Properties

Label 225.8.a.bb.1.2
Level $225$
Weight $8$
Character 225.1
Self dual yes
Analytic conductor $70.287$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [225,8,Mod(1,225)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(225, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 8, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("225.1"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Level: \( N \) \(=\) \( 225 = 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 225.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,9,0,333,0,0,-1188] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(70.2866307339\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 81x^{2} - 150x + 400 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{2}\cdot 5^{2} \)
Twist minimal: no (minimal twist has level 15)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-7.26440\) of defining polynomial
Character \(\chi\) \(=\) 225.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.02250 q^{2} -118.865 q^{4} +1505.28 q^{7} +746.147 q^{8} -1596.37 q^{11} +956.100 q^{13} -4549.69 q^{14} +12959.4 q^{16} +32470.6 q^{17} -39168.1 q^{19} +4825.04 q^{22} +59361.5 q^{23} -2889.81 q^{26} -178924. q^{28} -66150.5 q^{29} -19664.1 q^{31} -134677. q^{32} -98142.2 q^{34} -376045. q^{37} +118386. q^{38} -385003. q^{41} -466410. q^{43} +189752. q^{44} -179420. q^{46} +468903. q^{47} +1.44232e6 q^{49} -113646. q^{52} +1.60516e6 q^{53} +1.12316e6 q^{56} +199940. q^{58} +2.04044e6 q^{59} -378667. q^{61} +59434.6 q^{62} -1.25175e6 q^{64} +4644.40 q^{67} -3.85960e6 q^{68} +2.79333e6 q^{71} +2.01174e6 q^{73} +1.13660e6 q^{74} +4.65570e6 q^{76} -2.40299e6 q^{77} +1.76767e6 q^{79} +1.16367e6 q^{82} -3.06625e6 q^{83} +1.40972e6 q^{86} -1.19113e6 q^{88} +6.14397e6 q^{89} +1.43920e6 q^{91} -7.05598e6 q^{92} -1.41726e6 q^{94} -3.02969e6 q^{97} -4.35940e6 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 9 q^{2} + 333 q^{4} - 1188 q^{7} + 2043 q^{8} - 5376 q^{11} - 8424 q^{13} - 6762 q^{14} + 43265 q^{16} + 4896 q^{17} + 15232 q^{19} + 44118 q^{22} + 110016 q^{23} + 396762 q^{26} - 674514 q^{28} + 120036 q^{29}+ \cdots - 20819979 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −3.02250 −0.267153 −0.133577 0.991038i \(-0.542646\pi\)
−0.133577 + 0.991038i \(0.542646\pi\)
\(3\) 0 0
\(4\) −118.865 −0.928629
\(5\) 0 0
\(6\) 0 0
\(7\) 1505.28 1.65872 0.829361 0.558714i \(-0.188705\pi\)
0.829361 + 0.558714i \(0.188705\pi\)
\(8\) 746.147 0.515240
\(9\) 0 0
\(10\) 0 0
\(11\) −1596.37 −0.361627 −0.180813 0.983517i \(-0.557873\pi\)
−0.180813 + 0.983517i \(0.557873\pi\)
\(12\) 0 0
\(13\) 956.100 0.120698 0.0603492 0.998177i \(-0.480779\pi\)
0.0603492 + 0.998177i \(0.480779\pi\)
\(14\) −4549.69 −0.443133
\(15\) 0 0
\(16\) 12959.4 0.790981
\(17\) 32470.6 1.60295 0.801473 0.598031i \(-0.204050\pi\)
0.801473 + 0.598031i \(0.204050\pi\)
\(18\) 0 0
\(19\) −39168.1 −1.31007 −0.655036 0.755598i \(-0.727347\pi\)
−0.655036 + 0.755598i \(0.727347\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 4825.04 0.0966098
\(23\) 59361.5 1.01732 0.508660 0.860968i \(-0.330141\pi\)
0.508660 + 0.860968i \(0.330141\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) −2889.81 −0.0322450
\(27\) 0 0
\(28\) −178924. −1.54034
\(29\) −66150.5 −0.503663 −0.251831 0.967771i \(-0.581033\pi\)
−0.251831 + 0.967771i \(0.581033\pi\)
\(30\) 0 0
\(31\) −19664.1 −0.118552 −0.0592758 0.998242i \(-0.518879\pi\)
−0.0592758 + 0.998242i \(0.518879\pi\)
\(32\) −134677. −0.726553
\(33\) 0 0
\(34\) −98142.2 −0.428232
\(35\) 0 0
\(36\) 0 0
\(37\) −376045. −1.22049 −0.610245 0.792213i \(-0.708929\pi\)
−0.610245 + 0.792213i \(0.708929\pi\)
\(38\) 118386. 0.349990
\(39\) 0 0
\(40\) 0 0
\(41\) −385003. −0.872409 −0.436205 0.899848i \(-0.643678\pi\)
−0.436205 + 0.899848i \(0.643678\pi\)
\(42\) 0 0
\(43\) −466410. −0.894600 −0.447300 0.894384i \(-0.647614\pi\)
−0.447300 + 0.894384i \(0.647614\pi\)
\(44\) 189752. 0.335817
\(45\) 0 0
\(46\) −179420. −0.271780
\(47\) 468903. 0.658779 0.329390 0.944194i \(-0.393157\pi\)
0.329390 + 0.944194i \(0.393157\pi\)
\(48\) 0 0
\(49\) 1.44232e6 1.75136
\(50\) 0 0
\(51\) 0 0
\(52\) −113646. −0.112084
\(53\) 1.60516e6 1.48100 0.740498 0.672058i \(-0.234590\pi\)
0.740498 + 0.672058i \(0.234590\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 1.12316e6 0.854639
\(57\) 0 0
\(58\) 199940. 0.134555
\(59\) 2.04044e6 1.29342 0.646712 0.762734i \(-0.276144\pi\)
0.646712 + 0.762734i \(0.276144\pi\)
\(60\) 0 0
\(61\) −378667. −0.213601 −0.106800 0.994280i \(-0.534061\pi\)
