638e9i −0.227426 1.01925i
\(636\) 0 0
\(637\) 1.37900e9i 0.211386i
\(638\) 0 0
\(639\) −2.03634e9 −0.308743
\(640\) 0 0
\(641\) 3.18649e9 0.477869 0.238935 0.971036i \(-0.423202\pi\)
0.238935 + 0.971036i \(0.423202\pi\)
\(642\) 0 0
\(643\) 1.65144e9i 0.244976i −0.992470 0.122488i \(-0.960913\pi\)
0.992470 0.122488i \(-0.0390873\pi\)
\(644\) 0 0
\(645\) 3.43539e9 7.66544e8i 0.504101 0.112481i
\(646\) 0 0
\(647\) 3.95797e9i 0.574523i 0.957852 + 0.287262i \(0.0927449\pi\)
−0.957852 + 0.287262i \(0.907255\pi\)
\(648\) 0 0
\(649\) 3.25730e9 0.467736
\(650\) 0 0
\(651\) −7.99197e8 −0.113533
\(652\) 0 0
\(653\) 2.09998e9i 0.295134i −0.989052 0.147567i \(-0.952856\pi\)
0.989052 0.147567i \(-0.0471443\pi\)
\(654\) 0 0
\(655\) −5.67533e9 + 1.26635e9i −0.789127 + 0.176079i
\(656\) 0 0
\(657\) 1.46656e9i 0.201753i
\(658\) 0 0
\(659\) −1.18536e10 −1.61344 −0.806718 0.590937i \(-0.798758\pi\)
−0.806718 + 0.590937i \(0.798758\pi\)
\(660\) 0 0
\(661\) −1.14873e10 −1.54709 −0.773543 0.633744i \(-0.781517\pi\)
−0.773543 + 0.633744i \(0.781517\pi\)
\(662\) 0 0
\(663\) 8.38218e8i 0.111702i
\(664\) 0 0
\(665\) −3.58884e9 1.60840e10i −0.473237 2.12089i
\(666\) 0 0
\(667\) 3.92679e9i 0.512386i
\(668\) 0 0
\(669\) −1.39828e8 −0.0180552
\(670\) 0 0
\(671\) 6.04494e8 0.0772437
\(672\) 0 0
\(673\) 1.99478e9i 0.252257i −0.992014 0.126128i \(-0.959745\pi\)
0.992014 0.126128i \(-0.0402551\pi\)
\(674\) 0 0
\(675\) 6.53688e8 + 1.39188e9i 0.0818102 + 0.174196i
\(676\) 0 0
\(677\) 3.21860e9i 0.398664i 0.979932 + 0.199332i \(0.0638772\pi\)
−0.979932 + 0.199332i \(0.936123\pi\)
\(678\) 0 0
\(679\) −4.56053e9 −0.559076
\(680\) 0 0
\(681\) −6.57389e9 −0.797642
\(682\) 0 0
\(683\) 1.87259e9i 0.224890i 0.993658 + 0.112445i \(0.0358683\pi\)
−0.993658 + 0.112445i \(0.964132\pi\)
\(684\) 0 0
\(685\) 6.05238e8 + 2.71247e9i 0.0719464 + 0.322439i
\(686\) 0 0
\(687\) 2.96281e9i 0.348622i
\(688\) 0 0
\(689\) 1.53470e9 0.178754
\(690\) 0 0
\(691\) −3.08223e8 −0.0355380 −0.0177690 0.999842i \(-0.505656\pi\)
−0.0177690 + 0.999842i \(0.505656\pi\)
\(692\) 0 0
\(693\) 1.75178e9i 0.199946i
\(694\) 0 0
\(695\) −4.02144e9 + 8.97310e8i −0.454396 + 0.101390i
\(696\) 0 0
\(697\) 1.25013e10i 1.39842i
\(698\) 0 0
\(699\) 5.01583e9 0.555485
\(700\) 0 0
\(701\) −1.39953e10 −1.53450 −0.767251 0.641346i \(-0.778376\pi\)
−0.767251 + 0.641346i \(0.778376\pi\)
\(702\) 0 0
\(703\) 1.47290e10i 1.59893i
\(704\) 0 0
\(705\) −3.45375e9 + 7.70640e8i −0.371218 + 0.0828304i
\(706\) 0 0
\(707\) 1.08005e10i 1.14941i
\(708\) 0 0
\(709\) 1.02356e10 1.07858 0.539290 0.842120i \(-0.318693\pi\)
0.539290 + 0.842120i \(0.318693\pi\)
