Properties

Label 75.8.a
Level $75$
Weight $8$
Character orbit 75.a
Rep. character $\chi_{75}(1,\cdot)$
Character field $\Q$
Dimension $23$
Newform subspaces $10$
Sturm bound $80$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 75 = 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 75.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 10 \)
Sturm bound: \(80\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{8}(\Gamma_0(75))\).

Total New Old
Modular forms 76 23 53
Cusp forms 64 23 41
Eisenstein series 12 0 12

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(3\)\(5\)FrickeDim
\(+\)\(+\)\(+\)\(6\)
\(+\)\(-\)\(-\)\(6\)
\(-\)\(+\)\(-\)\(4\)
\(-\)\(-\)\(+\)\(7\)
Plus space\(+\)\(13\)
Minus space\(-\)\(10\)

Trace form

\( 23 q + 22 q^{2} - 27 q^{3} + 1392 q^{4} + 162 q^{6} - 2200 q^{7} + 3756 q^{8} + 16767 q^{9} + 720 q^{11} - 12852 q^{12} + 16586 q^{13} + 25452 q^{14} + 61876 q^{16} + 3646 q^{17} + 16038 q^{18} + 4706 q^{19}+ \cdots + 524880 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{8}^{\mathrm{new}}(\Gamma_0(75))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 3 5
75.8.a.a 75.a 1.a $1$ $23.429$ \(\Q\) None 3.8.a.a \(-6\) \(27\) \(0\) \(64\) $-$ $+$ $\mathrm{SU}(2)$ \(q-6q^{2}+3^{3}q^{3}-92q^{4}-162q^{6}+\cdots\)
75.8.a.b 75.a 1.a $1$ $23.429$ \(\Q\) None 15.8.a.b \(13\) \(27\) \(0\) \(-1380\) $-$ $+$ $\mathrm{SU}(2)$ \(q+13q^{2}+3^{3}q^{3}+41q^{4}+351q^{6}+\cdots\)
75.8.a.c 75.a 1.a $1$ $23.429$ \(\Q\) None 15.8.a.a \(22\) \(-27\) \(0\) \(420\) $+$ $+$ $\mathrm{SU}(2)$ \(q+22q^{2}-3^{3}q^{3}+356q^{4}-594q^{6}+\cdots\)
75.8.a.d 75.a 1.a $2$ $23.429$ \(\Q(\sqrt{31}) \) None 75.8.a.d \(-8\) \(54\) \(0\) \(-86\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(-4+\beta )q^{2}+3^{3}q^{3}+(12-8\beta )q^{4}+\cdots\)
75.8.a.e 75.a 1.a $2$ $23.429$ \(\Q(\sqrt{601}) \) None 15.8.a.c \(-7\) \(-54\) \(0\) \(-1304\) $+$ $+$ $\mathrm{SU}(2)$ \(q+(-3-\beta )q^{2}-3^{3}q^{3}+(31+7\beta )q^{4}+\cdots\)
75.8.a.f 75.a 1.a $2$ $23.429$ \(\Q(\sqrt{31}) \) None 75.8.a.d \(8\) \(-54\) \(0\) \(86\) $+$ $-$ $\mathrm{SU}(2)$ \(q+(4+\beta )q^{2}-3^{3}q^{3}+(12+8\beta )q^{4}+\cdots\)
75.8.a.g 75.a 1.a $3$ $23.429$ 3.3.717484.1 None 75.8.a.g \(-6\) \(-81\) \(0\) \(-83\) $+$ $+$ $\mathrm{SU}(2)$ \(q+(-2-\beta _{1})q^{2}-3^{3}q^{3}+(51+4\beta _{1}+\cdots)q^{4}+\cdots\)
75.8.a.h 75.a 1.a $3$ $23.429$ 3.3.717484.1 None 75.8.a.g \(6\) \(81\) \(0\) \(83\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(2+\beta _{1})q^{2}+3^{3}q^{3}+(51+4\beta _{1}-\beta _{2})q^{4}+\cdots\)
75.8.a.i 75.a 1.a $4$ $23.429$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 15.8.b.a \(-9\) \(-108\) \(0\) \(-1188\) $+$ $-$ $\mathrm{SU}(2)$ \(q+(-2-\beta _{1})q^{2}-3^{3}q^{3}+(83+3\beta _{1}+\cdots)q^{4}+\cdots\)
75.8.a.j 75.a 1.a $4$ $23.429$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 15.8.b.a \(9\) \(108\) \(0\) \(1188\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(2+\beta _{1})q^{2}+3^{3}q^{3}+(83+3\beta _{1}+\beta _{2}+\cdots)q^{4}+\cdots\)

Decomposition of \(S_{8}^{\mathrm{old}}(\Gamma_0(75))\) into lower level spaces

\( S_{8}^{\mathrm{old}}(\Gamma_0(75)) \simeq \) \(S_{8}^{\mathrm{new}}(\Gamma_0(3))\)\(^{\oplus 3}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 2}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(25))\)\(^{\oplus 2}\)