−0.106800 + 0.994280i \(0.534061\pi\)
\(62\) 59434.6 0.0316715
\(63\) 0 0
\(64\) −1.25175e6 −0.596880
\(65\) 0 0
\(66\) 0 0
\(67\) 4644.40 0.00188655 0.000943274 1.00000i \(-0.499700\pi\)
0.000943274 1.00000i \(0.499700\pi\)
\(68\) −3.85960e6 −1.48854
\(69\) 0 0
\(70\) 0 0
\(71\) 2.79333e6 0.926229 0.463115 0.886298i \(-0.346732\pi\)
0.463115 + 0.886298i \(0.346732\pi\)
\(72\) 0 0
\(73\) 2.01174e6 0.605259 0.302630 0.953108i \(-0.402136\pi\)
0.302630 + 0.953108i \(0.402136\pi\)
\(74\) 1.13660e6 0.326058
\(75\) 0 0
\(76\) 4.65570e6 1.21657
\(77\) −2.40299e6 −0.599838
\(78\) 0 0
\(79\) 1.76767e6 0.403372 0.201686 0.979450i \(-0.435358\pi\)
0.201686 + 0.979450i \(0.435358\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 1.16367e6 0.233067
\(83\) −3.06625e6 −0.588619 −0.294310 0.955710i \(-0.595090\pi\)
−0.294310 + 0.955710i \(0.595090\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 1.40972e6 0.238995
\(87\) 0 0
\(88\) −1.19113e6 −0.186324
\(89\) 6.14397e6 0.923813 0.461907 0.886929i \(-0.347166\pi\)
0.461907 + 0.886929i \(0.347166\pi\)
\(90\) 0 0
\(91\) 1.43920e6 0.200205
\(92\) −7.05598e6 −0.944713
\(93\) 0 0
\(94\) −1.41726e6 −0.175995
\(95\) 0 0
\(96\) 0 0
\(97\) −3.02969e6 −0.337053 −0.168526 0.985697i \(-0.553901\pi\)
−0.168526 + 0.985697i \(0.553901\pi\)
\(98\) −4.35940e6 −0.467881
\(99\) 0 0
\(100\) 0 0
\(101\) −7.17509e6 −0.692951 −0.346475 0.938059i \(-0.612622\pi\)
−0.346475 + 0.938059i \(0.612622\pi\)
\(102\) 0 0
\(103\) 1.45694e7 1.31374 0.656872 0.754002i \(-0.271879\pi\)
0.656872 + 0.754002i \(0.271879\pi\)
\(104\) 713391. 0.0621886
\(105\) 0 0
\(106\) −4.85160e6 −0.395653
\(107\) 1.64442e7 1.29769 0.648843 0.760923i \(-0.275253\pi\)
0.648843 + 0.760923i \(0.275253\pi\)
\(108\) 0 0
\(109\) 2.34832e7 1.73686 0.868430 0.495812i \(-0.165129\pi\)
0.868430 + 0.495812i \(0.165129\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 1.95075e7 1.31202
\(113\) 1.25747e7 0.819826 0.409913 0.912125i \(-0.365559\pi\)
0.409913 + 0.912125i \(0.365559\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 7.86294e6 0.467716
\(117\) 0 0
\(118\) −6.16721e6 −0.345543
\(119\) 4.88772e7 2.65884
\(120\) 0 0
\(121\) −1.69388e7 −0.869226
\(122\) 1.14452e6 0.0570642
\(123\) 0 0
\(124\) 2.33736e6 0.110091
\(125\) 0 0
\(126\) 0 0
\(127\) −2.41070e7 −1.04431 −0.522155 0.852850i \(-0.674872\pi\)
−0.522155 + 0.852850i \(0.674872\pi\)
\(128\) 2.10220e7 0.886012
\(129\) 0 0
\(130\) 0 0
\(131\) 2.08040e7 0.808533 0.404266 0.914641i \(-0.367527\pi\)
0.404266 + 0.914641i \(0.367527\pi\)
\(132\) 0 0
\(133\) −5.89589e7 −2.17304
\(134\) −14037.7 −0.000503998 0
\(135\) 0 0
\(136\) 2.42278e7 0.825901
\(137\) 9.94308e6 0.330369 0.165184 0.986263i \(-0.447178\pi\)
0.165184 + 0.986263i \(0.447178\pi\)
\(138\) 0 0
\(139\) 1.47414e7 0.465571 0.232785 0.972528i \(-0.425216\pi\)
0.232785 + 0.972528i \(0.425216\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −8.44284e6 −0.247445
\(143\) −1.52629e6 −0.0436478
\(144\) 0 0
\(145\) 0 0
\(146\) −6.08047e6 −0.161697
\(147\) 0 0
\(148\) 4.46985e7 1.13338
\(149\) 2.21899e7 0.549545 0.274772 0.961509i \(-0.411398\pi\)
0.274772 + 0.961509i \(0.411398\pi\)
\(150\) 0 0
\(151\) 4.90759e7 1.15998 0.579988 0.814625i \(-0.303057\pi\)
0.579988 + 0.814625i \(0.303057\pi\)
\(152\) −2.92252e7 −0.675001
\(153\) 0 0
\(154\) 7.26302e6 0.160249
\(155\) 0 0
\(156\) 0 0
\(157\) 6.21368e6 0.128145 0.0640723 0.997945i \(-0.479591\pi\)
0.0640723 + 0.997945i \(0.479591\pi\)
\(158\) −5.34277e6 −0.107762
\(159\) 0 0
\(160\) 0 0
\(161\) 8.93555e7 1.68745
\(162\) 0 0
\(163\) −1.54205e7 −0.278895 −0.139448 0.990229i \(-0.544533\pi\)
−0.139448 + 0.990229i \(0.544533\pi\)
\(164\) 4.57632e7 0.810145
\(165\) 0 0
\(166\) 9.26773e6 0.157252
\(167\) 7.74611e6 0.128699 0.0643496 0.997927i \(-0.479503\pi\)
0.0643496 + 0.997927i \(0.479503\pi\)
\(168\) 0 0
\(169\) −6.18344e7 −0.985432
\(170\) 0 0
\(171\) 0 0
\(172\) 5.54397e7 0.830751
\(173\) 1.00086e7 0.146965 0.0734824 0.997297i \(-0.476589\pi\)
0.0734824 + 0.997297i \(0.476589\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −2.06881e7 −0.286040
\(177\) 0 0
\(178\) −1.85701e7 −0.246800
\(179\) −1.09231e8 −1.42350 −0.711751 0.702431i \(-0.752098\pi\)
−0.711751 + 0.702431i \(0.752098\pi\)
\(180\) 0 0
\(181\) −1.27824e7 −0.160228 −0.0801138 0.996786i \(-0.525528\pi\)
−0.0801138 + 0.996786i \(0.525528\pi\)
\(182\) −4.34996e6 −0.0534854
\(183\) 0 0
\(184\) 4.42924e7 0.524164
\(185\) 0 0
\(186\) 0 0
\(187\) −5.18352e7 −0.579668
\(188\) −5.57359e7 −0.611762
\(189\) 0 0
\(190\) 0 0
\(191\) −1.54482e8 −1.60421 −0.802103 0.597185i \(-0.796286\pi\)