\(710\) 0 0
\(711\) −1.28863e9 −0.134457
\(712\) 0 0
\(713\) 1.16729e9i 0.120605i
\(714\) 0 0
\(715\) −9.29059e7 4.16373e8i −0.00950544 0.0426002i
\(716\) 0 0
\(717\) 8.27054e9i 0.837948i
\(718\) 0 0
\(719\) 9.63078e9 0.966297 0.483148 0.875538i \(-0.339493\pi\)
0.483148 + 0.875538i \(0.339493\pi\)
\(720\) 0 0
\(721\) 2.19309e10 2.17913
\(722\) 0 0
\(723\) 1.56108e9i 0.153617i
\(724\) 0 0
\(725\) −4.67781e9 + 2.19691e9i −0.455889 + 0.214106i
\(726\) 0 0
\(727\) 1.62740e10i 1.57081i −0.618980 0.785407i \(-0.712454\pi\)
0.618980 0.785407i \(-0.287546\pi\)
\(728\) 0 0
\(729\) −3.87420e8 −0.0370370
\(730\) 0 0
\(731\) −1.51446e10 −1.43399
\(732\) 0 0
\(733\) 1.62212e10i 1.52132i 0.649152 + 0.760659i \(0.275124\pi\)
−0.649152 + 0.760659i \(0.724876\pi\)
\(734\) 0 0
\(735\) −2.37044e9 1.06235e10i −0.220203 0.986877i
\(736\) 0 0
\(737\) 7.41420e6i 0.000682226i
\(738\) 0 0
\(739\) 1.78796e10 1.62968 0.814841 0.579684i \(-0.196824\pi\)
0.814841 + 0.579684i \(0.196824\pi\)
\(740\) 0 0
\(741\) 1.01111e9 0.0912927
\(742\) 0 0
\(743\) 1.10072e10i 0.984499i 0.870454 + 0.492249i \(0.163825\pi\)
−0.870454 + 0.492249i \(0.836175\pi\)
\(744\) 0 0
\(745\) −6.05340e9 + 1.35070e9i −0.536355 + 0.119678i
\(746\) 0 0
\(747\) 2.23530e9i 0.196206i
\(748\) 0 0
\(749\) 2.47531e10 2.15250
\(750\) 0 0
\(751\) 8.82495e9 0.760278 0.380139 0.924929i \(-0.375876\pi\)
0.380139 + 0.924929i \(0.375876\pi\)
\(752\) 0 0
\(753\) 1.05329e10i 0.899016i
\(754\) 0 0
\(755\) 1.33879e10 2.98727e9i 1.13214 0.252615i
\(756\) 0 0
\(757\) 1.26747e10i 1.06194i 0.847389 + 0.530972i \(0.178173\pi\)
−0.847389 + 0.530972i \(0.821827\pi\)
\(758\) 0 0
\(759\) 2.55861e9 0.212401
\(760\) 0 0
\(761\) −4.76538e9 −0.391969 −0.195984 0.980607i \(-0.562790\pi\)
−0.195984 + 0.980607i \(0.562790\pi\)
\(762\) 0 0
\(763\) 3.53487e10i 2.88097i
\(764\) 0 0
\(765\) −1.44086e9 6.45746e9i −0.116361 0.521491i
\(766\) 0 0
\(767\) 1.95086e9i 0.156114i
\(768\) 0 0
\(769\) 3.33620e9 0.264552 0.132276 0.991213i \(-0.457772\pi\)
0.132276 + 0.991213i \(0.457772\pi\)
\(770\) 0 0
\(771\) −1.43694e10 −1.12914
\(772\) 0 0
\(773\) 1.22441e9i 0.0953453i 0.998863 + 0.0476726i \(0.0151804\pi\)
−0.998863 + 0.0476726i \(0.984820\pi\)
\(774\) 0 0
\(775\) 1.39054e9 6.53060e8i 0.107307 0.0503961i
\(776\) 0 0
\(777\) 1.52834e10i 1.16882i
\(778\) 0 0
\(779\) −1.50798e10 −1.14292
\(780\) 0 0
\(781\) −4.45921e9 −0.334949
\(782\) 0 0
\(783\) 1.30204e9i 0.0969300i
\(784\) 0 0
\(785\) −3.78228e8 1.69509e9i −0.0279068 0.125069i
\(786\) 0 0
\(787\) 1.72256e10i 1.25969i −0.776721 0.629844i \(-0.783119\pi\)
0.776721 0.629844i \(-0.216881\pi\)
