Properties

Label 225.8
Level 225
Weight 8
Dimension 9102
Nonzero newspaces 12
Sturm bound 28800
Trace bound 2

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 225 = 3^{2} \cdot 5^{2} \)
Weight: \( k \) = \( 8 \)
Nonzero newspaces: \( 12 \)
Sturm bound: \(28800\)
Trace bound: \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{8}(\Gamma_1(225))\).

Total New Old
Modular forms 12824 9287 3537
Cusp forms 12376 9102 3274
Eisenstein series 448 185 263

Trace form

\( 9102 q - 49 q^{2} - 347 q^{4} - 51 q^{5} - 1273 q^{6} + 3838 q^{7} + 612 q^{8} + 9598 q^{9} + 40 q^{10} - 36934 q^{11} - 18596 q^{12} + 31912 q^{13} + 80538 q^{14} + 25156 q^{15} - 52855 q^{16} - 72602 q^{17}+ \cdots + 52811244 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{8}^{\mathrm{new}}(\Gamma_1(225))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
225.8.a \(\chi_{225}(1, \cdot)\) 225.8.a.a 1 1
225.8.a.b 1
225.8.a.c 1
225.8.a.d 1
225.8.a.e 1
225.8.a.f 1
225.8.a.g 1
225.8.a.h 1
225.8.a.i 1
225.8.a.j 1
225.8.a.k 2
225.8.a.l 2
225.8.a.m 2
225.8.a.n 2
225.8.a.o 2
225.8.a.p 2
225.8.a.q 2
225.8.a.r 2
225.8.a.s 2
225.8.a.t 2
225.8.a.u 2
225.8.a.v 2
225.8.a.w 2
225.8.a.x 3
225.8.a.y 3
225.8.a.z 4
225.8.a.ba 4
225.8.a.bb 4
225.8.b \(\chi_{225}(199, \cdot)\) 225.8.b.a 2 1
225.8.b.b 2
225.8.b.c 2
225.8.b.d 2
225.8.b.e 2
225.8.b.f 2
225.8.b.g 2
225.8.b.h 2
225.8.b.i 2
225.8.b.j 4
225.8.b.k 4
225.8.b.l 4
225.8.b.m 4
225.8.b.n 4
225.8.b.o 4
225.8.b.p 4
225.8.b.q 6
225.8.e \(\chi_{225}(76, \cdot)\) n/a 260 2
225.8.f \(\chi_{225}(107, \cdot)\) 225.8.f.a 4 2
225.8.f.b 16
225.8.f.c 24
225.8.f.d 40
225.8.h \(\chi_{225}(46, \cdot)\) n/a 348 4
225.8.k \(\chi_{225}(49, \cdot)\) n/a 248 2
225.8.m \(\chi_{225}(19, \cdot)\) n/a 344 4
225.8.p \(\chi_{225}(32, \cdot)\) n/a 496 4
225.8.q \(\chi_{225}(16, \cdot)\) n/a 1664 8
225.8.s \(\chi_{225}(8, \cdot)\) n/a 560 8
225.8.u \(\chi_{225}(4, \cdot)\) n/a 1664 8
225.8.w \(\chi_{225}(2, \cdot)\) n/a 3328 16

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{8}^{\mathrm{old}}(\Gamma_1(225))\) into lower level spaces

\( S_{8}^{\mathrm{old}}(\Gamma_1(225)) \cong \) \(S_{8}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 9}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 6}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 6}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 3}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(15))\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(25))\)\(^{\oplus 3}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(45))\)\(^{\oplus 2}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(75))\)\(^{\oplus 2}\)