−0.802103 + 0.597185i \(0.796286\pi\)
\(192\) 0 0
\(193\) 1.51365e8 1.51556 0.757782 0.652507i \(-0.226283\pi\)
0.757782 + 0.652507i \(0.226283\pi\)
\(194\) 9.15724e6 0.0900448
\(195\) 0 0
\(196\) −1.71440e8 −1.62636
\(197\) 1.23829e8 1.15396 0.576981 0.816758i \(-0.304231\pi\)
0.576981 + 0.816758i \(0.304231\pi\)
\(198\) 0 0
\(199\) 4.77920e7 0.429902 0.214951 0.976625i \(-0.431041\pi\)
0.214951 + 0.976625i \(0.431041\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 2.16867e7 0.185124
\(203\) −9.95748e7 −0.835436
\(204\) 0 0
\(205\) 0 0
\(206\) −4.40359e7 −0.350971
\(207\) 0 0
\(208\) 1.23905e7 0.0954701
\(209\) 6.25270e7 0.473757
\(210\) 0 0
\(211\) 6.28256e7 0.460413 0.230207 0.973142i \(-0.426060\pi\)
0.230207 + 0.973142i \(0.426060\pi\)
\(212\) −1.90797e8 −1.37530
\(213\) 0 0
\(214\) −4.97025e7 −0.346681
\(215\) 0 0
\(216\) 0 0
\(217\) −2.95999e7 −0.196644
\(218\) −7.09779e7 −0.464008
\(219\) 0 0
\(220\) 0 0
\(221\) 3.10451e7 0.193473
\(222\) 0 0
\(223\) −5.17882e6 −0.0312726 −0.0156363 0.999878i \(-0.504977\pi\)
−0.0156363 + 0.999878i \(0.504977\pi\)
\(224\) −2.02726e8 −1.20515
\(225\) 0 0
\(226\) −3.80069e7 −0.219019
\(227\) −2.43478e8 −1.38156 −0.690778 0.723067i \(-0.742732\pi\)
−0.690778 + 0.723067i \(0.742732\pi\)
\(228\) 0 0
\(229\) −1.09734e8 −0.603832 −0.301916 0.953335i \(-0.597626\pi\)
−0.301916 + 0.953335i \(0.597626\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −4.93580e7 −0.259507
\(233\) 1.85771e8 0.962129 0.481064 0.876685i \(-0.340250\pi\)
0.481064 + 0.876685i \(0.340250\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −2.42535e8 −1.20111
\(237\) 0 0
\(238\) −1.47731e8 −0.710318
\(239\) −3.06316e8 −1.45137 −0.725684 0.688028i \(-0.758477\pi\)
−0.725684 + 0.688028i \(0.758477\pi\)
\(240\) 0 0
\(241\) −5.78177e7 −0.266073 −0.133037 0.991111i \(-0.542473\pi\)
−0.133037 + 0.991111i \(0.542473\pi\)
\(242\) 5.11973e7 0.232217
\(243\) 0 0
\(244\) 4.50101e7 0.198356
\(245\) 0 0
\(246\) 0 0
\(247\) −3.74486e7 −0.158124
\(248\) −1.46723e7 −0.0610826
\(249\) 0 0
\(250\) 0 0
\(251\) 3.90109e8 1.55714 0.778571 0.627557i \(-0.215945\pi\)
0.778571 + 0.627557i \(0.215945\pi\)
\(252\) 0 0
\(253\) −9.47632e7 −0.367890
\(254\) 7.28632e7 0.278991
\(255\) 0 0
\(256\) 9.66848e7 0.360179
\(257\) 5.32200e8 1.95573 0.977865 0.209237i \(-0.0670980\pi\)
0.977865 + 0.209237i \(0.0670980\pi\)
\(258\) 0 0
\(259\) −5.66053e8 −2.02445
\(260\) 0 0
\(261\) 0 0
\(262\) −6.28800e7 −0.216002
\(263\) 3.12888e8 1.06058 0.530291 0.847816i \(-0.322083\pi\)
0.530291 + 0.847816i \(0.322083\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 1.78203e8 0.580536
\(267\) 0 0
\(268\) −552054. −0.00175190
\(269\) −2.95534e8 −0.925710 −0.462855 0.886434i \(-0.653175\pi\)
−0.462855 + 0.886434i \(0.653175\pi\)
\(270\) 0 0
\(271\) 3.96274e8 1.20949 0.604746 0.796419i \(-0.293275\pi\)
0.604746 + 0.796419i \(0.293275\pi\)
\(272\) 4.20800e8 1.26790
\(273\) 0 0
\(274\) −3.00529e7 −0.0882591
\(275\) 0 0
\(276\) 0 0
\(277\) 4.00402e8 1.13192 0.565961 0.824432i \(-0.308505\pi\)
0.565961 + 0.824432i \(0.308505\pi\)
\(278\) −4.45557e7 −0.124379
\(279\) 0 0
\(280\) 0 0
\(281\) −3.58146e8 −0.962916 −0.481458 0.876469i \(-0.659893\pi\)
−0.481458 + 0.876469i \(0.659893\pi\)
\(282\) 0 0
\(283\) −3.95688e8 −1.03777 −0.518884 0.854845i \(-0.673652\pi\)
−0.518884 + 0.854845i \(0.673652\pi\)
\(284\) −3.32028e8 −0.860123
\(285\) 0 0
\(286\) 4.61322e6 0.0116606
\(287\) −5.79536e8 −1.44708
\(288\) 0 0
\(289\) 6.44000e8 1.56943
\(290\) 0 0
\(291\) 0 0
\(292\) −2.39124e8 −0.562061
\(293\) 1.93280e8 0.448900 0.224450 0.974486i \(-0.427941\pi\)
0.224450 + 0.974486i \(0.427941\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −2.80585e8 −0.628845
\(297\) 0 0
\(298\) −6.70688e7 −0.146813
\(299\) 5.67555e7 0.122789
\(300\) 0 0
\(301\) −7.02077e8 −1.48389
\(302\) −1.48332e8 −0.309892
\(303\) 0 0
\(304\) −5.07597e8 −1.03624
\(305\) 0 0
\(306\) 0 0
\(307\) 2.11267e8 0.416722 0.208361 0.978052i \(-0.433187\pi\)
0.208361 + 0.978052i \(0.433187\pi\)
\(308\) 2.85630e8 0.557027
\(309\) 0 0
\(310\) 0 0
\(311\) −2.59442e8 −0.489079 −0.244540 0.969639i \(-0.578637\pi\)
−0.244540 + 0.969639i \(0.578637\pi\)
\(312\) 0 0
\(313\) 9.29772e8 1.71384 0.856922 0.515446i \(-0.172374\pi\)
0.856922 + 0.515446i \(0.172374\pi\)
\(314\) −1.87808e7 −0.0342343
\(315\) 0 0
\(316\) −2.10113e8 −0.374583
\(317\) −1.63510e8 −0.288295 −0.144147 0.989556i \(-0.546044\pi\)
−0.144147 + 0.989556i \(0.546044\pi\)
\(318\) 0 0
\(319\) 1.05601e8 0.182138
\(320\) 0 0
\(321\) 0 0