\(788\) 0 0
\(789\) −8.44799e9 −0.612327
\(790\) 0 0
\(791\) 1.89284e10 1.35986
\(792\) 0 0
\(793\) 3.62043e8i 0.0257813i
\(794\) 0 0
\(795\) −1.18230e10 + 2.63808e9i −0.834531 + 0.186210i
\(796\) 0 0
\(797\) 1.01065e10i 0.707127i −0.935411 0.353564i \(-0.884970\pi\)
0.935411 0.353564i \(-0.115030\pi\)
\(798\) 0 0
\(799\) 1.52255e10 1.05599
\(800\) 0 0
\(801\) −4.47895e9 −0.307938
\(802\) 0 0
\(803\) 3.21149e9i 0.218878i
\(804\) 0 0
\(805\) 2.43762e10 5.43909e9i 1.64695 0.367486i
\(806\) 0 0
\(807\) 7.97943e9i 0.534459i
\(808\) 0 0
\(809\) −9.46505e9 −0.628497 −0.314248 0.949341i \(-0.601753\pi\)
−0.314248 + 0.949341i \(0.601753\pi\)
\(810\) 0 0
\(811\) −1.67478e10 −1.10251 −0.551257 0.834335i \(-0.685852\pi\)
−0.551257 + 0.834335i \(0.685852\pi\)
\(812\) 0 0
\(813\) 1.06994e10i 0.698300i
\(814\) 0 0
\(815\) 9.38649e8 + 4.20671e9i 0.0607367 + 0.272202i
\(816\) 0 0
\(817\) 1.82684e10i 1.17199i
\(818\) 0 0
\(819\) 1.04917e9 0.0667350
\(820\) 0 0
\(821\) −3.34978e9 −0.211259 −0.105630 0.994406i \(-0.533686\pi\)
−0.105630 + 0.994406i \(0.533686\pi\)
\(822\) 0 0
\(823\) 6.69632e9i 0.418732i −0.977837 0.209366i \(-0.932860\pi\)
0.977837 0.209366i \(-0.0671401\pi\)
\(824\) 0 0
\(825\) 1.43146e9 + 3.04795e9i 0.0887543 + 0.188981i
\(826\) 0 0
\(827\) 5.81000e9i 0.357196i −0.983922 0.178598i \(-0.942844\pi\)
0.983922 0.178598i \(-0.0571562\pi\)
\(828\) 0 0
\(829\) −6.84048e9 −0.417009 −0.208505 0.978021i \(-0.566860\pi\)
−0.208505 + 0.978021i \(0.566860\pi\)
\(830\) 0 0
\(831\) 1.08108e10 0.653516
\(832\) 0 0
\(833\) 4.68329e10i 2.80733i
\(834\) 0 0
\(835\) −4.71508e8 2.11314e9i −0.0280276 0.125610i
\(836\) 0 0
\(837\) 3.87048e8i 0.0228153i
\(838\) 0 0
\(839\) −1.04085e8 −0.00608445 −0.00304223 0.999995i \(-0.500968\pi\)
−0.00304223 + 0.999995i \(0.500968\pi\)
\(840\) 0 0
\(841\) −1.28740e10 −0.746324
\(842\) 0 0
\(843\) 9.66995e9i 0.555940i
\(844\) 0 0
\(845\) −1.68684e10 + 3.76388e9i −0.961780 + 0.214604i
\(846\) 0 0
\(847\) 2.54975e10i 1.44180i
\(848\) 0 0
\(849\) −1.06836e10 −0.599155
\(850\) 0 0
\(851\) −2.23226e10 −1.24163
\(852\) 0 0
\(853\) 6.47246e9i 0.357066i 0.983934 + 0.178533i \(0.0571351\pi\)
−0.983934 + 0.178533i \(0.942865\pi\)
\(854\) 0 0
\(855\) −7.78941e9 + 1.73806e9i −0.426210 + 0.0951008i
\(856\) 0 0
\(857\) 2.27261e10i 1.23337i 0.787211 + 0.616684i \(0.211524\pi\)
−0.787211 + 0.616684i \(0.788476\pi\)
\(858\) 0 0
\(859\) −1.08363e10 −0.583315 −0.291657 0.956523i \(-0.594207\pi\)
−0.291657 + 0.956523i \(0.594207\pi\)
\(860\) 0 0
\(861\) −1.56475e10 −0.835474
\(862\) 0 0
\(863\) 3.23218e10i 1.71182i 0.517125 + 0.855910i \(0.327002\pi\)