\(322\) −2.70077e8 −0.450808
\(323\) −1.27181e9 −2.09997
\(324\) 0 0
\(325\) 0 0
\(326\) 4.66083e7 0.0745079
\(327\) 0 0
\(328\) −2.87269e8 −0.449500
\(329\) 7.05828e8 1.09273
\(330\) 0 0
\(331\) −2.57948e8 −0.390962 −0.195481 0.980707i \(-0.562627\pi\)
−0.195481 + 0.980707i \(0.562627\pi\)
\(332\) 3.64469e8 0.546609
\(333\) 0 0
\(334\) −2.34126e7 −0.0343825
\(335\) 0 0
\(336\) 0 0
\(337\) −2.34282e8 −0.333452 −0.166726 0.986003i \(-0.553320\pi\)
−0.166726 + 0.986003i \(0.553320\pi\)
\(338\) 1.86894e8 0.263261
\(339\) 0 0
\(340\) 0 0
\(341\) 3.13912e7 0.0428715
\(342\) 0 0
\(343\) 9.31426e8 1.24629
\(344\) −3.48011e8 −0.460933
\(345\) 0 0
\(346\) −3.02511e7 −0.0392622
\(347\) −6.73974e8 −0.865944 −0.432972 0.901407i \(-0.642535\pi\)
−0.432972 + 0.901407i \(0.642535\pi\)
\(348\) 0 0
\(349\) 8.77464e8 1.10494 0.552472 0.833531i \(-0.313685\pi\)
0.552472 + 0.833531i \(0.313685\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 2.14994e8 0.262741
\(353\) −6.75088e8 −0.816863 −0.408431 0.912789i \(-0.633924\pi\)
−0.408431 + 0.912789i \(0.633924\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −7.30300e8 −0.857880
\(357\) 0 0
\(358\) 3.30149e8 0.380294
\(359\) 7.40244e8 0.844393 0.422196 0.906504i \(-0.361259\pi\)
0.422196 + 0.906504i \(0.361259\pi\)
\(360\) 0 0
\(361\) 6.40271e8 0.716290
\(362\) 3.86348e7 0.0428054
\(363\) 0 0
\(364\) −1.71069e8 −0.185916
\(365\) 0 0
\(366\) 0 0
\(367\) 1.05986e9 1.11922 0.559611 0.828755i \(-0.310951\pi\)
0.559611 + 0.828755i \(0.310951\pi\)
\(368\) 7.69291e8 0.804680
\(369\) 0 0
\(370\) 0 0
\(371\) 2.41622e9 2.45656
\(372\) 0 0
\(373\) −1.28239e9 −1.27950 −0.639748 0.768585i \(-0.720961\pi\)
−0.639748 + 0.768585i \(0.720961\pi\)
\(374\) 1.56672e8 0.154860
\(375\) 0 0
\(376\) 3.49870e8 0.339429
\(377\) −6.32465e7 −0.0607913
\(378\) 0 0
\(379\) −2.97355e8 −0.280568 −0.140284 0.990111i \(-0.544802\pi\)
−0.140284 + 0.990111i \(0.544802\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 4.66920e8 0.428569
\(383\) −8.10508e8 −0.737160 −0.368580 0.929596i \(-0.620156\pi\)
−0.368580 + 0.929596i \(0.620156\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −4.57500e8 −0.404888
\(387\) 0 0
\(388\) 3.60123e8 0.312997
\(389\) 3.38899e8 0.291908 0.145954 0.989291i \(-0.453375\pi\)
0.145954 + 0.989291i \(0.453375\pi\)
\(390\) 0 0
\(391\) 1.92750e9 1.63071
\(392\) 1.07618e9 0.902368
\(393\) 0 0
\(394\) −3.74273e8 −0.308285
\(395\) 0 0
\(396\) 0 0
\(397\) −1.00265e9 −0.804235 −0.402117 0.915588i \(-0.631726\pi\)
−0.402117 + 0.915588i \(0.631726\pi\)
\(398\) −1.44451e8 −0.114850
\(399\) 0 0
\(400\) 0 0
\(401\) 1.09336e9 0.846755 0.423377 0.905953i \(-0.360844\pi\)
0.423377 + 0.905953i \(0.360844\pi\)
\(402\) 0 0
\(403\) −1.88008e7 −0.0143090
\(404\) 8.52863e8 0.643494
\(405\) 0 0
\(406\) 3.00964e8 0.223190
\(407\) 6.00309e8 0.441362
\(408\) 0 0
\(409\) 1.09511e9 0.791453 0.395726 0.918368i \(-0.370493\pi\)
0.395726 + 0.918368i \(0.370493\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −1.73178e9 −1.21998
\(413\) 3.07142e9 2.14543
\(414\) 0 0
\(415\) 0 0
\(416\) −1.28764e8 −0.0876938
\(417\) 0 0
\(418\) −1.88988e8 −0.126566
\(419\) 1.75196e9 1.16352 0.581762 0.813359i \(-0.302364\pi\)
0.581762 + 0.813359i \(0.302364\pi\)
\(420\) 0 0
\(421\) −4.58026e8 −0.299160 −0.149580 0.988750i \(-0.547792\pi\)
−0.149580 + 0.988750i \(0.547792\pi\)
\(422\) −1.89890e8 −0.123001
\(423\) 0 0
\(424\) 1.19769e9 0.763068
\(425\) 0 0
\(426\) 0 0
\(427\) −5.69999e8 −0.354304
\(428\) −1.95463e9 −1.20507
\(429\) 0 0
\(430\) 0 0
\(431\) 7.60129e8 0.457317 0.228658 0.973507i \(-0.426566\pi\)
0.228658 + 0.973507i \(0.426566\pi\)
\(432\) 0 0
\(433\) −2.48461e9 −1.47079 −0.735396 0.677638i \(-0.763004\pi\)
−0.735396 + 0.677638i \(0.763004\pi\)
\(434\) 8.94656e7 0.0525342
\(435\) 0 0
\(436\) −2.79132e9 −1.61290
\(437\) −2.32508e9 −1.33276
\(438\) 0 0
\(439\) 1.69934e8 0.0958637 0.0479318 0.998851i \(-0.484737\pi\)
0.0479318 + 0.998851i \(0.484737\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −9.38337e7 −0.0516870
\(443\) 1.53246e9 0.837481 0.418741 0.908106i \(-0.362472\pi\)
0.418741 + 0.908106i \(0.362472\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 1.56530e7 0.00835458
\(447\) 0 0
\(448\) −1.88423e9 −0.990057
\(449\) 3.45325e9 1.80039 0.900194 0.435489i \(-0.143425\pi\)
0.900194 + 0.435489i \(0.143425\pi\)
\(450\) 0 0
\(451\) 6.14609e8 0.315486
\(452\) −1.49468e9 −0.761315
\(453\) 0 0
\(454\) 7.35910e8 0.369087
\(455\) 0 0
\(456\) 0 0
\(457\) 7.56279e8 0.370659 0.185330 0.982676i \(-0.440665\pi\)
0.185330 + 0.982676i \(0.440665\pi\)