−0.517125 + 0.855910i \(0.672998\pi\)
\(864\) 0 0
\(865\) −6.09228e8 2.73035e9i −0.0320054 0.143437i
\(866\) 0 0
\(867\) 1.73880e10i 0.906114i
\(868\) 0 0
\(869\) −2.82186e9 −0.145870
\(870\) 0 0
\(871\) −4.44051e6 −0.000227703
\(872\) 0 0
\(873\) 2.20865e9i 0.112351i
\(874\) 0 0
\(875\) 2.01170e10 + 2.59952e10i 1.01516 + 1.31179i
\(876\) 0 0
\(877\) 4.21367e9i 0.210941i −0.994422 0.105471i \(-0.966365\pi\)
0.994422 0.105471i \(-0.0336349\pi\)
\(878\) 0 0
\(879\) 5.21856e9 0.259173
\(880\) 0 0
\(881\) 5.03021e9 0.247840 0.123920 0.992292i \(-0.460453\pi\)
0.123920 + 0.992292i \(0.460453\pi\)
\(882\) 0 0
\(883\) 2.81606e10i 1.37651i −0.725469 0.688255i \(-0.758377\pi\)
0.725469 0.688255i \(-0.241623\pi\)
\(884\) 0 0
\(885\) −3.35345e9 1.50290e10i −0.162626 0.728835i
\(886\) 0 0
\(887\) 1.59422e10i 0.767038i −0.923533 0.383519i \(-0.874712\pi\)
0.923533 0.383519i \(-0.125288\pi\)
\(888\) 0 0
\(889\) 3.62877e10 1.73222
\(890\) 0 0
\(891\) −8.48379e8 −0.0401807
\(892\) 0 0
\(893\) 1.83660e10i 0.863049i
\(894\) 0 0
\(895\) −2.97981e10 + 6.64889e9i −1.38934 + 0.310005i
\(896\) 0 0
\(897\) 1.53240e9i 0.0708922i
\(898\) 0 0
\(899\) −1.30079e9 −0.0597101
\(900\) 0 0
\(901\) 5.21206e10 2.37396
\(902\) 0 0
\(903\) 1.89561e10i 0.856725i
\(904\) 0 0
\(905\) 3.48704e9 7.78068e8i 0.156382 0.0348937i
\(906\) 0 0
\(907\) 2.20381e10i 0.980729i 0.871517 + 0.490364i \(0.163136\pi\)
−0.871517 + 0.490364i \(0.836864\pi\)
\(908\) 0 0
\(909\) −5.23064e9 −0.230984
\(910\) 0 0
\(911\) −1.50904e10 −0.661283 −0.330641 0.943756i \(-0.607265\pi\)
−0.330641 + 0.943756i \(0.607265\pi\)
\(912\) 0 0
\(913\) 4.89489e9i 0.212860i
\(914\) 0 0
\(915\) −6.22338e8 2.78911e9i −0.0268567 0.120363i
\(916\) 0 0
\(917\) 3.13158e10i 1.34113i
\(918\) 0 0
\(919\) 9.21105e9 0.391476 0.195738 0.980656i \(-0.437290\pi\)
0.195738 + 0.980656i \(0.437290\pi\)
\(920\) 0 0
\(921\) −5.70420e9 −0.240595
\(922\) 0 0
\(923\) 2.67071e9i 0.111794i
\(924\) 0 0
\(925\) −1.24888e10 2.65919e10i −0.518828 1.10472i
\(926\) 0 0
\(927\) 1.06211e10i 0.437915i
\(928\) 0 0
\(929\) −4.08831e10 −1.67297 −0.836487 0.547987i \(-0.815394\pi\)
−0.836487 + 0.547987i \(0.815394\pi\)
\(930\) 0 0
\(931\) 5.64929e10 2.29440
\(932\) 0 0
\(933\) 7.00494e9i 0.282370i
\(934\) 0 0
\(935\) −3.15522e9 1.41406e10i −0.126238 0.565755i
\(936\) 0 0
\(937\) 3.38015e10i 1.34229i 0.741324 + 0.671147i \(0.234198\pi\)
−0.741324 + 0.671147i \(0.765802\pi\)
\(938\) 0 0
\(939\) −2.51038e10 −0.989488
\(940\) 0 0
\(941\) 2.16815e10 0.848252 0.424126 0.905603i \(-0.360581\pi\)
0.424126 + 0.905603i \(0.360581\pi\)
\(942\) 0 0
\(943\) 2.28543e10i 0.887519i
\(944\) 0 0
\(945\) −8.08262e9 + 1.80349e9i −0.311559 + 0.0695187i
\(946\) 0 0
\(947\) 1.47060e10i 0.562692i 0.959606 + 0.281346i \(0.0907809\pi\)
−0.959606 + 0.281346i \(0.909219\pi\)
\(948\) 0 0
\(949\) −1.92342e9 −0.0730538
\(950\) 0 0
\(951\) 4.41476e9 0.166447
\(952\) 0 0
\(953\) 1.26663e10i 0.474050i 0.971504 + 0.237025i \(0.0761724\pi\)
−0.971504 + 0.237025i \(0.923828\pi\)
\(954\) 0 0
\(955\) 4.21426e10 9.40335e9i 1.56570 0.349358i
\(956\) 0 0
\(957\) 2.85123e9i 0.105157i
\(958\) 0 0
\(959\) −1.49671e10 −0.547989
\(960\) 0 0
\(961\) −2.71259e10 −0.985945
\(962\) 0 0
\(963\) 1.19878e10i 0.432562i
\(964\) 0 0
\(965\) 9.21362e9 + 4.12923e10i 0.330054 + 1.47919i
\(966\) 0 0
\(967\) 2.68713e10i 0.955644i 0.878457 + 0.477822i \(0.158574\pi\)
−0.878457 + 0.477822i \(0.841426\pi\)
\(968\) 0 0
\(969\) 3.43389e10 1.21242
\(970\) 0 0
\(971\) −1.85571e9 −0.0650494 −0.0325247 0.999471i \(-0.510355\pi\)
−0.0325247 + 0.999471i \(0.510355\pi\)
\(972\) 0 0
\(973\) 2.21898e10i 0.772252i
\(974\) 0 0
\(975\) −1.82548e9 + 8.57327e8i −0.0630754 + 0.0296231i
\(976\) 0 0
\(977\) 3.13360e10i 1.07501i −0.843260 0.537506i \(-0.819367\pi\)
0.843260 0.537506i \(-0.180633\pi\)
\(978\) 0 0
\(979\) −9.80808e9 −0.334075
\(980\) 0 0
\(981\) 1.71193e10 0.578953
\(982\) 0 0
\(983\) 2.78355e9i 0.0934679i 0.998907 + 0.0467339i \(0.0148813\pi\)
−0.998907 + 0.0467339i \(0.985119\pi\)
\(984\) 0 0
\(985\) 7.53752e9 + 3.37806e10i 0.251305 + 1.12626i
\(986\) 0 0
\(987\) 1.90574e10i 0.630889i
\(988\) 0 0
\(989\) −2.76868e10 −0.910094
\(990\) 0 0
\(991\) −2.20283e10 −0.718991 −0.359495 0.933147i \(-0.617051\pi\)
−0.359495 + 0.933147i \(0.617051\pi\)
\(992\) 0 0
\(993\) 6.96461e9i 0.225722i
\(994\) 0 0
\(995\) −1.30376e10 + 2.90911e9i −0.419584 + 0.0936223i
\(996\) 0 0
\(997\) 5.02880e10i 1.60706i −0.595266 0.803528i \(-0.702953\pi\)
0.595266 0.803528i \(-0.297047\pi\)
\(998\) 0 0
\(999\) 7.40170e9 0.234883
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 240.8.f.e.49.1 8
4.3 odd 2 15.8.b.a.4.5 yes 8
5.4 even 2 inner 240.8.f.e.49.5 8
12.11 even 2 45.8.b.d.19.4 8
20.3 even 4 75.8.a.i.1.3 4
20.7 even 4 75.8.a.j.1.2 4
20.19 odd 2 15.8.b.a.4.4 8
60.23 odd 4 225.8.a.bb.1.2 4
60.47 odd 4 225.8.a.z.1.3 4
60.59 even 2 45.8.b.d.19.5 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
15.8.b.a.4.4 8 20.19 odd 2
15.8.b.a.4.5 yes 8 4.3 odd 2
45.8.b.d.19.4 8 12.11 even 2
45.8.b.d.19.5 8 60.59 even 2
75.8.a.i.1.3 4 20.3 even 4
75.8.a.j.1.2 4 20.7 even 4
225.8.a.z.1.3 4 60.47 odd 4
225.8.a.bb.1.2 4 60.23 odd 4
240.8.f.e.49.1 8 1.1 even 1 trivial
240.8.f.e.49.5 8 5.4 even 2 inner