\(458\) 3.31670e8 0.161316
\(459\) 0 0
\(460\) 0 0
\(461\) 8.78272e8 0.417518 0.208759 0.977967i \(-0.433058\pi\)
0.208759 + 0.977967i \(0.433058\pi\)
\(462\) 0 0
\(463\) 3.54973e9 1.66212 0.831058 0.556185i \(-0.187736\pi\)
0.831058 + 0.556185i \(0.187736\pi\)
\(464\) −8.57273e8 −0.398388
\(465\) 0 0
\(466\) −5.61493e8 −0.257036
\(467\) 3.03363e9 1.37833 0.689165 0.724605i \(-0.257978\pi\)
0.689165 + 0.724605i \(0.257978\pi\)
\(468\) 0 0
\(469\) 6.99111e6 0.00312926
\(470\) 0 0
\(471\) 0 0
\(472\) 1.52246e9 0.666423
\(473\) 7.44566e8 0.323511
\(474\) 0 0
\(475\) 0 0
\(476\) −5.80977e9 −2.46908
\(477\) 0 0
\(478\) 9.25840e8 0.387738
\(479\) −3.00343e9 −1.24866 −0.624328 0.781162i \(-0.714627\pi\)
−0.624328 + 0.781162i \(0.714627\pi\)
\(480\) 0 0
\(481\) −3.59537e8 −0.147311
\(482\) 1.74754e8 0.0710823
\(483\) 0 0
\(484\) 2.01342e9 0.807189
\(485\) 0 0
\(486\) 0 0
\(487\) −3.28649e8 −0.128938 −0.0644690 0.997920i \(-0.520535\pi\)
−0.0644690 + 0.997920i \(0.520535\pi\)
\(488\) −2.82541e8 −0.110056
\(489\) 0 0
\(490\) 0 0
\(491\) 6.97275e8 0.265839 0.132919 0.991127i \(-0.457565\pi\)
0.132919 + 0.991127i \(0.457565\pi\)
\(492\) 0 0
\(493\) −2.14794e9 −0.807344
\(494\) 1.13188e8 0.0422433
\(495\) 0 0
\(496\) −2.54835e8 −0.0937721
\(497\) 4.20474e9 1.53636
\(498\) 0 0
\(499\) −3.18226e9 −1.14652 −0.573262 0.819372i \(-0.694322\pi\)
−0.573262 + 0.819372i \(0.694322\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −1.17910e9 −0.415996
\(503\) −4.07550e9 −1.42788 −0.713942 0.700205i \(-0.753092\pi\)
−0.713942 + 0.700205i \(0.753092\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 2.86421e8 0.0982830
\(507\) 0 0
\(508\) 2.86546e9 0.969777
\(509\) −4.18725e8 −0.140740 −0.0703699 0.997521i \(-0.522418\pi\)
−0.0703699 + 0.997521i \(0.522418\pi\)
\(510\) 0 0
\(511\) 3.02822e9 1.00396
\(512\) −2.98305e9 −0.982235
\(513\) 0 0
\(514\) −1.60857e9 −0.522480
\(515\) 0 0
\(516\) 0 0
\(517\) −7.48544e8 −0.238232
\(518\) 1.71089e9 0.540839
\(519\) 0 0
\(520\) 0 0
\(521\) 2.02201e9 0.626400 0.313200 0.949687i \(-0.398599\pi\)
0.313200 + 0.949687i \(0.398599\pi\)
\(522\) 0 0
\(523\) 1.87087e8 0.0571857 0.0285928 0.999591i \(-0.490897\pi\)
0.0285928 + 0.999591i \(0.490897\pi\)
\(524\) −2.47286e9 −0.750827
\(525\) 0 0
\(526\) −9.45704e8 −0.283338
\(527\) −6.38504e8 −0.190032
\(528\) 0 0
\(529\) 1.18962e8 0.0349392
\(530\) 0 0
\(531\) 0 0
\(532\) 7.00812e9 2.01795
\(533\) −3.68101e8 −0.105298
\(534\) 0 0
\(535\) 0 0
\(536\) 3.46541e6 0.000972025 0
\(537\) 0 0
\(538\) 8.93251e8 0.247307
\(539\) −2.30248e9 −0.633337
\(540\) 0 0
\(541\) 3.94897e9 1.07224 0.536122 0.844140i \(-0.319889\pi\)
0.536122 + 0.844140i \(0.319889\pi\)
\(542\) −1.19774e9 −0.323120
\(543\) 0 0
\(544\) −4.37303e9 −1.16463
\(545\) 0 0
\(546\) 0 0
\(547\) 1.71845e9 0.448932 0.224466 0.974482i \(-0.427936\pi\)
0.224466 + 0.974482i \(0.427936\pi\)
\(548\) −1.18188e9 −0.306790
\(549\) 0 0
\(550\) 0 0
\(551\) 2.59099e9 0.659835
\(552\) 0 0
\(553\) 2.66083e9 0.669082
\(554\) −1.21021e9 −0.302397
\(555\) 0 0
\(556\) −1.75222e9 −0.432342
\(557\) −3.22406e9 −0.790516 −0.395258 0.918570i \(-0.629345\pi\)
−0.395258 + 0.918570i \(0.629345\pi\)
\(558\) 0 0
\(559\) −4.45935e8 −0.107977
\(560\) 0 0
\(561\) 0 0
\(562\) 1.08250e9 0.257246
\(563\) −5.69907e9 −1.34594 −0.672968 0.739671i \(-0.734981\pi\)
−0.672968 + 0.739671i \(0.734981\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 1.19596e9 0.277243
\(567\) 0 0
\(568\) 2.08424e9 0.477230
\(569\) −3.70804e9 −0.843823 −0.421912 0.906637i \(-0.638641\pi\)
−0.421912 + 0.906637i \(0.638641\pi\)
\(570\) 0 0
\(571\) −3.34811e9 −0.752615 −0.376308 0.926495i \(-0.622806\pi\)
−0.376308 + 0.926495i \(0.622806\pi\)
\(572\) 1.81422e8 0.0405326
\(573\) 0 0
\(574\) 1.75164e9 0.386593
\(575\) 0 0
\(576\) 0 0
\(577\) −8.37348e9 −1.81464 −0.907320 0.420441i \(-0.861876\pi\)
−0.907320 + 0.420441i \(0.861876\pi\)
\(578\) −1.94649e9 −0.419280
\(579\) 0 0
\(580\) 0 0
\(581\) −4.61556e9 −0.976355
\(582\) 0 0
\(583\) −2.56244e9 −0.535568
\(584\) 1.50105e9 0.311854
\(585\) 0 0
\(586\) −5.84188e8 −0.119925
\(587\) −9.32230e8 −0.190235 −0.0951174 0.995466i \(-0.530323\pi\)
−0.0951174 + 0.995466i \(0.530323\pi\)
\(588\) 0 0
\(589\) 7.70205e8 0.155311
\(590\) 0 0
\(591\) 0 0
\(592\) −4.87334e9 −0.965385
\(593\) 4.69858e9 0.925283 0.462642 0.886545i \(-0.346902\pi\)
0.462642 + 0.886545i \(0.346902\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −2.63759e9 −0.510323
\(597\) 0 0
\(598\) −1.71543e8 −0.0328035
\(599\) 2.66487e9 0.506620 0.253310 0.967385i \(-0.418481\pi\)
0.253310 + 0.967385i \(0.418481\pi\)
\(600\) 0 0
\(601\) −1.21738e9 −0.228753 −0.114376 0.993437i \(-0.536487\pi\)
−0.114376 + 0.993437i \(0.536487\pi\)
\(602\) 2.12203e9 0.396427
\(603\) 0 0
\(604\) −5.83339e9 −1.07719
\(605\) 0 0
\(606\) 0 0
\(607\) 2.74917e9 0.498932 0.249466 0.968384i \(-0.419745\pi\)
0.249466 + 0.968384i \(0.419745\pi\)
\(608\) 5.27503e9 0.951837
\(609\) 0 0
\(610\) 0 0
\(611\) 4.48318e8 0.0795136
\(612\) 0 0
\(613\) −7.89654e9 −1.38460 −0.692301 0.721609i \(-0.743403\pi\)
−0.692301 + 0.721609i \(0.743403\pi\)
\(614\) −6.38552e8 −0.111329
\(615\) 0 0
\(616\) −1.79298e9 −0.309060
\(617\) 3.64303e9 0.624403 0.312202 0.950016i \(-0.398934\pi\)
0.312202 + 0.950016i \(0.398934\pi\)
\(618\) 0 0
\(619\) 7.22253e9 1.22397 0.611987 0.790868i \(-0.290370\pi\)
0.611987 + 0.790868i \(0.290370\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 7.84163e8 0.130659
\(623\) 9.24838e9 1.53235
\(624\) 0 0
\(625\) 0 0
\(626\) −2.81023e9 −0.457859
\(627\) 0 0
\(628\) −7.38586e8 −0.118999
\(629\) −1.22104e10 −1.95638
\(630\) 0 0
\(631\) −1.55879e9 −0.246993 −0.123496 0.992345i \(-0.539411\pi\)
−0.123496 + 0.992345i \(0.539411\pi\)
\(632\) 1.31894e9 0.207833
\(633\) 0 0
\(634\) 4.94208e8 0.0770189
\(635\) 0 0
\(636\) 0 0
\(637\) 1.37900e9 0.211386
\(638\) −3.19178e8 −0.0486588
\(639\) 0 0
\(640\) 0 0
\(641\) −3.18649e9 −0.477869 −0.238935 0.971036i \(-0.576798\pi\)
−0.238935 + 0.971036i \(0.576798\pi\)
\(642\) 0 0
\(643\) −1.65144e9 −0.244976 −0.122488 0.992470i \(-0.539087\pi\)
−0.122488 + 0.992470i \(0.539087\pi\)
\(644\) −1.06212e10 −1.56701
\(645\) 0 0
\(646\) 3.84405e9 0.561015
\(647\) 3.95797e9 0.574523 0.287262 0.957852i \(-0.407255\pi\)
0.287262 + 0.957852i \(0.407255\pi\)
\(648\) 0 0
\(649\) −3.25730e9 −0.467736
\(650\) 0 0
\(651\) 0 0
\(652\) 1.83295e9 0.258990
\(653\) −2.09998e9 −0.295134 −0.147567 0.989052i \(-0.547144\pi\)
−0.147567 + 0.989052i \(0.547144\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −4.98942e9 −0.690059
\(657\) 0 0
\(658\) −2.13336e9 −0.291927
\(659\) 1.18536e10 1.61344 0.806718 0.590937i \(-0.201242\pi\)
0.806718 + 0.590937i \(0.201242\pi\)
\(660\) 0 0
\(661\) −1.14873e10 −1.54709 −0.773543 0.633744i \(-0.781517\pi\)
−0.773543 + 0.633744i \(0.781517\pi\)
\(662\) 7.79648e8 0.104447
\(663\) 0 0
\(664\) −2.28787e9 −0.303280
\(665\) 0 0
\(666\) 0 0
\(667\) −3.92679e9 −0.512386
\(668\) −9.20738e8 −0.119514
\(669\) 0 0
\(670\) 0 0
\(671\) 6.04494e8 0.0772437
\(672\) 0 0
\(673\) 1.99478e9 0.252257 0.126128 0.992014i \(-0.459745\pi\)
0.126128 + 0.992014i \(0.459745\pi\)
\(674\) 7.08115e8 0.0890829
\(675\) 0 0
\(676\) 7.34992e9 0.915101
\(677\) −3.21860e9 −0.398664 −0.199332 0.979932i \(-0.563877\pi\)
−0.199332 + 0.979932i \(0.563877\pi\)
\(678\) 0 0
\(679\) −4.56053e9 −0.559076
\(680\) 0 0
\(681\) 0 0
\(682\) −9.48799e7 −0.0114533
\(683\) −1.87259e9 −0.224890 −0.112445 0.993658i \(-0.535868\pi\)
−0.112445 + 0.993658i \(0.535868\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −2.81523e9 −0.332950
\(687\) 0 0
\(688\) −6.04442e9 −0.707611
\(689\) 1.53470e9 0.178754
\(690\) 0 0
\(691\) 3.08223e8 0.0355380 0.0177690 0.999842i \(-0.494344\pi\)
0.0177690 + 0.999842i \(0.494344\pi\)
\(692\) −1.18967e9 −0.136476
\(693\) 0 0
\(694\) 2.03708e9 0.231340
\(695\) 0 0
\(696\) 0 0
\(697\) −1.25013e10 −1.39842
\(698\) −2.65213e9 −0.295190
\(699\) 0 0
\(700\) 0 0
\(701\) 1.39953e10 1.53450 0.767251 0.641346i \(-0.221624\pi\)
0.767251 + 0.641346i \(0.221624\pi\)
\(702\) 0 0
\(703\) 1.47290e10 1.59893
\(704\) 1.99826e9 0.215848
\(705\) 0 0
\(706\) 2.04045e9 0.218228
\(707\) −1.08005e10 −1.14941
\(708\) 0 0
\(709\) −1.02356e10 −1.07858 −0.539290 0.842120i \(-0.681307\pi\)
−0.539290 + 0.842120i \(0.681307\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 4.58430e9 0.475985
\(713\) −1.16729e9 −0.120605
\(714\) 0 0
\(715\) 0 0
\(716\) 1.29836e10 1.32191
\(717\) 0 0
\(718\) −2.23739e9 −0.225582
\(719\) −9.63078e9 −0.966297 −0.483148 0.875538i \(-0.660507\pi\)
−0.483148 + 0.875538i \(0.660507\pi\)
\(720\) 0 0
\(721\) 2.19309e10 2.17913
\(722\) −1.93522e9 −0.191359
\(723\) 0 0
\(724\) 1.51937e9 0.148792
\(725\) 0 0
\(726\) 0 0
\(727\) 1.62740e10 1.57081 0.785407 0.618980i \(-0.212454\pi\)
0.785407 + 0.618980i \(0.212454\pi\)
\(728\) 1.07385e9 0.103154
\(729\) 0 0
\(730\) 0 0
\(731\) −1.51446e10 −1.43399
\(732\) 0 0
\(733\) −1.62212e10 −1.52132 −0.760659 0.649152i \(-0.775124\pi\)
−0.760659 + 0.649152i \(0.775124\pi\)
\(734\) −3.20342e9 −0.299004
\(735\) 0 0
\(736\) −7.99461e9 −0.739137
\(737\) −7.41420e6 −0.000682226 0
\(738\) 0 0
\(739\) 1.78796e10 1.62968 0.814841 0.579684i \(-0.196824\pi\)
0.814841 + 0.579684i \(0.196824\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −7.30301e9 −0.656278
\(743\) −1.10072e10 −0.984499 −0.492249 0.870454i \(-0.663825\pi\)
−0.492249 + 0.870454i \(0.663825\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 3.87602e9 0.341822
\(747\) 0 0
\(748\) 6.16137e9 0.538296
\(749\) 2.47531e10 2.15250
\(750\) 0 0
\(751\) −8.82495e9 −0.760278 −0.380139 0.924929i \(-0.624124\pi\)
−0.380139 + 0.924929i \(0.624124\pi\)
\(752\) 6.07671e9 0.521082
\(753\) 0 0
\(754\) 1.91162e8 0.0162406
\(755\) 0 0
\(756\) 0 0
\(757\) 1.26747e10 1.06194 0.530972 0.847389i \(-0.321827\pi\)
0.530972 + 0.847389i \(0.321827\pi\)
\(758\) 8.98754e8 0.0749547
\(759\) 0 0
\(760\) 0 0
\(761\) 4.76538e9 0.391969 0.195984 0.980607i \(-0.437210\pi\)
0.195984 + 0.980607i \(0.437210\pi\)
\(762\) 0 0
\(763\) 3.53487e10 2.88097
\(764\) 1.83624e10 1.48971
\(765\) 0 0
\(766\) 2.44976e9 0.196935
\(767\) 1.95086e9 0.156114
\(768\) 0 0
\(769\) −3.33620e9 −0.264552 −0.132276 0.991213i \(-0.542228\pi\)
−0.132276 + 0.991213i \(0.542228\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −1.79919e10 −1.40740
\(773\) 1.22441e9 0.0953453 0.0476726 0.998863i \(-0.484820\pi\)
0.0476726 + 0.998863i \(0.484820\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −2.26060e9 −0.173663
\(777\) 0 0
\(778\) −1.02432e9 −0.0779843
\(779\) 1.50798e10 1.14292
\(780\) 0 0
\(781\) −4.45921e9 −0.334949
\(782\) −5.82587e9 −0.435649
\(783\) 0 0
\(784\) 1.86916e10 1.38529
\(785\) 0 0
\(786\) 0 0
\(787\) 1.72256e10 1.25969 0.629844 0.776721i \(-0.283119\pi\)
0.629844 + 0.776721i \(0.283119\pi\)
\(788\) −1.47189e10 −1.07160
\(789\) 0 0
\(790\) 0 0
\(791\) 1.89284e10 1.35986
\(792\) 0 0
\(793\) −3.62043e8 −0.0257813
\(794\) 3.03051e9 0.214854
\(795\) 0 0
\(796\) −5.68077e9 −0.399219
\(797\) 1.01065e10 0.707127 0.353564 0.935411i \(-0.384970\pi\)
0.353564 + 0.935411i \(0.384970\pi\)
\(798\) 0 0
\(799\) 1.52255e10 1.05599
\(800\) 0 0
\(801\) 0 0
\(802\) −3.30467e9 −0.226213
\(803\) −3.21149e9 −0.218878
\(804\) 0 0
\(805\) 0 0
\(806\) 5.68254e7 0.00382270
\(807\) 0 0
\(808\) −5.35367e9 −0.357036
\(809\) −9.46505e9 −0.628497 −0.314248 0.949341i \(-0.601753\pi\)
−0.314248 + 0.949341i \(0.601753\pi\)
\(810\) 0 0
\(811\) 1.67478e10 1.10251 0.551257 0.834335i \(-0.314148\pi\)
0.551257 + 0.834335i \(0.314148\pi\)
\(812\) 1.18359e10 0.775810
\(813\) 0 0
\(814\) −1.81443e9 −0.117911
\(815\) 0 0
\(816\) 0 0
\(817\) 1.82684e10 1.17199
\(818\) −3.30996e9 −0.211439
\(819\) 0 0
\(820\) 0 0
\(821\) 3.34978e9 0.211259 0.105630 0.994406i \(-0.466314\pi\)
0.105630 + 0.994406i \(0.466314\pi\)
\(822\) 0 0
\(823\) −6.69632e9 −0.418732 −0.209366 0.977837i \(-0.567140\pi\)
−0.209366 + 0.977837i \(0.567140\pi\)
\(824\) 1.08709e10 0.676893
\(825\) 0 0
\(826\) −9.28336e9 −0.573159
\(827\) −5.81000e9 −0.357196 −0.178598 0.983922i \(-0.557156\pi\)
−0.178598 + 0.983922i \(0.557156\pi\)
\(828\) 0 0
\(829\) 6.84048e9 0.417009 0.208505 0.978021i \(-0.433140\pi\)
0.208505 + 0.978021i \(0.433140\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −1.19680e9 −0.0720424
\(833\) 4.68329e10 2.80733
\(834\) 0 0
\(835\) 0 0
\(836\) −7.43224e9 −0.439945
\(837\) 0 0
\(838\) −5.29529e9 −0.310839
\(839\) 1.04085e8 0.00608445 0.00304223 0.999995i \(-0.499032\pi\)
0.00304223 + 0.999995i \(0.499032\pi\)
\(840\) 0 0
\(841\) −1.28740e10 −0.746324
\(842\) 1.38438e9 0.0799215
\(843\) 0 0
\(844\) −7.46773e9 −0.427553
\(845\) 0 0
\(846\) 0 0
\(847\) −2.54975e10 −1.44180
\(848\) 2.08020e10 1.17144
\(849\) 0 0
\(850\) 0 0
\(851\) −2.23226e10 −1.24163
\(852\) 0 0
\(853\) −6.47246e9 −0.357066 −0.178533 0.983934i \(-0.557135\pi\)
−0.178533 + 0.983934i \(0.557135\pi\)
\(854\) 1.72282e9 0.0946536
\(855\) 0 0
\(856\) 1.22698e10 0.668619
\(857\) −2.27261e10 −1.23337 −0.616684 0.787211i \(-0.711524\pi\)
−0.616684 + 0.787211i \(0.711524\pi\)
\(858\) 0 0
\(859\) −1.08363e10 −0.583315 −0.291657 0.956523i \(-0.594207\pi\)
−0.291657 + 0.956523i \(0.594207\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −2.29749e9 −0.122174
\(863\) −3.23218e10 −1.71182 −0.855910 0.517125i \(-0.827002\pi\)
−0.855910 + 0.517125i \(0.827002\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 7.50973e9 0.392927
\(867\) 0 0
\(868\) 3.51838e9 0.182610
\(869\) −2.82186e9 −0.145870
\(870\) 0 0
\(871\) 4.44051e6 0.000227703 0
\(872\) 1.75219e10 0.894899
\(873\) 0 0
\(874\) 7.02754e9 0.356052
\(875\) 0 0
\(876\) 0 0
\(877\) −4.21367e9 −0.210941 −0.105471 0.994422i \(-0.533635\pi\)
−0.105471 + 0.994422i \(0.533635\pi\)
\(878\) −5.13624e8 −0.0256103
\(879\) 0 0
\(880\) 0 0
\(881\) −5.03021e9 −0.247840 −0.123920 0.992292i \(-0.539547\pi\)
−0.123920 + 0.992292i \(0.539547\pi\)
\(882\) 0 0
\(883\) −2.81606e10 −1.37651 −0.688255 0.725469i \(-0.741623\pi\)
−0.688255 + 0.725469i \(0.741623\pi\)
\(884\) −3.69016e9 −0.179665
\(885\) 0 0
\(886\) −4.63184e9 −0.223736
\(887\) −1.59422e10 −0.767038 −0.383519 0.923533i \(-0.625288\pi\)
−0.383519 + 0.923533i \(0.625288\pi\)
\(888\) 0 0
\(889\) −3.62877e10 −1.73222
\(890\) 0 0
\(891\) 0 0
\(892\) 6.15578e8 0.0290406
\(893\) −1.83660e10 −0.863049
\(894\) 0 0
\(895\) 0 0
\(896\) 3.16440e10 1.46965
\(897\) 0 0
\(898\) −1.04374e10 −0.480980
\(899\) 1.30079e9 0.0597101
\(900\) 0 0
\(901\) 5.21206e10 2.37396
\(902\) −1.85765e9 −0.0842833
\(903\) 0 0
\(904\) 9.38255e9 0.422407
\(905\) 0 0
\(906\) 0 0
\(907\) −2.20381e10 −0.980729 −0.490364 0.871517i \(-0.663136\pi\)
−0.490364 + 0.871517i \(0.663136\pi\)
\(908\) 2.89408e10 1.28295
\(909\) 0 0
\(910\) 0 0
\(911\) −1.50904e10 −0.661283 −0.330641 0.943756i \(-0.607265\pi\)
−0.330641 + 0.943756i \(0.607265\pi\)
\(912\) 0 0
\(913\) 4.89489e9 0.212860
\(914\) −2.28585e9 −0.0990229
\(915\) 0 0
\(916\) 1.30434e10 0.560736
\(917\) 3.13158e10 1.34113
\(918\) 0 0
\(919\) 9.21105e9 0.391476 0.195738 0.980656i \(-0.437290\pi\)
0.195738 + 0.980656i \(0.437290\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −2.65457e9 −0.111541
\(923\) 2.67071e9 0.111794
\(924\) 0 0
\(925\) 0 0
\(926\) −1.07290e10 −0.444040
\(927\) 0 0
\(928\) 8.90892e9 0.365938
\(929\) −4.08831e10 −1.67297 −0.836487 0.547987i \(-0.815394\pi\)
−0.836487 + 0.547987i \(0.815394\pi\)
\(930\) 0 0
\(931\) −5.64929e10 −2.29440
\(932\) −2.20816e10 −0.893461
\(933\) 0 0
\(934\) −9.16912e9 −0.368225
\(935\) 0 0
\(936\) 0 0
\(937\) 3.38015e10 1.34229 0.671147 0.741324i \(-0.265802\pi\)
0.671147 + 0.741324i \(0.265802\pi\)
\(938\) −2.11306e7 −0.000835992 0
\(939\) 0 0
\(940\) 0 0
\(941\) −2.16815e10 −0.848252 −0.424126 0.905603i \(-0.639419\pi\)
−0.424126 + 0.905603i \(0.639419\pi\)
\(942\) 0 0
\(943\) −2.28543e10 −0.887519
\(944\) 2.64429e10 1.02307
\(945\) 0 0
\(946\) −2.25045e9 −0.0864271
\(947\) 1.47060e10 0.562692 0.281346 0.959606i \(-0.409219\pi\)
0.281346 + 0.959606i \(0.409219\pi\)
\(948\) 0 0
\(949\) 1.92342e9 0.0730538
\(950\) 0 0
\(951\) 0 0
\(952\) 3.64696e10 1.36994
\(953\) 1.26663e10 0.474050 0.237025 0.971504i \(-0.423828\pi\)
0.237025 + 0.971504i \(0.423828\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 3.64102e10 1.34778
\(957\) 0 0
\(958\) 9.07785e9 0.333583
\(959\) 1.49671e10 0.547989
\(960\) 0 0
\(961\) −2.71259e10 −0.985945
\(962\) 1.08670e9 0.0393547
\(963\) 0 0
\(964\) 6.87247e9 0.247083
\(965\) 0 0
\(966\) 0 0
\(967\) −2.68713e10 −0.955644 −0.477822 0.878457i \(-0.658574\pi\)
−0.477822 + 0.878457i \(0.658574\pi\)
\(968\) −1.26388e10 −0.447860
\(969\) 0 0
\(970\) 0 0
\(971\) −1.85571e9 −0.0650494 −0.0325247 0.999471i \(-0.510355\pi\)
−0.0325247 + 0.999471i \(0.510355\pi\)
\(972\) 0 0
\(973\) 2.21898e10 0.772252
\(974\) 9.93340e8 0.0344462
\(975\) 0 0
\(976\) −4.90731e9 −0.168954
\(977\) 3.13360e10 1.07501 0.537506 0.843260i \(-0.319367\pi\)
0.537506 + 0.843260i \(0.319367\pi\)
\(978\) 0 0
\(979\) −9.80808e9 −0.334075
\(980\) 0 0
\(981\) 0 0
\(982\) −2.10751e9 −0.0710198
\(983\) −2.78355e9 −0.0934679 −0.0467339 0.998907i \(-0.514881\pi\)
−0.0467339 + 0.998907i \(0.514881\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 6.49215e9 0.215685
\(987\) 0 0
\(988\) 4.45132e9 0.146838
\(989\) −2.76868e10 −0.910094
\(990\) 0 0
\(991\) 2.20283e10 0.718991 0.359495 0.933147i \(-0.382949\pi\)
0.359495 + 0.933147i \(0.382949\pi\)
\(992\) 2.64829e9 0.0861341
\(993\) 0 0
\(994\) −1.27088e10 −0.410443
\(995\) 0 0
\(996\) 0 0
\(997\) −5.02880e10 −1.60706 −0.803528 0.595266i \(-0.797047\pi\)
−0.803528 + 0.595266i \(0.797047\pi\)
\(998\) 9.61836e9 0.306298
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 225.8.a.bb.1.2 4
3.2 odd 2 75.8.a.i.1.3 4
5.2 odd 4 45.8.b.d.19.4 8
5.3 odd 4 45.8.b.d.19.5 8
5.4 even 2 225.8.a.z.1.3 4
15.2 even 4 15.8.b.a.4.5 yes 8
15.8 even 4 15.8.b.a.4.4 8
15.14 odd 2 75.8.a.j.1.2 4
60.23 odd 4 240.8.f.e.49.5 8
60.47 odd 4 240.8.f.e.49.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
15.8.b.a.4.4 8 15.8 even 4
15.8.b.a.4.5 yes 8 15.2 even 4
45.8.b.d.19.4 8 5.2 odd 4
45.8.b.d.19.5 8 5.3 odd 4
75.8.a.i.1.3 4 3.2 odd 2
75.8.a.j.1.2 4 15.14 odd 2
225.8.a.z.1.3 4 5.4 even 2
225.8.a.bb.1.2 4 1.1 even 1 trivial
240.8.f.e.49.1 8 60.47 odd 4
240.8.f.e.49.5 8 60.23 odd 4